
UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Advanced Engineering Mathematics Subject Code-MCSE101
Year: 1st Year Semester: first
Modul

e
Numb

er

Topics Numb
er of

Lectur
es (27)

1

NumericalAnalysis: 4L

IntroductiontoInterpolationformulae:
Stirling
Bessel’s
Spline

2

Solutionsofsystemoflinearandnon-linear simultaneousequations:
SORalgorithm
Newton’smethod

2

2

Stochasticprocess: 8L
Probability:review,randomvariables,randomprocesses,Randomwalk,brownianmot
ion,markovprocess,

4

queues:(M/M/1):(/FIFO),(M/M/1):(N/FIFO) 4

3

Advancedlinearalgebra: 9L

Vector spaces, linear transformations, eigenvalues, Eigenvectors, some
applications of eigenvalue problems

4

symmetric,skew-symmetricAndorthogonalmatrices,similarityofmatrices 2
basisofEigenvectors,diagonalisation 3

4
AdvancedGraphTheory: 6L

Connectivity,Matching,HamiltonianCycles,ColoringProblems 4

Algorithmsforsearchinganelementinadata structure(DFS,BFS) 2

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Advanced Operating System Subject Code: MCSE 102
Year: 1st Year Semester: First
Module Number Topics Number of Lectures

1

Operating System Introduction, Structures -
Simple Batch, Multi programmed, time-shared,
Personal Computer, Parallel, Distributed
Systems, Real-Time Systems, System
components, Operating-System services,
System Calls, Virtual Machines, System Design
and Implementation.

4L

Process and CPU Scheduling - Process concepts
and scheduling, Operation on processes,
Cooperating Processes, Threads, and Interposes
Communication Scheduling Criteria,
Scheduling Algorithm, Multiple -Processor
Scheduling, Real-Time Scheduling 5L

2

Memory Management and Virtual Memory -
Logical versus Physical Address Space,
Swapping, Contiguous Allocation, Paging,
Segmentation, Segmentation with Paging.
Demand Paging, Performance of Demanding
Paging, Page Replacement, Page Replacement
Algorithm, Allocation of Frames, Thrashing

6L

File System Interface and Implementation -
Access methods, Directory Structure,
Protection, File System Structure, Allocation
methods, Free-space Management, Directory
Management, Directory Implementation,
Efficiency and Performance

6L

3

Deadlocks - System Model, Dead locks
Characterization, Methods for Handling Dead
locks Deadlock Prevention, Deadlock
Avoidance, Deadlock Detection, and Recovery
from Deadlock

4L

Process Management and Synchronization -
The Critical Section Problem, Synchronization
Hardware, Semaphores, and Classical Problems
of Synchronization, Critical Regions, Monitors

5L

4

Operating System Security Issues- Introduction
to the topic of Security in Operating Systems,
Principles of Information Security, Access
Control Fundamentals, Generalized Security
Architectures

5L

5

Introduction to Distributed systems: Goals of
distributed system, hardware and software
Concepts, design issues 2L

Elementary introduction to the terminologies
within Modern Oss: Parallel, Distributed,
Embedded & Real Time, Mobile, Cloud and
Other Operating System Models 3L

Total Number Of Lectures = 40

Faculty In-Charge HOD, CSE Dept.

Assignments:

Module-1:
1. Explain Thread with real life examples.
2. Discuss real time scheduling.

Module-2:
1. What are the differences between paging and segmentation?
2. When does a page fault occur? Explain various page replacement strategies.

Module-3:
1. Why does starvation occur? What is the solution of starvation?
2. Discuss all the deadlock avoidance techniques?
3. State the roles of binary and count semaphore.

Module-4:
1. Discuss the security issues of OS?

Module-5:
1. Define real time operating system and its applications in real life?
2. Differentiate hard real time system from soft real time system.
3. Define distributed OS? How DOS differs from general purpose OS?
4. Write down the short notes on the following topics

A. POSIX
B. Event Driven Scheduling
C. Sporadic Task
D. VX-Works

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Advance Computer Architecture Subject Code: MCSE103
Year: 1st Year Semester: 1st

Module Number Topics Number of
Lectures

1

The evolution of modern Computer systems &
Introduction to high performance Computing

12

1. DEC PDP-11, IBM 360/370 family, CDC
Cyber 6600, Intel X86 architecture

2. Performance measurement parameters –
MIPS, MFLOPS, SPEC ratings, CPI etc

3. Overview, Flynn’s classifications – SISD,
SIMD, MISD, MIMD

4. Examples from Vector & Array Processors
5. Performance comparison of algorithms for

Scalar, Vector and Array Processor
6. Fundamentals of UMA, NUMA, NORMA

architectures Performance measurement for
parallel architectures – Flynn’s measure,
Feng’s measure, Handler’s measure

7. Amadahl’s law of limitation for parallel
processing, Gustafson’s law

2

2

1

1
2

2

2

2

Pipelined processor design 12

1. Pipeline performance measurement
parameters – speedup factor, efficiency,
throughput of a linear pipeline, comparing
performance of a N stage pipeline with a N
processor architecture

2. Pipeline design principles – Uniform sub
computations, Identical computations,
Independent computations

3. Examples from design of Arithmetic
pipelines – Floating point Adders,
Multipliers, Dividers etc.

4. Classifications of Uni function,
Multifunction & Dynamic pipelines

5. Scheduling in a pipelines with feedback
6. Pipeline hazards and their solutions

2

2

2

2

2
2

3

Various architectures 10

1. RISC architecture, characteristics of
RISC instruction set & RISC pipeline,
its comparisons with CISC, necessity of
using optimizing compilers with RISC
architecture

2. Examples from POWER PC and SPARC
architectures

3. Super pipelining (MIPS architecture),

2

2

2

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Advance Computer Architecture Subject Code: MCSE103
Year: 1st Year Semester: 1st

Superscalar architecture
4. Diversified pipelines and out of order

execution, VLIW architecture
5. Hardware multithreading (Coarse grained,

fine grained & simultaneous multithreading)

2

2

4

Memory hierarchy 6

1. Techniques for improving Cache
memory performance parameters,(
reduce cache miss rate, reduce hit time,
reduce miss penalty)

2. Main memory performance
enhancement – interleaved memory,
improvement of memory bandwidth

3. Use of TLB for performance enhancement

3

2

1
Total Lecture Hours – 34 l.h.

Faculty In-Charge HOD, CSE Dept.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Advance Computer Architecture Subject Code: MCSE103
Year: 1st Year Semester: 1st

Assignments:-

Unit 1:-

1. Explain the difference between hardwired and control and micro programmed control.
2. Explain the importance of different addressing modes in computer architecture with suitable

example.
3. What is an instruction format? Explain different types of instruction formats in detail.
4. Explain Flynn’s classification of computers.
5. Formulate a hardware procedure for detecting an overflow by computing the sign of the sum

with the signs of the augends and addend. The numbers are in signed 2”s complement
representation.

6. Explain vector processing. What is the difference between vector & array processing?
7. What is the difference between serial and parallel transfer? Explain with the required

example.
8. A digital computer has a common bus system for 16 register of 32 bits each. The bus is

constructed with multiplexers.
(i) How many selection inputs are there in each multiplexer?
(ii) What sizes of multiplexers are needed?
(iii) How many multiplexers are there in the bus?
9. What is the difference between a direct and indirect address instruction? How many

references to memory are needed for each type of instruction to bring an operand into a
processor register?

10. A computer has 16 register, an ALU with 32 operations and a shifter with eight operations all
Connected to a common bus system.

(i) Formulate a control word for a micro operation.
(ii) Specify the number of pits in each field on the control word and give a general encoding

scheme.
11. List down the problems with MIPS system.
12. Discuss the Amadahl’s law with proper example. Discuss fraction and speed up with real

time case study.
13. Discuss NUMA and UMA with their properties.
14. Design a (very) simple CPU for an instruction set that contains only the following four

instructions: lw (load word), sw (store word), add, and jump (unconditional branch). Assume that
the instruction formats are similar to the MIPS architecture. If you assume a different format,
state the instruction formats. Show all the components, all the links, and all the control signals in
the datapath. You must show only the minimal hardware required to implement these four
instructions. For each instruction show the steps involved and the values of the control signals for
a single cycle implementation.

Unit 2:-

1. Draw a space time diagram for a six-segment pipeline showing the time it takes to process
eight Tasks.

2. A no pipeline system takes 50 ns to process a task. The same task can be processed in 6
segment pipeline with a clock cycle of 10 ns. Determine the speedup ratio of pipeline for 100
tasks. What is maximum speedup ratio?

3. Explain hazards to the instruction pipeline with their solution.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Advance Computer Architecture Subject Code: MCSE103
Year: 1st Year Semester: 1st

4. What do you mean by instruction cycle and interrupt cycle? Draw the flowchart for
instruction Cycle.

5. Determine the number of clock cycles that it takes to process 200 task in a six segment
pipeline.

6. Consider the following MIPS assembly code:
LD R1, 45(R2)
ADD R7, R1, R5
SUB R8, R1, R6
OR R9, R5, R1
BNEZ R7, target
ADD R10, R8, R5
XOR R2, R3, R4

a) Identify each type of data dependency; list the two instructions involved; identify which
instruction is dependent; and, if there is one, name the storage location involved.
b) Use MIPS five-stage pipeline (fetch, decode, register, execute, write-back) and assume a

register file that writes in the first half of the clock cycle and reads in the second half
cycle. Which of the dependencies that you found in part (a) become hazards and which
do not? Why?

Unit 3:-
1. a)Name two RISC and two CISC processors. What are the main characteristics of RISC

processors?
b) Define (i) superscalar and (ii) super-pipeline concepts. Derive the equation for ideal
speedup for a superscalar super-pipelined processor compared to a sequential processor.
Assume N instructions, k-stage scalar base pipeline, superscalar degree of m, and super
pipeline degree of n.

2. Draw a diagram showing how the instruction fetch and execution units of a superscalar
processor are connected. Show the widths of the datapath (in words - not bits; your diagram
should be relevant to a 32-bit or 64-bit processor). Which factor primarily determines
performance: the instruction issue width (number of instructions issued per cycle) or the
number of functional units?

3. List the capabilities of the instruction fetch/despatch unit needed to make an effective
superscalar processor.

4. Why does a VLIW machine need a good optimizing compiler?
5. Where can you find a small dataflow machine in every high performance processor?
6. How the processor performance can be improved other than the enhancement in VLSI

technology?
7. Why does a VLIW machine restrict the op-codes which may be placed in any 'slot' of its

instructions?

Unit 4:-

1. Give an example of a situation where caches in a shared memory machine need to be kept
coherent.

2. List the states that a cache line may be in for the most commonly implemented cache
coherence protocol. Provide a short description of each state.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Advance Computer Architecture Subject Code: MCSE103
Year: 1st Year Semester: 1st

3. What is the advantage of having both Exclusive and Shared states for cache lines in a shared
memory machine?

4. What is the name of the programming model most commonly used for distributed memory
machines?

5. A three-level memory system having cache access time of 5 nsec and disk access time of 40
nsec, has a cache hit ratio of 0.96 and main memory hit ratio of 0.9. What should be the main
memory access time to achieve an overall access time of 16 nsec ?

6. According to the following information, determine size of the subfields (in bits) in the
address for Direct Mapping and Set Associative Mapping cache schemes :
We have 256 MB main memory and 1 MB cache memory
The address space of the processor is 256 MB
The block size is 128 bytes
There are 8 blocks in a cache set.

7. Suppose physical addresses are 32 bits wide. Suppose there is a cache containing 256K words
of data (not including tag bits), and each cache block contains 4 words. For each of the
following cache configurations,
a. direct mapped
b. 2-way set associative
c. 4-way set associative
d. fully associative
specify how the 32-bit address would be partitioned. For example, for a direct mapped cache,
you would need to specify which bits are used to select the cache entry and which bits are
used to compare against the tag stored in the cache entry.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Adv. Algorithm Subject Code-MCSE104
Year: 3rd Year Semester: Fifth

Module
Number

Topics Number of Lectures

1

Complexity Analysis: 3L

1. Time and space complexity. Asymptotic
notations. Recurrence for divide and
conquer And its solution, the substitution
method and recursion-tree method for
solving recurrences. The master method
with proof

1

2. Solve recursive function with different
methods

2

2

Advanced data structure: : 3L
1. ADT and data structure, linear vs

non-linear data Structure. Tree: tree as an
ADT, definition and terminologies,
threaded binary tree, BST.

1

2. Avl tree, balance multi way search tree: 2-
3 tree, red- black tree, B tree, B+ tree,
tries,spatial data representation using k-d
tree, quad tree.

3

3 Algorithm Design Techniques: 15L
1. Divide and Conquer: Basic method, use,

Examples – Binary Search, Merge Sort
,Quick Sort and there complexity.

2

2. Priority Queue:Definition, Heap Sort and
its complexity.

1

3. Dynamic Programming:Basic method,
use, Examples – Matrix Chain
Manipulation it’s complexity;All pair
shortest paths(Floyd-Warshall algorithm),
single source shortest path(Bellman-ford
algorithm), Travelling Salesman
Problemand their complexities

4

4. Backtracking:Basic method, use,
Examples – 8 queens problem,Graph
colouring problem.

1

5. Branch and Bound:15 puzzle problem and
its applications.

1

6. Greedy Method:Basic method, use,
Examples – Knapsack problem, Job
sequencing with deadlines, Activity
selection problem,single source shortest
path (Dijkstra algorithm), Minimum cost
spanning tree by Prim’s and Kruskal’s
algorithm, their complexities

3

7. Graph traversal algorithm: Breadth First
Search (BFS) and Depth First Search

1

(DFS) – complexity and comparison with
different edges

8. Disjoint set manipulation:Set
manipulation algorithm like UNION-
FIND, union by rank, path compression

1

9. Graph traversal algorithm:Breadth First
Search (BFS) and Depth First Search
(DFS) – complexity and comparison with
different edges

1

4 Computational geometry: 8L

1. Robust geometric primitives, convex hull,
triangulation, voronoi diagrams, nearest
neighbor search, range search, point
location, intersection detection, bin
packing,

4

2. Medial-axis transform, polygon
partitioning, simplifying polygons, shape
similarity, motion planning, maintaining
line arrangements, minkowski sum.

4

5

Set and string problems: 5L

1. set cover, set packing, string matching,
approximate string matching, text
compression, cryptography, finite state
machine minimization

3

2. longestCommon substring/subsequence,
shortest common superstring. 2

6
Amortized Analysis: 1L

1. Aggregate, Accounting, and Potential
Method. 1

7

Advanced areas: 10L

1. P class, NP class, NP hard class, NP
complete class

1

2. Their interrelationship, Satisfiability
problem, Cook’s theorem (Statement
only), Clique decision problem, vertex
cover problem, Hamiltonian cycle
problem

2

3. Necessity of approximation scheme,
performance guarantee, polynomial time
approximation schemes,

2

4. Vertex Cover problem, travelling
salesman problem

1

5. Randomized algorithms, multithreaded
algorithms, parallel algorithms.

4

Total Number Of Hours = 45

Faculty In-Charge HOD, CSE Dept.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Assignment:
Module-1(Complexity analysis):

1. State the master theorem and prove it.
2. Solve the recurrence relation:

a)T(n)=4T(n-1)+n1/2

b)T(n)=2T(n1/2)+nlogn
Module-2 (Advanced data structure):

1. Describe the insertion and deletion operation od red black tree and why it is required.
2. Define k-d tree and quad tree

Module-3(Algorithm Design Techniques):
1. Write down the algorithm of ternarysearch and find out the time complexity.
2. ModifytheMerge sortalgorithmsothattheinput array AisdividedintoKparts instead

of2.Analyzeyouralgorithm.AssumeK>1.
3. Write analgorithmtosortanelementinaascendingorder using min-heap and analyse it.
4. Findoutthetimecomplexityofheapify function in heap sort.
5. Explain Floyd warshall algorithm with example.
6. Considerthefollowingfivematrices:

A1=2X3,A2=3X4,A3=4X6,A4=6X2,A5=2X7.
(i) How manyparenthesizationarepossibletomultiplythese matrices?
(ii) Give aparenthesizedexpressionfor the order in which this optimalnumberof

multiplicationsisachieved.
(iii) Findtheoptimalcostofthesolution

7. Write down the complexity of N queens problem.
8. Draw the state space tree of 4coloring problem.
9. Find out the time complexity of prime algorithm and dijkstra algorithm.

10.What are the features are present in any greedy algorithm?
11. Define path compression technique in union and find algorithm
12.Howprims algorithm follow this method explain with example
13. Find out the time complexity of BFS.
14.Write an algorithm to find the graph contain any back edge or not

Module-12(Computational geometry):
1. The convex hull of a set S is defined to be the intersection of all convex sets that

contain S. For the convex hull of a set of points it was indicated that the convex hull is
the convex set with smallest perimeter. We want to show that these are equivalent
definitions. a. Prove that the intersection of two convex sets is again convex. This
implies that the intersection of a finite family of convex sets is convex as well. b.
Prove that the smallest perimeter polygon P containing a set of points P is convex. c.
Prove that any convex set containing the set of points P contains the smallest
perimeter polygon P.

2. Verify that the algorithm CONVEXHULL with the indicated modifications correctly
computes the convex hull, also of degenerate sets of points. Consider for example
such nasty cases as a set of points that all lie on one (vertical) line.

Module-12 (Set and string problems):
1. Explain KMP algorithm with example.Why KMP is better than Naïve and string

matching with finite automata.
2. Write an algorithm to find out the longest common sub sequence in a string.

Module-13(Amortize analysis):
1. Define Aggregate Method Accounting Method and Potential Method.

Module-15(Advanced areas:):
1. Show all satisfiability problem are verifiable in polynomial time.
2. Prove that approx-vertex-cover is 2-approximation algorithm
3. Write a short note on Randomized algorithms, multithreaded algorithms, parallel

algorithms.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Artificial Neural Network Subject Code- MCS105A
Year: 1st Year Semester: First

Module
Number

Topics Number of Lectures

1

Introduction to artificial neural networks : 5L
1. Biological neural networks, Pattern analysis
tasks: Classification, Regression, Clustering.

2

2. Computational models of neurons. 1
3. Structures of neural networks 1
4. Learning principles 1

2

Linear models for regression and
classification:

8L

1. Polynomial curve fitting, Bayesian curve
fitting.

2

2. Linear basis function models, Bias-
variance decomposition.

2

3. Bayesian linear regression, Least squares
for classification.

2

4. Logistic regression for classification,
Bayesian logistic regression for
classification.

2

3.

Feed forward neural networks : 8L
1. Pattern classification using perceptron,

Multilayer feed forward neural networks
(MLFFNNs).

2

2. Pattern classification and regression using
MLFFNNs.

2

3. Error back propagation learning. 1

4. Fast learning methods: Conjugate gradient
method, Auto associative neural networks.

2

5. Bayesian neural networks. 1

4
Radial basis function networks : 5L

1. Regularization theory. 2
2. RBF networks for function

approximation.
2

3. RBF networks for pattern classification. 1

5
Self-organizing maps : 4L

1. Pattern clustering, Topological mapping 2

2. Kohonen’s self-organizing map. 2

6
Feedback neural networks : 5L

1. Pattern storage and retrieval, Hopfield
model 2

2. Boltzmann machine 1

3. Recurrent neural networks. 2

7

Kernel methods for pattern analysis : 8L
1. Statistical learning theory 2
2. Support vector machines for pattern

classification
2

3. Support vector regression for function
approximation

2

4. Relevance vector machines for
classification and regression

2

Total Number Of Hours = 43

Faculty In-Charge HOD, CSE Dept.

Assignment:

Module-1(Introduction):
1. Write Down short Notes: Classification & Regrassion.
2. Draw the structure of Neural networks & describe it.

Module-2(Linear models for regression and classification):
1. Notes: Bayesian linear regression & Bias-variance decomposition.
2. Prove that: MSE = Bias^2 + Var.

Module-3(Feed forward neural networks):
1. Short Notes: Bayesian neural networks.
2. Describe the Error back propagation learning.
3. Write algorithm of back-propagation rule

Module-4(Radial basis function networks):
1. Write down short notes: RBF networks.

Module-5(Self-organizing maps):
1. Consider a Kohonen net with two cluster (outputs) units & five input units. The weight
vectors for the output units are W1=[1,0.8,0.6,0.4,0.2] and W2=[1,0.5,1,0.5,1]. Use the
square of the Euclidean distance to find the winning neuron for the input pattern
X=[0.5,1,0.5,0,0.5]. Find the new weights for the winning unit. Assume learning rate as 0.2.

Module-6(Feedback neural networks):
1. Short Notes: Boltzmann machine & Recurrent neural networks.

Module-7(Kernel methods for pattern analysis):
1. Write down short note for SVM.
2. How its works in classification & regression?

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Agent Based Intelligent Systems Subject Code-MCSE105B
Year: 1st Year Semester: First

Module
Number

Topics Number of Lectures

1

Introduction: 9L

1. Definitions, Foundations, History,
Intelligent Agents

3L

2. Problem Solving, Searching, Heuristics 3L

3. Constraint Satisfaction Problems, Game
playing.

3L

2

Knowledge Representation And Resoning: 9L
1. Logical Agents, First order logic, First

Order Inference
3L

2. Unification, Chaining, Resolution 2L
3. Strategies, Knowledge Representation 3L
4. Objects, Actions, Events. 1L

3
Planning Agent: 9L

1. Planning Problem, State Space Search 2L
2. Partial Order Planning, Graphs,

Nondeterministic Domains
3L

3. Conditional Planning, Continuous
Planning, Multi-Agent Planning.

4L

4
Agent And Uncertainty: 9L

1. Acting under uncertainty – Probability
Notation, Bayes Rule and use

3L

2. Bayesian Networks, Other Approaches 2L
3. Time and Uncertainty, Temporal Models 2L
4. Utility Theory, Decision Network –

Complex Decisions.
2L

5
Higher Level Agent: 9L

1. Knowledge in Learning, Relevance
Information

2L

2. Statistical Learning Methods,
Reinforcement Learning

3L

3. Communication, Formal Grammar,
Augmented Grammars, Future of AI.

4L

Faculty In-Charge HOD, CSE Dept.

Assignment:
Module-1(Introduction):

1. Intelligent Agents
2. Constraint Satisfaction Problems and Game playing.

Module-2 (Knowledge Representation And Resoning):
1. Logical Agents
2. First order logic and First Order Inference

Module-3(Planning Agent):
1. State Space Search
2. Different planning

Module-4(Agent And Uncertainty)
1. Probability Notation
2. Bayesian Networks

Module-5(Higher Level Agent):
1. Reinforcement Learning

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Advanced Soft Computing Subject Code-MCSE105C
Year: 1st Year Semester: First

Module
Number

Topics Number of Lectures

1

Introduction: 3L

1. Introduction to Soft Computing;
Difference between Hard and Soft
Computing;

1

2. Introduction to Fuzzy Systems, Artificial
Neural Network, Evolutionary
Algorithms, Rough Set Theory; Hybrid
Systems

2

2

Fuzzy Sets & Logic 10L
1. Introduction to Fuzzy Sets, Classical and

Fuzzy Sets.
1

2. Fuzzy Sets - Membership Function, Basic
Operations, Linguistic Variable,
Properties.

2

3. Fuzzy relations - Cartesian product,
Operations on relations; Crisp logic—
Laws of propositional logic, Inference.

2

4. Predicate logic—Interpretations,
Inference, Fuzzy logic—Quantifiers,
Inference.

2

5. Fuzzy Rule based system; De-
fuzzification methods; Basic Applications
of Fuzzy Sets and Logics.

3

3
Pattern Recognition 3L

1. Pattern Classification, Pattern
Association, Clustering.

1

2. Simple Clustering algorithm, k-means &
k-medoid based algorithm.

2

4
Artificial Neural Network 13L

1. Neural Networks: Introduction. 1
2. Mathematical Models, ANN architecture. 1
3. Learning rules, Supervised, Unsupervised

and reinforcement Learning.
2

4. Multilayer Perception, Applications of
Artificial Neural Networks.

2

5. Competitive learning networks, Kohonen
self organizing networks, Hebbian
learning.

3

6. Hopfield Networks, Associative
Memories, The boltzman machine;
Applications of ANN

4

5
Genetic Algorithms 10L

1. Introduction, Single and Multi-Objective
Optimization, Encoding, Fitness Function,
Genetic Operations, Genetic Parameters;
Genetic Algorithm; Basic Applications.

5

2. Schema theorem; Convergence Theory;
Multiobjective optimization using GA

5

(MOGA); Non-Dominated Sorting

6
Hybrid Systems 6L

1. Hybrid systems, GA based ANN (Optimal
Weight Selection).

3

2. Neuro Fuzzy Systems, fuzzy Neuron,
architecture, learning, application.

3

Faculty In-Charge HOD, CSE Dept.

Assignment:
Module-1(Introduction):

1. Difference between Hard and Soft Computing.
2. Artificial Neural Network
3. Evolutionary Algorithms
4. Rough Set Theory
5. Hybrid Systems

Module-2 (Fuzzy Sets & Logic):
1. Classical and Fuzzy Sets
2. Crisp logic—Laws of propositional logic.
3. Predicate logic
4. Basic Applications of Fuzzy Sets and Logics.

Module-3(Pattern Recognition):
1. k-means & k-medoid based algorithm.

Module-4(Artificial Neural Network)
1. Supervised, Unsupervised and reinforcement Learning
2. Multilayer Perception
3. Hopfield Networks

Module-5(Genetic Algorithms):
1. Genetic Algorithm.
2. Convergence Theory

Module-6(Hybrid Systems):
1. Fuzzy Neuron

UNIVERSITY OF ENGINEERING AND MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: Object Oriented Information System Design Subject Code-MCSE105D
Year:1stYear Semester: 1st

Module Number Topics Number of Lectures

1

Data and Information 3L
1. Types of information: operational,

tactical, strategic and statutory –
2. why do we need information systems –

management structure – requirements of
information at different levels of
management – functional allocation of
management

3. requirements of information for various
functions – qualities of information –
small case study

1

1

1

2

Systems Analysis and Design Life Cycle 3L
1. Requirements determination –

requirements specifications
2. feasibility analysis – final specifications

– hardware and software study – system
design – system implementation

3. System evaluation – system
modification. Role of systems analyst –
attributes of a systems analyst – tools
used in system analysis

1

1

1

3

Information 3L
1. Information gathering
2. strategies – methods – case study –

documenting study – system
requirements specification

3. From narratives of requirements to
classification of requirements as
strategic, tactical, operational and
statutory. Example case study

1

1

1

4

Feasibility analysis 6L

1. Feasibility analysis – deciding
project goals – examining alternative
solutions – cost

2. benefit analysis – quantifications of
costs and benefits – payback period
– system proposal preparation for
managements

3. parts and documentation of a
proposal – tools for prototype
creation

2

2

2

2

5

Tools for systems analysts 3L
1. data flow diagrams –
2. case study for use of DFD, good

conventions – leveling of DFDs –
leveling rules

3. logical and physical DFDs – software
tools to create DFDs .

1
1

1

6

Structured systems analysis and design 4L
1. Structured systems analysis and design

– procedure specifications in structured
English – examples and cases

2. decision tables for complex logical
specifications – specification oriented
design vs procedure oriented design

2

2

7

Data oriented systems design 6L
1. entity relationship model – E-R

diagrams
2. relationships cardinality and

participation – normalizing relations
3. various normal forms and their need

– some examples of relational data
base design

2

2

2

8

Data input methods 3L
1. coding techniques
2. requirements of coding schemes

– error detection of codes
3. validating input data – input

data controls interactive data
input

1

1

1

Total Number Of Hours = 31

Faculty In-Charge HOD, CSE Dept.

UNIVERSITY OF ENGINEERING AND MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: Object Oriented Information System Design Subject Code-MCSE105D
Year:1stYear Semester: 1st

Assignment:

Module-I:

1. Why do we need information systems? Explain management structure.
2. Explain the requirements of information at different levels of management.

Module-II:
1.Explain Requirements determination and requirements specifications with proper
example.
2. What do you mean by feasibility analysis? Explain with proper example.

Module-III:
1. ExplainInformation gathering strategies.
2. What do you mean by system requirements specification?

Module-IV:
1. Explain Feasibility analysis.
2. What is payback period?

Module-V:
1. What is DFD?
2. Explain logical and physical DFDs.

Module-VI:
1. What isstructured systems analysis and design?
2. Differentiate specification oriented design and procedure oriented design system.

Module-VII:
1. What do you mean by E-R diagram? Explain with an example.
2. What is relationships cardinality?

Module-VIII:
1. Explain the requirements of coding schemes. Why error detection of codes is

required?
2. How you validate the inputted data?

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Software Engineering &CASE tools Subject Code-MCSE105E
Year: 1st Year Semester: First

Module
Number

Topics Number of Lectures

1

Software Engineering 6L
1. Objectives, Definitions 1

2. Software Process models - Waterfall
Model , Prototype model, RAD

3

3. Evolutionary Models 1
4. Incremental, Spiral. 1

2

Software Project Planning 4L
1. Feasibility Analysis, Technical Feasibility 2
2. Cost- Benefit Analysis,

1
3. COCOMO model. 1

3.

Structured Analysis 5L
1. Context diagram and DFD, Physical and

Logical DFDs. 3
2. Data Modelling, ER diagrams, Software

Requirements Specification. 2

4
Design Aspects 4L

1. Top-Down And Bottom-Up design;
Decision tree, decision table and
structured English

2

2. Structure chart, Transform analysis
Functional vs. Object- Oriented approach.

2

5
Unified Modelling Language 6L

1. Class diagram, interaction diagram: state
chart diagram, 2

2. collaboration diagram, sequence diagram,
2

3. Activity diagram, implementation
diagram. 2

6
Coding & Documentation 6L

1. Structured Programming, Modular
Programming, Module Relationship-
Coupling,

3

2. Cohesion, OO Programming, Information
Hiding, Reuse, System Documentation. 3

7

Testing 4L

1. Levels of Testing 1
2. Integration Testing 1

3. System Testing. 1
Software Quality 4L

1. Quality Assurance 1

8 2. Software Maintenance
1

3. Software Configuration Management
1

4. Software Architecture, Computer Aided
Software Engineering (CASE) tool 2

9 Object modeling and design 10
Classes, objects, relationships, key abstractions,
common mechanisms, diagrams, class diagrams,
advanced classes, advanced relationships,

3

interfaces, types, roles, packages, instances, object
diagrams, interactions, use cases, use case
diagrams, interaction diagrams, activity
diagrams, events and signals, state machines,

3

6
processes, threads, state chart diagrams,
components, deployment, collaborations, patterns
and frameworks, component diagrams, systems
and models, code generation and reverse
engineering.

Total Number Of Hours = 49

Faculty In-Charge HOD, CSE Dept.

Assignment:
Module-1(Software Engineering):
1. Explain Software Engineering as a layered technology with a neat sketch.
2. What are process models why do we require them? Explain in detail any one of the process
model?
3. Why it is important to design a software and explain the role it play?

Module-2 (Software Project Planning):
1. What are the purposes of Data Flow diagrams, Entity-Relationship diagrams? Give an
example diagram of each. (10 mks)

Module-3(Structured Analysis):
1. What is functional and non-functional requirements?
2. What is a requirement modeling? Explain about the types of requirement modeling
3. How can software project estimation be done by empirical estimation model

Module-4(Design Aspects):
1. How designing is done by functional based component design?
Module-5(Unified Modelling Language):
1. Give a brief description about class hierarchies and class based component design?
Module-6(Coding & Documentation):

Module-7(Testing):
1. What is user acceptance testing? Explain different testings in user acceptance testing. Why
is it necessary?
Module-8(Software Quality):
1. Explain about the architecture of software and its importance?

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Computer Graphics Subject Code-CS604B
Year: 3rd Year Semester: Sixth
Module Number Course Details Number of Lectures
UNIT 1

1

Introduction to computer graphics &
graphics systems: 4LH
 Overview of computer graphics,

representing pictures, preparing,
presenting & interacting with pictures
for presentations

 Visualization & image processing;
RGB color model, direct coding, lookup
table

 storage tube graphics display, Raster
scan display, 3D viewing devices,
Plotters, printers, digitizers, Light
pens etc.

 Active & Passive graphics
devices

2
Scan conversion:

6LH Points & lines, Line drawing algorithms
 DDA algorithm, Bresenham’s line

algorithm, Circle generation algorithm
 Ellipse generating algorithm; scan line

polygon, fill algorithm
 boundary fill algorithm, flood fill

algorithm.
UNIT 2

3

2D transformation & viewing:

7LH Basic transformations: translation,
rotation, scaling;

 Matrix representations & homogeneous
coordinates, transformations between
coordinate systems;

 Reflection shear; Transformation of
points, lines, parallel lines, intersecting
lines.

 Cohen and Sutherland line clipping,
Sutherland-Hodgeman Polygon
clipping, Cyrus-beck clipping method

4
3D transformation & viewing:

7LH 3D transformations: translation, rotation,
scaling & other transformations

 Rotation about an arbitrary axis in space
 Clipping, view port clipping, 3D

viewing.

UNIT 3 Curves and Hidden surfaces:

5
 Curve representation, surfaces, designs,

Bezier curves
 B-spline curves, end conditions for

periodic B-spline curves, rational B-
spline curves.

 Depth comparison, Z-buffer algorithm,
Back face detection

 BSP tree method, the Painter’s
algorithm, scan-line algorithm

 Hidden line elimination, wire frame
methods , fractal - geometry.

7LH

6

Introduction to Ray-tracing:

8LH

 Human vision and color
 Lighting, Reflection and transmission

models.

UNIT 4
7

Multimedia:
 Introduction to Multimedia: Concepts,

uses of multimedia, hypertext and
hypermedia

 Image, video and audio standards.
Audio: digital audio, MIDI, processing
sound, sampling, compression

 Video: MPEG compression standards,
compression through spatial and
temporal redundancy, inter-frame and
intra-frame compression. Animation:
types, techniques, key frame animation,
utility, morphing

 Virtual Reality concepts.

7LH

Total Number Of Hours = 44

Faculty In-Charge HOD, CSE Dept.

Assignment:
Module-1(Introduction to computer graphics & graphics systems):

1. A monochromatic graphic display system has 525 scan lines with an aspect ratio 9:16.
If each pixel is displaceable in 512 shades
(i) How many pixels are displayed on the screen?
(ii) What is the picture storage memory size?

2. What do you mean by window and viewport? Describe the relationship for window to
viewport mapping.

Module-3 (2D transformation & viewing):
1. Prove that successive scaling is multiplicative
2. Write down mid-point ellipse drawing algorithm

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Computer Graphics Subject Code-CS604B
Year: 3rd Year Semester: Sixth

3. a rectangular 2D clipping window has its lower left corner at (100,10) and upper right corner
at (160,40). Find visible portion of lines A(50,0), B(120,30) and C(120,20), D(140,80) using
mid point sub division algorithm.

Module-4 (Curves and Hidden surfaces)
1. Write down the procedure for drawing B-spline curves and also write down its property
2. Derive the condition to be satisfied when joining two Bezier curves with second order

continuity at the joints.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Title of Course: Operating System Lab
Course Code: MCSE191
L-T-P scheme: 0-0-3 Course Credit: 2

Objectives:
1. To learn and understand system calls (remote procedure calls) related to files, processes, threads,

signals, semaphores and implement system programs based on that.
2. To provide an understanding of the design aspects of operating system.
3. To provide an efficient understanding of the language translation peculiarities by designing a

complete translator for a mini language.

Learning Outcomes: The students will have a detailed knowledge of the concepts of process and
shared memory, aware of a variety of approaches to process management and main-memory
management, including interference, deadlock, scheduling, fragmentation, thrashing, learn the basics
behind file systems and input output systems and understand the fundamentals of network and
distributed operating systems. Upon the completion of Operating Systems practical course, the
student will be able to:
 Understand and implement basic services and functionalities of the operating system using

system calls.
 Use modern operating system calls and synchronization libraries in software/ hardware

interfaces.
 Understand the benefits of thread over process and implement synchronized programs

using multithreading concepts.
 Analyze and simulate Deadlock Avoidance and Protection algorithm like Bankers.
 Implement memory management schemes
 Implement remote procedure call
 Understand producer and consumer problem.

Course Contents:
Exercises that must be done in this course are listed below:
Exercise No.1: Simulate Banker’s Algorithm for Dead Lock Avoidance
Exercise No.2: Simulate Banker’s Algorithm for Dead Lock Prevention
Exercise No. 3: Simulate Paging Technique of Memory Management
Exercise No. 4: Thread Creation
Exercise No. 5: Process Creation
Exercise No. 6: Producer and Consumer Problem
Exercise No. 7: Implementation of Remote Procedure Call

Text Book:
1. Maurice J. Bach, Design of the UNIX Operating System, PHI.

Recommended Systems/Software Requirements:
1. Intel based desktop PC with minimum of 166 MHZ or faster processor with at least 64 MB RAM

and 100 MB free disk space.
2. Turbo C or TC3 complier in Windows XP or Linux Operating System.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Experiment No: 1 BANKER’S DEADLOCK AVOIDANCE
Aim: To Simulate Bankers Algorithm for Deadlock Avoidance.
Description:

Deadlock: A process request the resources, the resources are not available at that time, so the
process enter into the waiting state. The requesting resources are held by another waiting process,
both are in waiting state, this situation is said to be Deadlock. A deadlocked system must satisfied
the following 4 conditions. These are:
(i) Mutual Exclusion: Mutual Exclusion means resources are in non-sharable mode only, it means
only one process at a time can use a process.
(ii) Hold and Wait: Each and every process is the deadlock state, must holding at least one resource
and is waiting for additional resources, that are currently being held by another process.

(iii) No Preemption: No Preemption means resources are not released in the middle of the work,
they released only after the process has completed its task.
(iv) Circular Wait: If process P1 is waiting for a resource R1, it is held by P2, process P2 is waiting
for R2, R2 held by P3, P3 is waiting for R4, R4 is held by P2, P2 waiting for resource R3, it is held
by P1.

Deadlock Avoidance: It is one of the method of dynamically escaping from the deadlocks. In this
scheme, if a process request for resources, the avoidance algorithm checks before the allocation of
resources about the state of system. If the state is safe, the system allocate the resources to the
requesting process otherwise (unsafe) do not allocate the resources. So taking care before the
allocation said to be deadlock avoidance.
Banker’s Algorithm: It is the deadlock avoidance algorithm, the name was chosen because the
bank never allocates more than the available cash.
Available: A vector of length ‘m’ indicates the number of available resources of each type. If
available[j]=k, there are ‘k’ instances of resource types Rj available.
Allocation: An nxm matrix defines the number of resources of each type currently allocated to each
process. If allocation [i,j]=k, then process Pi is currently allocated ‘k’ instances of resources type Rj.
Max: An nxm matrix defines the maximum demand of each process. If max [i,j]=k, then Pi may
request at most ‘k’ instances of resource type Rj.
Need: An nxm matrix indicates the remaining resources need of each process. If need [I,j]=k, then Pi
may need ‘k’ more instances of resource type Rj to complete this task. There fore,
Need[i,j]=Max[i,j]-Allocation[I,j]

Safety Algorithm:
1. Work and Finish be the vector of length m and n respectively, Work=Available and Finish[i]
=False.
2. Find an i such that both

Finish[i] =False
Need<=Work

If no such I exist go to step 4.
3. Work=work Allocation, Finish[i] =True;

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

4. if Finish[1]=True for all I, then the system is in safe state.

Resource request algorithm
Let Request i be request vector for the process Pi, If request i=[j]=k, then process Pi wants k
instances of resource type Rj.
1. if Request<=Need I go to step 2. Otherwise raise an error condition.
2. if Request<=Available go to step 3. Otherwise Pi must since the resources are available.
3. Have the system pretend to have allocated the requested resources to process Pi by modifying the
state as follows;

Available=Available-Request I;
Allocation I =Allocation +Request I;
Need i=Need i-Request I;
If the resulting resource allocation state is safe, the transaction is completed and process Pi is
allocated its resources. However, if the state is unsafe, the Pi must wait for Request i and the old
resource-allocation state is restored.
Algorithm for Banker’s Deadlock Avoidance:
1. Start the program.
2. Get the values of resources and processes.
3. Get the avail value.
4. After allocation find the need value.
5. Check whether its possible to allocate.
6. If it is possible then the system is in safe state.
7. Else system is not in safety state.
8. If the new request comes then check that the system is in safety.
9. or not if we allow the request.
10. stop the program.

/* Program to Simulate Bankers Algorithm for Dead Lock Avoidance */
#include<stdio.h>
#include<conio.h>
#include<string.h>
void main()
{
int alloc[10][10],max[10][10];
int avail[10],work[10],total[10];
int i,j,k,n,need[10][10];
int m;
int count=0,c=0;
char finish[10];
clrscr();
printf("Enter the no. of processes and resources:");
scanf("%d%d",&n,&m);
for(i=0;i<=n;i++)
finish[i]='n';
printf("Enter the claim matrix:\n");
for(i=0;i<n;i++)
for(j=0;j<m;j++)
scanf("%d",&max[i][j]);
printf("Enter the allocation matrix:\n");
for(i=0;i<n;i++)
for(j=0;j<m;j++)
scanf("%d",&alloc[i][j]);
printf("Resource vector:");
for(i=0;i<m;i++)
scanf("%d",&total[i]);
for(i=0;i<m;i++)
avail[i]=0;

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

for(i=0;i<n;i++)
for(j=0;j<m;j++)
avail[j]+=alloc[i][j];
for(i=0;i<m;i++)
work[i]=avail[i];
for(j=0;j<m;j++)
work[j]=total[j]-work[j];
for(i=0;i<n;i++)
for(j=0;j<m;j++)
need[i][j]=max[i][j]-alloc[i][j];
A:for(i=0;i<n;i++)
{
c=0;
for(j=0;j<m;j++)
if((need[i][j]<=work[j])&&(finish[i]=='n'))
c++;
if(c==m)
{
printf("All the resources can be allocated to Process %d",
i+1);
printf("\n\nAvailable resources are:");
for(k=0;k<m;k++)
{
work[k]+=alloc[i][k];
printf("%4d",work[k]);
}
printf("\n");
finish[i]='y';
printf("\nProcess %d executed?:%c \n",i+1,finish[i]);
count++;
}
}
if(count!=n)
goto A;
else
printf("\n System is in safe mode");
printf("\n The given state is safe state");
getch();
}

OUTPUT 1:
Enter the no. of processes and resources: 4 3
Enter the claim matrix:

3 2 2
6 1 3
3 1 4
4 2 2

Enter the allocation matrix:
1 0 0
6 1 2
2 1 1
0 0 2
Resource vector:9 3 6
All the resources can be allocated to Process 2
Available resources are: 6 2 3
Process 2 executed?:y
All the resources can be allocated to Process 3

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Avaiable resources are: 8 3 4
Prcess 3 executed?:y
All the resources can be allocated to Process 4
Avilable resources are: 8 3 6
Prcess 4 executed?:y
All the resources can be allocated to Process 1
Aailable resources are: 9 3 6
Prcess 1 executed?:y
System is in safe mode
The given state is safe state

Experiment No:2 BANKER’S DEADLOCK PREVENTION
Aim: To Simulate Bankers Algorithm for Deadlock Prevention.

/* Program to Simulate Bankers Algorithm for Dead Lock Prevention */
#include<stdio.h>
#include<conio.h>
void main()
{
char job[10][10];
int time[10],avail,tem[10],temp[10];
int safe[10];
int ind=1,i,j,q,n,t;
clrscr();
printf("Enter no of jobs: ");
scanf("%d",&n);
for(i=0;i<n;i++)
{
printf("Enter name and time: ");
scanf("%s%d",&job[i],&time[i]);
}
printf("Enter the available resources:");
scanf("%d",&avail);
for(i=0;i<n;i++)
{
temp[i]=time[i];
tem[i]=i;
}
for(i=0;i<n;i++)
for(j=i+1;j<n;j++)
{
if(temp[i]>temp[j])
{
t=temp[i];
temp[i]=temp[j];
temp[j]=t;
t=tem[i];
tem[i]=tem[j];
tem[j]=t;
}
}
for(i=0;i<n;i++)
{
q=tem[i];
if(time[q]<=avail)
{
safe[ind]=tem[i];

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

avail=avail-tem[q];
//printf("%s",job[safe[ind]]);
ind++;
}
else
{
printf("No safe sequence\n");
}
}
printf("Safe sequence is:");
for(i=1;i<ind; i++)
printf(" %s %d\n",job[safe[i]],time[safe[i]]);
getch();
}

OUTPUT 1:
Enter no of jobs:4
Enter name and time: A 1
Enter name and time: B 4
Enter name and time: C 2
Enter name and time: D 3
Enter the available resources: 20
Safe sequence is: A 1, C 2, D 3, B 4

Experiment No: 3 PAGING TECHNIQUE OF MEMORY MANAGEMENT
AIM:To implement the Memory management policy- Paging.

Description: Paging is an efficient memory management scheme because it is
noncontiguous memory allocation method. The basic idea of paging is the physical memory
(main memory) is divided into fixed sized blocks called frames, the logical address space is
divided into fixed sized blocks, called pages, but page size and frame size should be equal.
The size of the frame or a page is depending on operating system. In this scheme the
operating system maintains a data structure that is page table; it is used for mapping
purpose. The page table specifies the some useful information; it tells which frames are
there and so on. The page table consisting of two fields, one is the page number and other
one is frame number. Every address generated by the CPU divided into two parts; one is
page number and second is page offset or displacement. The pages are loaded into available
free frames in the physical memory.
Algorithm for Paging Technique:
Step 1: Read all the necessary input from the keyboard.
Step 2: Pages - Logical memory is broken into fixed - sized blocks.
Step 3: Frames – Physical memory is broken into fixed – sized blocks.
Step 4: Calculate the physical address using the following
Physical address = (Frame number * Frame size) + offset
Step 5: Display the physical address.
Step 6: Stop the process.

/* Program to simulate paging technique of memory management */
#include<stdio.h>
void main()
{
int p, ps, i;
int *sa;
clrscr();
printf("Enter how many pages: ");
scanf("%d",&np);
printf("Enter page size: ");

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

scanf("%d",&ps);
for(i=0;i< np;i++)
{
sa[i]=(int)malloc(ps);
printf(“Page %d address is %d\n", i, sa[i]);
}
getch();
}

OUTPUT 1:
Enter how many pages: 5
Enter page size: 4
Page 0 address is 3080
Page 1 address is 3088
Page 2 address is 3096
Page 3 address is 3104
Page 4 address is 3112

OUTPUT 2:
Enter how many pages: 7
Enter page size: 8
Page 0 address is 3080
Page 1 address is 3096
Page 2 address is 3112
Page 3 address is 3128
Page 4 address is 3144
Page 5 address is 3160
Page 6 address is 3176

Experiment No: 4(a) THREAD CREATION
Aim: Design ,develop and execute a program using any thread library to create number of
threads specified by the user ,each thread independently generate a random integer as an
upper limit and then computes and prints the number of primes less than or equal to that
upper limit along with that upper limit.

DESCRIPTION:

What is a Thread?
 Technically, a thread is defined as an independent stream of instructions that can be

scheduled to run as such by the operating system. But what does this mean?

 To the software developer, the concept of a "procedure" that runs independently from its

main program may best describe a thread.

What are Pthreads?
 Pthreads are defined as a set of C language programming types and procedure calls,

implemented with a pthread.h header/include file and a thread library - though this library

may be part of another library, such as lab, in some implementations.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Why Pthreads?

 In the world of high performance computing, the primary motivation for using Pthreads is to

realize potential program performance gains.

 When compared to the cost of creating and managing a process, a thread can be created with

much less operating system overhead. Managing threads requires fewer system resources

than managing processes.

 All threads within a process share the same address space. Inter-thread communication is

more efficient and in many cases, easier to use than inter-process communication.

The Pthreads API:
The original Pthreads API was defined in the ANSI/IEEE POSIX 1003.1 - 1995 standard. The
POSIX standard has continued to evolve and undergo revisions, including the Pthreads specification.
The subroutines which comprise the Pthreads API can be informally grouped into four major groups:

1. Thread management: Routines that work directly on threads - creating, detaching, joining,

etc. They also include functions to set/query thread attributes (joinable, scheduling etc.)

2. Mutexes: Routines that deal with synchronization, called a "mutex", which is an

abbreviation for "mutual exclusion". Mutex functions provide for creating, destroying,

locking and unlocking mutexes.

3. Condition variables: Routines that address communications between threads that share a

mutex. Based upon programmer specified conditions. Functions to set/query condition

variable attributes are also included.

4. Synchronization: Routines that manage read/write locks and barriers.

Compiling Threaded Programs:
 Several examples of compile commands used for pthreads codes are listed in the table.

Compiler / Platform Compiler Command Description

INTEL

Linux

icc –pthread C

icpc –pthread C++

PGI

Linux

pgcc –lpthread C

pgCC –lpthread C++

GNU gcc –pthread GNU C

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Linux, Blue Gene g++ -pthread GNU C++

Thread management:

pthread_create(thread, attar, start routine, rag):

 Initially, your main () program comprises a single, default thread. All other threads must be

explicitly created by the programmer.

 Pthread_create creates a new thread and makes it executable. This routine can be called any

number of times from anywhere within your code.

 pthread_create arguments:

 Thread: An opaque, unique identifier for the new thread returned by the subroutine.

 Attr: An opaque attribute object that may be used to set thread attributes. You can

specify a thread attributes object, or NULL for the default values.

 start_routine: the C routine that the thread will execute once it is created.

 Arg: A single argument that may be passed to start_routine. It must be passed by

reference as a pointer cast of type void. NULL may be used if no argument is to be

passed.

pthread_exit (): There are several ways in which a thread may be terminated:

 The thread returns normally from its starting routine. Its work is done.

 The thread makes a call to the pthread_exit subroutine - whether its work is done or

not.

 The entire process is terminated due to making a call to either the exec() or exit()

 If main() finishes first, without calling pthread_exit explicitly itself.

Joining: pthread_join (threadid, status)

"Joining" is one way to accomplish synchronization between threads.

 The pthread_join () subroutine blocks the calling thread until the specified threadid thread

terminates.

 The programmer is able to obtain the target thread's termination return status if it was

specified in the target thread's call to pthread_exit ().

 A joining thread can match one pthread_join () call. It is a logical error to attempt multiple

joins on the same thread.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Detaching: The pthread_detach () routine can be used to explicitly detach a thread even though it

was created as joinable.

pthread_self (): Pthread_self returns the unique, system assigned thread ID of the calling thread.

PROGRAM CODE:

#include<stdio.h>
#include<pthread.h>
#include<math.h>
#include<stdlib.h>
Pthread_t ntip [50];

int isprime (int n)
{

int i,cnt=0;
if(n==2)
{

printf("\n %d ",n);
return 0;

}
for(i=2;i<n;i++)
{

if(n%i==0)
return 1;

}
printf("\n%d",n);
return 0;

}

void prime_disp(int r)
{

int i,cnt=0;
printf(" \n In thread %u \n",(unsigned int)pthread_self());
printf("\n Prime number list :\n");
for(i=2;i<=r;i++)
{

if(!isprime(i))
cnt++;

}
printf("\n no of prime number in the limit is %d\n",cnt);

}

void * thr_fn()
{

printf("thread.....%u\n",(unsigned int)pthread_self());
int r=rand();
//printf(" \n In thread %d \n",(unsigned int)pthread_self());
printf("Random number obtained = %d\n",r%50);
prime_disp(r%50);
return((void *)1);

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

}

int main()
{

int err,i,n;
void *tret;
printf("Enter number of thread(upto 50) : ");
scanf("%d",&n);
for(i=0;i<n;i++) {
err=pthread_create(&ntip[i],NULL,thr_fn,NULL);

if(err!=0)
{

printf("Error");
exit(0);

}
}
//sleep(5);
for(i=0;i<n;i++)
pthread_join(ntip[i],&tret);
printf("\n main thread\n ");
return 0;

}

Output:
root@localhost student]# gcc -lpthread pp1.c

root@localhost student]# ./a.out
Enter number of thread(upto 50) : 3

Thread....2626696960

random no obtained=33

in thread 2626696960

prime no list:

2thread....2618304256

random no obtained=36

in thread 2618304256

prime no list:

2 3 5 7 11 13 17 19 23 29 31

no of prime no in the limit is 11

thread....2609911552

random no obtained=27

in thread 2609911552

prime no list:

3 5 7 11 13 17 19 23

No of prime no in the limit are 9

3 5 7 11 13 17 19 23 29 31

No of prime no in the limit are 11

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Experiment No- 4(b) PROCESS CREATION

Aim: Rewrite Experiment-4(a) such that the processes instead of threads are created and the

number of child processes created is fixed as two. The program should make use of kernel

timer to measure and print the real time, processor time user space time and kernel space for

each process

DESCRIPTION:
Process is a program in execution. Process is a passive entity with a program counter specifying the

next instruction to execute and a set of associated resources. Each process is represented in the
operating system by a process control block (PCB) also called a task control block. It contains
information such as process state, program counter, CPU registers.

System calls:
It provides the interface between a process and the operating system. It is a routine built in the

kernel to perform function that requires communication with the system’s hardware. All activities
related to file handling; process and memory management and maintenance of user and system
information are handled by the kernel using these system calls.

Kernel:
A Kernel timer is a data structure that instructs the kernel to execute a user-defined function with a

user-defined argument at a user-defined time.

In computing, the kernel is the main component of most computer operating systems; it is a bridge

between applications and the actual data processing done at the hardware level. The kernel's

responsibilities include managing the system's resources (the communication between hardware and

software components).

This program should use kernel timer to measure the following.

1) Real time.

2) User space time.

3) Kernel space time.

4) Processor time.

For both of the child processes as well as for parent process i.e., main ().

 Processor time: The amount of time a process takes to run, given that it has exclusive and

uninterrupted use of the CPU. Note that in a modern computer, this would be very unusual,

and so the processor time calculation for most processes involves adding up all the small

amounts of time the CPU actually spends on the process. Some systems break processor

time down into user time and system time.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

 Real time: Real time is the amount of time spent between process creation upto the end of

process execution is considered.

 User space time: User space is that portion of system memory in which user

processes run. The amount of time spent by a process in user mode from the time of creation

to its process termination is called user space time.

 Kernel space time: The kernel is a program that constitutes the central core of a computer

operating system. It is not a process, but rather a controller of processes, and it has complete

control over everything that occurs on the system. This includes managing individual user

processes within user space and preventing them from interfering with each other.

Keywords, Functions & Header Files used:
1) Times () - get process times

The times () function stores the current process times in the structtms that buf points to. The

structtms is as defined in <sys/times.h>:

Structtms

{

clock_ttms_utime; /* user time */

clock_ttms_stime; /* system time */

clock_ttms_cutime; /* user time of children */

clock_ttms_cstime; /* system time of children */

};

The tms_utime field contains the CPU time spent executing instructions of the calling

process. The tms_stime field contains the CPU time spent in the system while executing tasks on

behalf of the calling process.The tms_cutime field contains the sum of the tms_utime and

tms_cutime values for all waited-for terminated children.The tms_cstime field contains the sum of

the tms_stime and tms_cstime values for all waited-for terminated children.

Times for terminated children (and their descendants) are added in at the moment wait (2) or waitpid

(2) returns their process ID. In particular, times of grandchildren that the children did not wait for are

never seen. All times reported are in clock ticks.

Return Value: The function times returns the number of clock ticks that have elapsed since an

arbitrary point in the past. For Linux this point is the moment the system was booted. This return

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

value may overflow the possible range of type clock_t. On error, (clock_t) -1 is returned,

and errno is set appropriately.

2) Wait ():- wait for process termination.

The wait function suspends execution of the current process until a child has exited, or until

a signal is delivered whose action is to terminate the current process or to call a signal handling

function. If a child has already exited by the time of the call (a so-called "zombie" process), the

function returns immediately. Any system resources used by the child are freed.

3) Fork ():- create a child process.

Fork creates a child process that differs from the parent process only in its PID and PPID,

and in the fact that resource utilizations are set to 0. File locks and pending signals are not inherited.

Under Linux, fork is implemented using copy-on-write pages, so the only penalty incurred by fork is

the time and memory required to duplicate the parent's page tables, and to create a unique task

structure for the child.

Return Value: On success, the PID of the child process is returned in the parent's thread of

execution, and a 0 is returned in the child's thread of execution. On failure, a -1 will be returned in

the parent's context, no child process will be created, and errno will be set appropriately.

4) Exit ():- cause normal program termination.

The exit () function causes normal program termination and the value of status & 0377 is

returned to the parent. All functions registered with at exit () and on exit () are called in the reverse

order of their registration, and all open streams are flushed and closed. Files created by tmpfile () are

removed.

The C standard specifies two defines EXIT_SUCCESS and EXIT_FAILURE that may be passed

toexit () to indicate successful or unsuccessful termination, respectively.

Return Value: The exit () function does not return.

5) Unistd.h: This header file is used for system call wrapper functions such asfork (), pipe ()

and I/Oprimitives such as read, write, close, etc.

PROGRAM CODE:

#include <stdio.h>

#include <stdlib.h>

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

#include <unistd.h>

#include <sys/times.h>

child_process(int process_no)

{

int i, n, prime, TotPrimeNo=0;

struct tms chpr_t1, chpr_t2;

long rchprt1, rchprt2;

int Rand;

rchprt1 = times(&chpr_t1); //start time of child process

printf("\n Processor time for child process (%d) = %d", (process_no +1), rchprt1);

printf("\n Created child process %d ", process_no+1);

srand(process_no);

Rand = random() % 10000;

printf(" \n Random number = %d\t", Rand);

// total prime no generation

for(n=0; n<Rand; n++)

{

prime = 1; // initialize

for(i=2; i<n; i++)

{

if(n % i == 0)

{

prime = 0;

break;

}

}

if(prime)

{

TotPrimeNo++;

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

}

}

printf("\nTotal Prime Nos=%d\n", TotPrimeNo);

rchprt2 = times(&chpr_t2); // end time of child process

printf(“------------- The real time, user space and kernel space for chid process are:
---------------“);

printf("\n Real time for child process (%d) = %d", (process_no +1),

(rchprt2- rchprt1));

printf("\n User space time for child process(%d) = %d", (process_no +1),

(chpr_t2.tms_cutime -chpr_t1.tms_cutime));

printf("\n kernel space time for child process(%d) = %d\n\n", (process_no +1),

(chpr_t2.tms_cstime – chpr_t1.tms_cstime));

exit(0);

}

void CreateProcess()

{

int i;

for (i=0; i<2;i++)

{

if(fork() == 0)

child_process(i);

}

for (i=0; i<2;i++)

{

wait();

}

}

int main ()

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

{

long p_mt1, p_mt2;

struct tms p_mst1, p_mst2

p_mt1 = times(&p_mst1); //start time of a parent process

CreateProcess();

p_mt2 = times(&p_mst2); // end time of a parent process

printf(“------------- The real time, user space and kernel space for parent process are: -------
/n”);

printf("\n Real time for parent process = %d", p_mt2-p_mt1);

printf("\n User space time for parent process = %d",(p_mst2.tms_utime -

p_mst1.tms_utime));

printf("\n Kernel space time for parent process = %d\n\n",(p_mst2.tms_stime -

p_mst1.tms_stime));

}

Output

[student@localhost ~]$ gcc -lpthread pp2.c

[student@localhost ~]$./a.out

Process Id.....4307

Random Number : 33

no of prime number 11

real time:81

cpu time:-998520

user time:-998520

kernal time:-998530

parentProcess Id.....4308

Random Number : 33

no of prime number 11

real time:62

cpu time:-998520

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

user time:-998520

kernal time:-998530

Experiment No-5 Producer and Consumer Problem

Aim: Design, develop and implement a process with a producer thread and a consumer
thread which make use of bounded buffer (size can be prefixed at a suitable value) for
communication. Use any suitable synchronization construct.

DESCRIPTION:
The “Bounded-Buffer (Producer-Consumer) problem” is to create producer thread and consumer
thread allows process to communicate and to synchronize their actions with the use of a bounded
buffer. The bounded-buffer problem is a paradigm for cooperating processes, where the producer
process produces information that is consumed by a consumer process.

The producer and the consumer, who share a common, fixed-size buffer. The producer's job

is to generate a piece of data, put it into the buffer and start again. At the same time the consumer is

consuming the data (i.e., removing it from the buffer) one piece at a time. The problem is to make

sure that the producer won't try to add data into the buffer if it's full and that the consumer won't try

to remove data from an empty buffer.

The key idea behind synchronization technique is to maintain data consistency, orderly

execution of cooperating processes and preventing race condition.

Statement of the Problem:
The project entitled “Inter process Communication” has been designed using bounded-buffer

problem to provide better paradigm for cooperating processes compare to other problems.

Producer-consumer problem (also known as the bounded-buffer problem) is a classical

example of a multiprocessor synchronization problem. The problem describes two processes, the

producer and the consumer, who share a common, fixed-size buffer. The producer's job is to

generate a piece of data, put it into the buffer and start again. At the same time the consumer is

consuming the data (i.e., removing it from the buffer) one piece at a time. The problem is to make

sure that the producer won't try to add data into the buffer if it's full and that the consumer won't try

to remove data from an empty buffer.

DESIGN:
This program can be divided mainly into three parts Producer, Consumer, Bounded-Buffer.
Producer: Producer corresponds to produce the item and stores in the buffer. After storing the item
in the buffer, it has to increment the counter also it has to notice the consumer to consume the item.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Consumer consumes the item: Consumer corresponds to consume the item available in the buffer.

After consuming the item in the buffer, it has to decrement the counter also it has to notice the

consumer to consume the item.

Bounded-Buffer: It works as the interface between the Producer and the Consumer. It allows the

producer to store the item in the buffer (shared space), also allows the consumer to consume the item

from the buffer (shared space).

Producer-Consumer Problem:
Producer-consumer problem (also known as the bounded-buffer problem) is a classical example of a
multiprocessor synchronization problem. The problem describes two processes, the producer and the
consumer, who share a common, fixed-size buffer. The producer's job is to generate a piece of data,
put it into the buffer and start again. At the same time the consumer is consuming the data (i.e.,
removing it from the buffer) one piece at a time. The problem is to make sure that the producer won't
try to add data into the buffer if it's full and that the consumer won't try to remove data from an
empty buffer.

The solution for the producer is to either go to sleep or discard data if the buffer is full. The

next time the consumer removes an item from the buffer, it notifies the producer who starts to fill the

buffer again. In the same way, the consumer can go to sleep if it finds the buffer to be empty. The

next time the producer puts data into the buffer, it wakes up the sleeping consumer. The solution can

be reached by means of inter-process communication, typically using semaphores. An inadequate

solution could result in a deadlock where both processes are waiting to be awakened. The problem

can also be generalized to have multiple producers and consumers.

Producer-Consumer problem is a paradigm for cooperating processes; producer process produces

information that consumer process consumes the information.

 Unbounded-buffer places no practical limit on the size of the buffer.

 Bounded-buffer assumes that there is a fixed buffer size.

FLOW DIAGRAM:

PRODUCE CONSUMER

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Figure 1.1: Flow diagram of Producer Consumer Problem

IMPLEMENTATION:

Algorithm

Producer process: Consumer process:

//item nextProduced; //item to be Consumed;

while (buffer_size = =max_size) { while (buffer_size = = 0) {

; /* do nothing */ ; /* do nothing */

wait(); wait();

} }

Add item into buffer; Remove item from buffer;

notify(); notify();

PROGRAM CODE:

Producer is
created

Producer
produces Item

Producer stores
item in buffer

Consumer Leaves

Notifies to producer

Asks consumer to
wait

Notifies to consumer

Notifies to producer

Consumer is
created

Consumer Waits

Consumer receives
notification

Producer Waits Consumer
checks buffer

Asks producer to wait

Producer receives
notification Consumer

consumes Item

Producer Waits for
next consumer

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

/* buffer.h */
typedef int buffer_item;
#define BUFFER_SIZE 5

/* main.c */

#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>
#include "buffer.h"
#define RAND_DIVISOR 100000000
#define TRUE 1

/* The mutex lock */
pthread_mutex_t mutex;
/* the semaphores */
sem_t full, empty;
/* the buffer */
buffer_item buffer[BUFFER_SIZE];
/* buffer counter */
int counter;

pthread_t tid; //Thread ID
pthread_attr_t attr; //Set of thread attributes

void *producer(void *param); /* the producer thread */
void *consumer(void *param); /* the consumer thread */

void initializeData() {
/* Create the mutex lock */
pthread_mutex_init(&mutex, NULL);

/* Create the full semaphore and initialize to 0 */
sem_init(&full, 0, 0);

/* Create the empty semaphore and initialize to BUFFER_SIZE */
sem_init(&empty, 0, BUFFER_SIZE);

/* Get the default attributes */
pthread_attr_init(&attr);

/* init buffer */
counter = 0;

}

/* Producer Thread */
void *producer(void *param) {

buffer_item item;

while(TRUE) {
/* sleep for a random period of time */

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

int rNum = rand() / RAND_DIVISOR;
sleep(rNum);

/* generate a random number */
item = rand();

/* acquire the empty lock */
sem_wait(&empty);
/* acquire the mutex lock */
pthread_mutex_lock(&mutex);

if(insert_item(item)) {
fprintf(stderr, " Producer report error condition\n");
}

else {
printf("producer produced %d\n", item);

}
/* release the mutex lock */
pthread_mutex_unlock(&mutex);
/* signal full */
sem_post(&full);
}

}

/* Consumer Thread */
void *consumer(void *param) {

buffer_item item;

while(TRUE) {
/* sleep for a random period of time */
int rNum = rand() / RAND_DIVISOR;
sleep(rNum);

/* aquire the full lock */
sem_wait(&full);
/* aquire the mutex lock */
pthread_mutex_lock(&mutex);
if(remove_item(&item)) {

fprintf(stderr, "Consumer report error condition\n");
}

else {
printf("consumer consumed %d\n", item);
}

/* release the mutex lock */
pthread_mutex_unlock(&mutex);
/* signal empty */
sem_post(&empty);

}
}

/* Add an item to the buffer */
int insert_item(buffer_item item) {

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

/* When the buffer is not full add the item
and increment the counter*/

if(counter < BUFFER_SIZE) {
buffer[counter] = item;
counter++;
return 0;

}
else { /* Error the buffer is full */

return -1;
}

}

/* Remove an item from the buffer */
int remove_item(buffer_item *item) {

/* When the buffer is not empty remove the item
and decrement the counter */

if(counter > 0) {
*item = buffer[(counter-1)];
counter--;
return 0;

}
else { /* Error program code

/* buffer.h */
typedef int buffer_item;
#define BUFFER_SIZE 5

/* main.c */

#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>
#include "buffer.h"

#define RAND_DIVISOR 100000000
#define TRUE 1

int main(int argc, char *argv[]) {
/* Loop counter */
int i;

/* Verify the correct number of arguments were passed in */
if(argc != 4) {

fprintf(stderr, "USAGE:./main.out <INT> <INT> <INT>\n");
}

int mainSleepTime = atoi(argv[1]); /* Time in seconds for main to sleep */
int numProd = atoi(argv[2]); /* Number of producer threads */
int numCons = atoi(argv[3]); /* Number of consumer threads */

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

/* Initialize the app */
initializeData();

/* Create the producer threads */
for(i = 0; i < numProd; i++) {

/* Create the thread */
pthread_create(&tid,&attr,producer,NULL);

}

/* Create the consumer threads */
for(i = 0; i < numCons; i++) {

/* Create the thread */
pthread_create(&tid,&attr,consumer,NULL);

}

/* Sleep for the specified amount of time in milliseconds */
sleep(mainSleepTime);

/* Exit the program */
printf("Exit the program\n");
exit(0);

}

/* The mutex lock */
pthread_mutex_t mutex;

/* the semaphores */
sem_t full, empty;

/* the buffer */
buffer_item buffer[BUFFER_SIZE];

/* buffer counter */
int counter;

pthread_t tid; //Thread ID
pthread_attr_t attr; //Set of thread attributes

void *producer(void *param); /* the producer thread */
void *consumer(void *param); /* the consumer thread */

void initializeData() {

/* Create the mutex lock */
pthread_mutex_init(&mutex, NULL);

/* Create the full semaphore and initialize to 0 */
sem_init(&full, 0, 0);

/* Create the empty semaphore and initialize to BUFFER_SIZE */
sem_init(&empty, 0, BUFFER_SIZE);

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

/* Get the default attributes */
pthread_attr_init(&attr);

int main(int argc, char *argv[]) {
/* Loop counter */
int i;

/* Verify the correct number of arguments were passed in */
if(argc != 4) {

fprintf(stderr, "USAGE:./main.out <INT> <INT> <INT>\n");
}

int mainSleepTime = atoi(argv[1]); /* Time in seconds for main to sleep */
int numProd = atoi(argv[2]); /* Number of producer threads */
int numCons = atoi(argv[3]); /* Number of consumer threads */

/* Initialize the app */
initializeData();

/* Create the producer threads */
for(i = 0; i < numProd; i++) {

/* Create the thread */
pthread_create(&tid,&attr,producer,NULL);

}

/* Create the consumer threads */
for(i = 0; i < numCons; i++) {

/* Create the thread */
pthread_create(&tid,&attr,consumer,NULL);

}

/* Sleep for the specified amount of time in milliseconds */
sleep(mainSleepTime);

/* Exit the program */
printf("Exit the program\n");
exit(0);

}nit buffer */
counter = 0;

}

/* Producer Thread */
void *producer(void *param) {

buffer_item item;

while(TRUE) {
/* sleep for a random period of time */
int rNum = rand() / RAND_DIVISOR;
sleep(rNum);

/* generate a random number */
item = rand();

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

/* acquire the empty lock */
sem_wait(&empty);
/* acquire the mutex lock */
pthread_mutex_lock(&mutex);

if(insert_item(item)) {
fprintf(stderr, " Producer report error condition\n");

}
else {

printf("producer produced %d\n", item);
}
/* release the mutex lock */
pthread_mutex_unlock(&mutex);
/* signal full */
sem_post(&full);

}
}

/* Consumer Thread */
void *consumer(void *param) {

buffer_item item;

while(TRUE) {
/* sleep for a random period of time */
int rNum = rand() / RAND_DIVISOR;
sleep(rNum);

/* aquire the full lock */
sem_wait(&full);
/* aquire the mutex lock */
pthread_mutex_lock(&mutex);
if(remove_item(&item)) {

fprintf(stderr, "Consumer report error condition\n");
}
else {

printf("consumer consumed %d\n", item);
}
/* release the mutex lock */
pthread_mutex_unlock(&mutex);
/* signal empty */
sem_post(&empty);

}
}

/* Add an item to the buffer */
int insert_item(buffer_item item) {

/* When the buffer is not full add the item
and increment the counter*/

if(counter < BUFFER_SIZE) {
buffer[counter] = item;
counter++;

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

return 0;
}
else { /* Error the buffer is full */

return -1;
}

}

/* Remove an item from the buffer */
int remove_item(buffer_item *item) {

/* When the buffer is not empty remove the item
and decrement the counter */

if(counter > 0) {
*item = buffer[(counter-1)];
counter--;
return 0;

}
else { /* Error buffer empty */

return -1;
}

}

int main(int argc, char *argv[]) {
/* Loop counter */
int i;

/* Verify the correct number of arguments were passed in */
if(argc != 4) {

fprintf(stderr, "USAGE:./main.out <INT> <INT> <INT>\n");
}

int mainSleepTime = atoi(argv[1]); /* Time in seconds for main to sleep */
int numProd = atoi(argv[2]); /* Number of producer threads */
int numCons = atoi(argv[3]); /* Number of consumer threads */

/* Initialize the app */
initializeData();

/* Create the producer threads */
for(i = 0; i < numProd; i++) {

/* Create the thread */
pthread_create(&tid,&attr,producer,NULL);

}

/* Create the consumer threads */
for(i = 0; i < numCons; i++) {

/* Create the thread */
pthread_create(&tid,&attr,consumer,NULL);

}

/* Sleep for the specified amount of time in milliseconds */
sleep(mainSleepTime);

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

/* Exit the program */
printf("Exit the program\n");
exit(0);

}

OUTPUT :

Experiment No- 6 Remote Procedure Call
Aim: Design, develop, and execute a program to demonstrate the use of RPC.

DESCRIPTION:
Procedure Call (RPC) defines a powerful technology for creating distributed client/server programs.

The RPC run-time stubs and libraries manage most of the processes relating to network protocols

and communication. This enables you to focus on the details of the application rather than the details

of the network.

Examples: File service, Database service, and Authentication service.

Need of RPC: The client needs an easy way to call the procedures of the server to get some

services.RPC enables clients to communicate with servers by calling procedures in a similar way to

the conventional use of procedure calls in high-level languages. RPC is modeled on the local

procedure call, but the called procedure is executed in a different process and usually a different

computer.

RMI Architecture:

RMI system allows an object running in one JVM to invoke methods on an object in another

JVM. RMI can communicate only between programs written in Java.

RMI applications often consist of two applications: A sever and a client

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

The application is divided into objects. A server creates remote objects and registers these

objects with a simple bootstrap name server called a registry (rmiregistry). The client gets a handle

by looking up the remote object by its name in the server(s) registry and invokes methods on it.

Remote object :

A remote object is one whose methods can be invoked from another JVM practically on a

different machine. In situations where you do not have a network, or a client, or a server available to

test programs, you can invoke methods on a remote object from another JVM on the same machine.

A remote object must implement at least one interface that extends the java.rmi.Remote interface.

Remote Interface :

A remote interface is an interface, which declares a set of methods that may be invoked

remotely (from a different JVM). All interactions with the remote object will be performed through

this interface. A remote interface must directly or indirectly extend the java.rmi.Remote interface.

Each method declaration in a remote interface must include java.rmi.RemoteException or one of its

super classes in its throws clause.

The Remote Procedure Call (RPC) message protocol consists of two distinct

structures: the call message and the reply message.

RPC Call Message: Each remote procedure call message contains the following unsigned integer

fields to uniquely identify the remote procedure:

 Program number

 Program version number

 Procedure number

The body of an RPC call message takes the following form:

struct call_body {

unsigned int rpcvers;

unsigned int prog;

unsigned int vers;

unsigned int proc;

opaque_auth cred;

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

opaque_auth verf;

1 parameter 2 parameter.

};

RPC Reply Message: The RPC protocol for a reply message varies depending on whether the call

message is accepted or rejected by the network server. The reply message to a request contains

information to distinguish the following conditions:

 RPC executed the call message successfully.

 The remote implementation of RPC is not protocol version 2. The lowest and

highest supported RPC version numbers are returned.

 The remote program is not available on the remote system.

 The remote program does not support the requested version number. The lowest and

highest supported remote program version numbers are returned.

 The requested procedure number does not exist. This is usually a caller-side

protocol or programming error.

The RPC reply message takes the following form:

enum reply_stat stat {

MSG_ACCEPTED = 0,

MSG_DENIED= 1

};

Function used:

 XmlRpcClientConfigImpl():
Default implementation of a clients request configuration.

 xmlRpcServer():
This is the embedded XML-RPC server, which is called to execute the clients requests

Obviously, this is an extremely fast transport. However, its main use is for debugging and

development.

PROGRAM CODE:

//**SERVER PROGRAM**//

import org.apache.xmlrpc.server.PropertyHandlerMapping;

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

import org.apache.xmlrpc.webserver.WebServer;

public class RpcServer {

public Integer sum(int x, int y) {

System.out.println("Finding sum for " + x + " and " + y);

return new Integer(x + y);

}

public static void main(String[] args) {

try {

System.out.println("Attempting to start XML-RPC Server...");

WebServer server = new WebServer(8080);

PropertyHandlerMapping phm = new PropertyHandlerMapping();

phm.addHandler("math", RpcServer.class);

server.getXmlRpcServer().setHandlerMapping(phm);

server.start();

System.out.println("Started successfully.");

System.out.println("Accepting requests. (Halt program to stop.)");

}

catch (Exception exception) {

System.err.println("JavaServer: " + exception);

}

}

}

//**CLIENT PROGRAM**//

import java.net.URL;

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

import java.util.Vector;

import org.apache.xmlrpc.client.XmlRpcClient;

import org.apache.xmlrpc.client.XmlRpcClientConfigImpl;

public class RpcClient {

public static void main(String[] args) throws Exception {

XmlRpcClientConfigImpl config = new XmlRpcClientConfigImpl();

String serverAddress = "localhost:8080";

int val1 = 0;

int val2 = 0;

if (args.length > 0) {

serverAddress = args[0];

}

if (args.length >= 2) {

val1 = Integer.parseInt(args[1]);

val2 = Integer.parseInt(args[2]);

}

config.setServerURL(new URL("http://" + serverAddress + "/RPC2"));

XmlRpcClient server = new XmlRpcClient();

server.setConfig(config);

Vector<Integer> params = new Vector<Integer>();

params.addElement(new Integer(val1));

params.addElement(new Integer(val2));

Object result = server.execute("math.sum", params);

int sum = ((Integer) result).intValue();

System.out.println("The sum is: " + sum);

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

}

}

Output
Server:

Attempting to start XML-RPC Server...

Started successfully.

Accepting requests. (Halt program to stop.)

Finding sum for 17 and 13

Finding sum for 54 and 23

Client:

$ java RpcClient localhost:8080 17 13

The sum is: 30

$ java RpcClient localhost:8080 54 23

The sum is: 77

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Title of Course: Advanced Programming Lab
Course Code: MCSE192
L-T-P scheme: 0-0-3 Course Credit: 2

Objectives:
1. To learn and understand different types artificial neural network algorithm.
2. To learn MatLab for the programming of ANN.

Learning Outcomes: The students will have a detailed knowledge of the concepts of matlab. Upon
the completion of Advanced algorithm course, the student will be able to:
 Understand and implement basic services and functionalities of the ANN using matlab.
 Use KohonenSelfOrganizingfeaturemaptoClusterthe vectorsusingowninitial weightsand

learningrate.
 Understand the benefits of artificial neural network in artificial intelligence.

Course Contents:
Exercises that must be done in this course are listed below:
Exercise1: Programtogeneratea few activationfunctionthat are being used in neural network
Exercise2: Programtoclassifywith a 2-inputperceptron.
Exercise 3: Program for perceptron net for an AND function with bipolar inputs and targets.
Exercise 4: Developa MatlabprogramforOR functionwith bipolar inputsand
targetsusingADALINEnetwork.
Exercise 5: Developa MatlabprogramtogenerateXOR functionforbipolar inputsand
targetsusingMADALINENetwork.
Exercise 6: Developa Matlabprogramtostorethe vector(-1,-1,-1,-1)and(-1,-1,1,1)inanauto-
associativenetwork.Findtheweight matrix.Test thenet with (1,1,1,1)asinput.
Exercise 7: Considera vector(1,0,1,1)to bestoredinthenet.Test a discreteHopfieldnet with error
inthe1stand4thcomponents (0,0,1,0)ofthestoredvector.
Exercise 8: Developa MatlabprogramforXOR function (binaryinputandoutput) with
momentumfactorusingback-propagation algorithm.
Exercise 9: DevelopMatlabprogramfordrawingfeature maps(KohonenSelfOrganizingFeature
maps)in 1-Dimensionalview.
Exercise 10: UseKohonenSelfOrganizingfeaturemaptoClusterthe
vectors(assumefourbinaryvectors)usingowninitial weights(to be assumed)and learningrate(tobe
assumed).

Text Book:
1. S. N. Sivanandam, S. N Deepa, Introduction to Neural Networks Using Matlab 6.0, 1st edition,

Tata McGraw-Hill Education, 2006

References:
1. B.Yegnanarayana, ArtificialNeuralNetworks,PrenticeHall ofIndia,1999
2. SatishKumar,NeuralNetworks–AClassroomApproach,Tata McGraw-Hill,2003
3. S.Haykin,NeuralNetworks–AComprehensiveFoundation,PrenticeHall,1998
4. C.M.Bishop,PatternRecognitionand MachineLearning,Springer,2006
Recommended Systems/Software Requirements:
1. Intel based desktop PC with minimum of 166 MHZ or faster processor with at least 64 MB RAM

and 100 MB free disk space.
2. Matlab software in Windows XP .

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Exercise1: Generate a few activationfunctionthat are being used in neural network

Description:

Activation Function :
A function used to transform the activation level of a unit (neuron) into an output signal. Typically,

activation functions have a "squashing" effect. Together with the PSP function (which is applied
first) this defines the unit type.Neural Networks supports a wide range of activation functions. Only
a few of these are used by default; the others are available for customization.
 Identity: The activation level is passed on directly as the output. Used in a variety of

network types, including linear networks, and the output layer of radial basis function
networks.

 Logistic: This is an S-shaped (sigmoid) curve, with output in the range (0,1).
 Hyperbolic: The hyperbolic tangent function (tanh): a sigmoid curve, like the logistic

function, except that output lies in the range (-1,+1). Often performs better than the logistic
function because of its symmetry. Ideal for customization of multilayer perceptrons,
particularly the hidden layers.

 Exponential: The negative exponential function. Ideal for use with radial units. The
combination of radial synaptic function and negative exponential activation function
produces units that model a Gaussian (bell-shaped) function centred at the weight vector.

 Softmax: Exponential function, with results normalized so that the sum of activations across
the layer is 1.0. Can be used in the output layer of multilayer
perceptrons for classification problems, so that the outputs can be interpreted as probabilities
of class membership (Bishop, 1995; Bridle, 1990).

 Unit sum: Normalizes the outputs to sum to 1.0. Used in PNNs to allow the outputs to be
interpreted as probabilities.

 Square root: Used to transform the squared distance activation in an SOFM network
or Cluster network to the actual distance as an output.

 Sine: Possibly useful if recognizing radially-distributed data; not used by default.
 Ramp: A piece-wise linear version of the sigmoid function. Relatively poor training

performance, but fast execution.
 Step: Outputs either 1.0 or 0.0, depending on whether the Synaptic value is positive or

negative. Can be used to model simple networks such as perceptrons.

Aim: Programtogenerate a few activationfunctionthat are being used in neural network

Program
% Illustration of various activation functions used in NN's
x = -10:0.1:10;
tmp = exp(-x);
y1 = 1./(1+tmp);
y2 = (1-tmp)./(1+tmp);
y3 = x;
subplot(231); plot(x, y1); grid on;
axis([min(x) max(x) -2 2]);
title('Logistic Function');
xlabel('(a)');
axis('square');
subplot(232); plot(x, y2); grid on;
axis([min(x) max(x) -2 2]);
title('Hyperbolic Tangent Function');

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

xlabel('(b)');
axis('square');
subplot(233); plot(x, y3); grid on;
axis([min(x) max(x) min(x) max(x)]);
title('Identity Function');
xlabel('(c)');
axis('square');

Output:

Exercise2: Programtoclassifywith a 2-inputperceptron.
Description:

A 2-input hard limit neuron is trained to classify 5 input vectors into two categories.

Each of the five column vectors in X defines a 2-element input vectors and a row vector T defines
the vector's target categories. We can plot these vectors with PLOTPV.

Program(A):

X = [-0.5 -0.5 +0.3 -0.1;
-0.5 +0.5 -0.5 +1.0];

T = [1 1 0 0];
plotpv(X,T);

output:

The perceptron must properly classify the 5 input vectors in X into the two categories defined by T.
Perceptrons have HARDLIM neurons. These neurons are capable of separating an input space with a
straight line into two categories (0 and 1).

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Here PERCEPTRON creates a new neural network with a single neuron. The network is then
configured to the data, so we can examine its initial weight and bias values. (Normally the
configuration step can be skipped as it is automatically done by ADAPT or TRAIN.)

net = perceptron;
net = configure(net,X,T);

The input vectors are replotted with the neuron's initial attempt at classification.

The initial weights are set to zero, so any input gives the same output and the classification line does
not even appear on the plot. Fear not... we are going to train it!

plotpv(X,T);
plotpc(net.IW{1},net.b{1});

Here the input and target data are converted to sequential data (cell array where each column
indicates a timestep) and copied three times to form the series XX and TT.

ADAPT updates the network for each timestep in the series and returns a new network object that
performs as a better classifier.

XX = repmat(con2seq(X),1,3);
TT = repmat(con2seq(T),1,3);
net = adapt(net,XX,TT);
plotpc(net.IW{1},net.b{1});

Now SIM is used to classify any other input vector, like [0.7; 1.2]. A plot of this new point with the
original training set shows how the network performs. To distinguish it from the training set, color it
red.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

x = [0.7; 1.2];
y = net(x);
plotpv(x,y);
point = findobj(gca,'type','line');
point.Color = 'red';

Turn on "hold" so the previous plot is not erased and plot the training set and the classification line.

The perceptron correctly classified our new point (in red) as category "zero" (represented by a circle)
and not a "one" (represented by a plus).

hold on;
plotpv(X,T);
plotpc(net.IW{1},net.b{1});
hold off;

Exercise 3: Perceptron net for an AND function with bipolar inputs and targets.
Description:
A perceptron is an artificial neuron using the Heaviside step function as the activation function. The
perceptron algorithm is also termed the single-layer perceptron, to distinguish it from a multilayer
perceptron, which is a misnomer for a more complicated neural network. As a linear classifier, the
single-layer perceptron is the simplest feed forward neural network.
Aim: Program for perceptron net for an AND function with bipolar inputs and targets.
The truth table for the AND function is given as

X1 X2 Y

– 1 – 1 – 1

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

– 1 1 – 1
1 – 1 – 1
1 1 1

The MATLAB program for the above table is given as follows.

Program
%Perceptron for AND funtion
clear;
clc;
x=[1 1 -1 -1;1 -1 1 -1];
t=[1 -1 -1 -1];
w=[0 0];
b=0;
alpha=input('Enter Learning rate=');
theta=input('Enter Threshold value=');
con=1;
epoch=0;
while con

con=0;
for i=1:4

yin=b+x(1,i)*w(1)+x(2,i)*w(2);
if yin>theta

y=1;
end
if yin <=theta & yin>=-theta

y=0;
end
if yin<-theta

y=-1;
end
if y-t(i)

con=1;
for j=1:2

w(j)=w(j)+alpha*t(i)*x(j,i);
end
b=b+alpha*t(i);

end
end
epoch=epoch+1;

end
disp('Perceptron for AND funtion');
disp(' Final Weight matrix');
disp(w);
disp('Final Bias');
disp(b);
Output

Enter Learning rate=1
Enter Threshold value=0.5
Perceptron for AND funtion
Final Weight matrix

1 1
Final Bias

-1

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Exercise 4: OR functionwith bipolar inputsand targetsusingADALINEnetwork.

Description:
ADALINE (Adaptive Lineardi Neuron or later Adaptive Linear Element) is an early single-
layer artificial neural network and the name of the physical device that implemented this network.

Aim:Write aMatlabprogramforOR functionwith bipolar inputsand
targetsusingADALINEnetwork.
The truth table for the OR function with bipolar inputs and targets is given as,

X1 X2 Y
-1 -1 -1
-1 1 1
1 -1 1
1 1 1

Program:

clear all;
clc;
disp('Adaline network for OR function Bipolar inputs and targets');
%input pattern
x1=[1 1 -1 -1];
x2=[1 -1 1 -1];
%bias input
x3=[1 1 1 1];
%target vector
t=[1 1 1 -1];
%initial weights and bias
w1=0.1;w2=0.1;b=0.1;
%initialize learning rate
alpha=0.1;
%error convergence
e=2;
%change in weights and bias
delw1=0;delw2=0;delb=0;
epoch=0;
while(e>1.018)

epoch=epoch+1;
e=0;
for i=1:4

nety(i)=w1*x1(i)+w2*x2(i)+b;
%net input calculated and target
nt=[nety(i) t(i)];
delw1=alpha*(t(i)-nety(i))*x1(i);
delw2=alpha*(t(i)-nety(i))*x2(i);
delb=alpha*(t(i)-nety(i))*x3(i);
%weight changes
wc=[delw1 delw2 delb]
%updating of weights
w1=w1+delw1;
w2=w2+delw2;
b=b+delb;
%new weights
w=[w1 w2 b]
%input pattern
x=[x1(i) x2(i) x3(i)];

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

%printring the results obtained
pnt=[x nt wc w]

end
for i=1:4

nety(i)=w1*x1(i)+w2*x2(i)+b;
e=e+(t(i)-nety(i))^2;

end
end

Exercise 5: XOR functionforbipolar inputsand targetsusingMADALINENetwork.

Description:

MADALINE (Many ADALINE[1]) is a three-layer (input, hidden, output), fully connected, feed-
forward artificial neural network architecture for classification that uses ADALINE units in its
hidden and output layers, i.e. its activation function is the sign function.[2] The three-layer network
uses memistors. Three different training algorithms for MADALINE networks, which cannot be
learned using backpropagation because the sign function is not differentiable, have been suggested,
called Rule I, Rule II and Rule III. The first of these dates back to 1962 and cannot adapt the weights
of the hidden-output connection.[3] The second training algorithm improved on Rule I and was
described in 1988.[1] The third "Rule" applied to a modified network with sigmoid activations instead
of signum; it was later found to be equivalent to backpropagation.[3]

The Rule II training algorithm is based on a principle called "minimal disturbance". It proceeds by
looping over training examples, then for each example, it:

 finds the hidden layer unit (ADALINE classifier) with the lowest confidence in its prediction,
 tentatively flips the sign of the unit,
 accepts or rejects the change based on whether the network's error is reduced,
 stops when the error is zero.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

%printring the results obtained
pnt=[x nt wc w]

end
for i=1:4

nety(i)=w1*x1(i)+w2*x2(i)+b;
e=e+(t(i)-nety(i))^2;

end
end

Exercise 5: XOR functionforbipolar inputsand targetsusingMADALINENetwork.

Description:

MADALINE (Many ADALINE[1]) is a three-layer (input, hidden, output), fully connected, feed-
forward artificial neural network architecture for classification that uses ADALINE units in its
hidden and output layers, i.e. its activation function is the sign function.[2] The three-layer network
uses memistors. Three different training algorithms for MADALINE networks, which cannot be
learned using backpropagation because the sign function is not differentiable, have been suggested,
called Rule I, Rule II and Rule III. The first of these dates back to 1962 and cannot adapt the weights
of the hidden-output connection.[3] The second training algorithm improved on Rule I and was
described in 1988.[1] The third "Rule" applied to a modified network with sigmoid activations instead
of signum; it was later found to be equivalent to backpropagation.[3]

The Rule II training algorithm is based on a principle called "minimal disturbance". It proceeds by
looping over training examples, then for each example, it:

 finds the hidden layer unit (ADALINE classifier) with the lowest confidence in its prediction,
 tentatively flips the sign of the unit,
 accepts or rejects the change based on whether the network's error is reduced,
 stops when the error is zero.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

%printring the results obtained
pnt=[x nt wc w]

end
for i=1:4

nety(i)=w1*x1(i)+w2*x2(i)+b;
e=e+(t(i)-nety(i))^2;

end
end

Exercise 5: XOR functionforbipolar inputsand targetsusingMADALINENetwork.

Description:

MADALINE (Many ADALINE[1]) is a three-layer (input, hidden, output), fully connected, feed-
forward artificial neural network architecture for classification that uses ADALINE units in its
hidden and output layers, i.e. its activation function is the sign function.[2] The three-layer network
uses memistors. Three different training algorithms for MADALINE networks, which cannot be
learned using backpropagation because the sign function is not differentiable, have been suggested,
called Rule I, Rule II and Rule III. The first of these dates back to 1962 and cannot adapt the weights
of the hidden-output connection.[3] The second training algorithm improved on Rule I and was
described in 1988.[1] The third "Rule" applied to a modified network with sigmoid activations instead
of signum; it was later found to be equivalent to backpropagation.[3]

The Rule II training algorithm is based on a principle called "minimal disturbance". It proceeds by
looping over training examples, then for each example, it:

 finds the hidden layer unit (ADALINE classifier) with the lowest confidence in its prediction,
 tentatively flips the sign of the unit,
 accepts or rejects the change based on whether the network's error is reduced,
 stops when the error is zero.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Aim: Writea Matlab programto generate XOR function for bipolar inputs and targets using
MADALINENetwork.

The truth table for XOR function with bipolar inputs and targets is given as,
X1 X2 Y
-1 -1 -1
-1 1 1
1 -1 1
1 1 -1

Program
%Madaline for XOR funtion
clc;
clear;
%Input and Target
x=[1 1 –1 –1;1 –1 1 –1];
t=[-1 1 1 –1];
%Assume initial weight matrix and bias
w=[0.05 0.1;0.2 0.2];
b1=[0.3 0.15];
v=[0.5 0.5];
b2=0.5;
con=1;
alpha=0.5;
epoch=0;
while con

con=0;
for i=1:4

for j=1:2
zin(j)=b1(j)+x(1,i)*w(1,j)+x(2,i)*w(2,j);
if zin(j)>=0

z(j)=1;
else

z(j)=–1;
end

end
yin=b2+z(1)*v(1)+z(2)*v(2);
if yin>=0

y=1;
else

y=–1;
end
if y~=t(i)

con=1;
if t(i)==1

if abs(zin(1)) > abs(zin(2))
k=2;

else
k=1;

end
b1(k)=b1(k)+alpha*(1-zin(k));
w(1:2,k)=w(1:2,k)+alpha*(1-zin(k))*x(1:2,i);

else
for k=1:2

if zin(k)>0;
b1(k)=b1(k)+alpha*(-1-zin(k));

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

w(1:2,k)=w(1:2,k)+alpha*(-1-zin(k))*x(1:2,i);
end

end
end

end
end
epoch=epoch+1;

end
disp('Weight matrix of hidden layer');
disp(w);
disp('Bias of hidden layer');
disp(b1);
disp('Total Epoch');
disp(epoch);

Output:
Weight matrix of hidden layer

1.3203 –1.2922
–1.3391 1.2859

Bias of hidden layer
–1.0672 –1.0766

Total Epoch
3

Exercise 6: Storethe vector(-1,-1,-1,-1)and(-1,-1,1,1)inanauto-
associativenetwork.Findtheweight matrix.Test thenet with (1,1,1,1)asinput.

Description:

Auto-associative networks are a special subset of the hetero-associative networks(Hetero-associative
networks map m input vectors x1, x2,..., xm in ndimensional space to m output vectors y1, y2,..., ym
in k-dimensional space, so that xi → yi . If x˜ − xi 2 < ε then x˜ → yi . This should be achieved by
the learning algorithm, but becomes very hard when the number m of vectors to be learned is too
high.), in which each vector is associated with itself, i.e., yi = xi for i = 1,...,m. The function of such
networks is to correct noisy input vectors.

Aim: Write a Matlabprogramtostorethe vector(-1,-1,-1,-1)and(-1,-1,1,1)inanauto-
associativenetwork.Findtheweight matrix.Test thenet with (1,1,1,1)asinput.

Program
clc;
clear;
x=[–1 –1 –1 –1;–1 –1 1 1];
t=[1 1 1 1];
w=zeros(4,4);
for i=1:2

w=w+x(i,1:4)'*x(i,1:4);
end
yin=t*w;
for i=1:4

if yin(i)>0
y(i)=1;

else
y(i)=–1;

end

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

end
disp('The calculated weight matrix');
disp(w);
if x(1,1:4)==y(1:4) | x(2,1:4)==y(1:4)

disp('The vector is a Known Vector');
else

disp('The vector is a unknown vector');
end

Output:
The calculated weight matrix

2 2 0 0
2 2 0 0
0 0 2 2
0 0 2 2

The vector is an unknown vector.

Exercise 7: Considera vector(1,0,1,1)to bestoredinthenet.Test a discreteHopfieldnet with error
inthe1stand4thcomponents (0,0,1,0)ofthestoredvector.

Description:
A Hopfield network is a form of recurrent artificial neural network popularized by John Hopfield in
1982, but described earlier by Little in 1974.Hopfield nets serve as content-addressable
memory systems with binary threshold nodes. They are guaranteed to converge to a local minimum,
but will sometimes converge to a false pattern (wrong local minimum) rather than the stored pattern
(expected local minimum). Hopfield networks also provide a model for understanding human
memory.
Aim: Write a MATlab program to test a discreteHopfieldnet with error
inthe1stand4thcomponents (0,0,1,0)ofthestoredvector.Considera vector(1,0,1,1)to
bestoredinthenet.

Program:
%Discrete Hopfield net
clc;
clear;
x=[1 1 1 0];
tx=[0 0 1 0];
w=(2*x'–1)*(2*x–1);
for i=1:4

w(i,i)=0;
end
con=1;
y=[0 0 1 0];
while con

up=[4 2 1 3];
for i=1:4

yin(up(i))=tx(up(i))+y*w(1:4,up(i));
if yin(up(i))>0

y(up(i))=1;
end

end
if y==x

disp('Convergence has been obtained');
disp('The Converged Ouput');
disp(y);
con=0;

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

end
end

Output
Convergence has been obtained
The Converged Ouput

1 1 1 0

Exercise 8: XOR function (binaryinputandoutput) with momentumfactorusingback-
propagation algorithm.

Description:

The backward propagation of errors or backpropagation, is a common method of training artificial
neural networks and used in conjunction with an optimization method such as gradient descent. The
algorithm repeats a two phase cycle, propagation and weight update. When an input vector is
presented to the network, it is propagated forward through the network, layer by layer, until it
reaches the output layer. The output of the network is then compared to the desired output, using
a loss function, and an error value is calculated for each of the neurons in the output layer. The error
values are then propagated backwards, starting from the output, until each neuron has an associated
error value which roughly represents its contribution to the original output.

Backpropagation uses these error values to calculate the gradient of the loss function with respect to
the weights in the network. In the second phase, this gradient is fed to the optimization method,
which in turn uses it to update the weights, in an attempt to minimize the loss function.

The importance of this process is that, as the network is trained, the neurons in the intermediate
layers organize themselves in such a way that the different neurons learn to recognize different
characteristics of the total input space. After training, when an arbitrary input pattern is present
which contains noise or is incomplete, neurons in the hidden layer of the network will respond with
an active output if the new input contains a pattern that resembles a feature that the individual
neurons have learned to recognize during their training.

Backpropagation requires a known, desired output for each input value in order to calculate the loss
function gradient – it is therefore usually considered to be a supervised learning method;
nonetheless, it is also used in some unsupervised networks such as auto-encoders. It is a
generalization of the delta rule to multi-layered feedforward networks, made possible by using
the chain rule to iteratively compute gradients for each layer. Backpropagation requires that
the activation function used by the artificial neurons (or "nodes") be differentiable.

Aim:Writea MatlabprogramforXOR function (binaryinputandoutput) with
momentumfactorusingback-propagation algorithm.

Program
%Back Propagation Network for Data Compression
clc;
clear;
%Get Input Pattern from file
data=open('comp.mat');
x=data.x;
t=data.t;
%Input,Hidden and Output layer definition
n=63;
m=63;
h=24;
%Initialize weights and bias
v=rand(n,h)—0.5;
v1=zeros(n,h);
b1=rand(1,h)—0.5;

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

b2=rand(1,m)—0.5;
w=rand(h,m)—0.5;
w1=zeros(h,m);
alpha=0.4;
mf=0.3;
con=1;
epoch=0;
while con

e=0;
for I=1:10

%Feed forward
for j=1:h

zin(j)=b1(j);
for i=1:n

zin(j)=zin(j)+x(I,i)*v(i,j);
end
z(j)=bipsig(zin(j));

end
for k=1:m

yin(k)=b2(k);
for j=1:h

yin(k)=yin(k)+z(j)*w(j,k);
end
y(k)=bipsig(yin(k));
ty(I,k)=y(k);

end
%Backpropagation of Error
for k=1:m

delk(k)=(t(I,k)-y(k))*bipsig1(yin(k));
end
for j=1:h

for k=1:m
delw(j,k)=alpha*delk(k)*z(j)+mf*(w(j,k)—w1(j,k));
delinj(j)=delk(k)*w(j,k);

end
end
delb2=alpha*delk;
for j=1:h

delj(j)=delinj(j)*bipsig1(zin(j));
end
for j=1:h

for i=1:n
delv(i,j)=alpha*delj(j)*x(I,i)+mf*(v(i,j)–v1(i,j));

end
end
delb1=alpha*delj;
w1=w;
v1=v;
%Weight updation
w=w+delw;
b2=b2+delb2;
v=v+delv;
b1=b1+delb1;
for k=1:k

e=e+(t(I,k)—y(k))^2;
end
end

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

if e<0.005
con=0;

end
epoch=epoch+1;
if epoch==30

con=0;
end
xl(epoch)=epoch;
yl(epoch)=e;

end
disp('Total Epoch Performed');
disp(epoch);
disp('Error');
disp(e);
figure(1);
k=1;
for i=1:2

for j=1:5
charplot(x(k,:),10+(j–1)*15,30–(i–1)*15,9,7);
k=k+1;

end
end
title('Input Pattern for Compression');
axis([0 90 0 40]);
figure(2);
plot(xl,yl);
xlabel('Epoch Number');
ylabel('Error');
title('Conversion of Net');
%Output of Net after training
for I=1:10

for j=1:h
zin(j)=b1(j);
for i=1:n

zin(j)=zin(j)+x(I,i)*v(i,j);
end
z(j)=bipsig(zin(j));

end
for k=1:m

yin(k)=b2(k);
for j=1:h

yin(k)=yin(k)+z(j)*w(j,k);
end
y(k)=bipsig(yin(k));
ty(I,k)=y(k);

end
end
for i=1:10

for j=1:63
if ty(i,j)>=0.8

tx(i,j)=1;
else if ty(i,j)<=-0.8

tx(i,j)=–1;
else

tx(i,j)=0;
end

end

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

end
end
figure(3);
k=1;
for i=1:2

for j=1:5
charplot(tx(k,:),10+(j–1)*15,30-(i–1)*15,9,7);
k=k+1;

end
end
axis([0 90 0 40]);
title('Decompressed Pattern');
subfuntion used:
%Plot character
function charplot(x,xs,ys,row,col)
k=1;
for i=1:row

for j=1:col
xl(i,j)=x(k);
k=k+1;

end
end
for i=1:row

for j=1:col
if xl(i,j)==1

plot(j+xs–1,ys–i+1,'k*');
hold on

else
plot(j+xs–1,ys–i+1,'r');
hold on

end
end

end
function y=bipsig(x)
y=2/(1+exp(-x))–1;
function y=bipsig1(x)
y=1/2*(1-bipsig(x))*(1+bipsig(x));

Output
(i) Learning Rate:0.5
Momentum Factor:0.5
Total Epoch Performed

30
Error

68.8133
Exercise 9: KohonenSelfOrganizingFeature mapsin 1-Dimensionalview.

Description:

A self-organizing map (SOM) or self-organising feature map (SOFM) is a type of artificial neural
network (ANN) that is trained using unsupervised learning to produce a low-dimensional (typically
two-dimensional), discretized representation of the input space of the training samples, called a map,
and is therefore a method to do dimensionality reduction. Self-organizing maps differ from other
artificial neural networks as they apply competitive learning as opposed to error-correction learning
(such as backpropagation with gradient descent), and in the sense that they use a neighbourhood
function to preserve the topological properties of the input space.This makes SOMs useful
for visualizing low-dimensional views of high-dimensional data, akin to multidimensional scaling.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

The artificial neural network introduced by the Finnish professor Teuvo Kohonen in the 1980s is
sometimes called a Kohonen map or network. The Kohonen net is a computationally convenient
abstraction building on work on biologically neural models from the
1970s and morphogenesis models dating back to Alan Turing in the 1950s.Like most artificial neural
networks, SOMs operate in two modes: training and mapping. "Training" builds the map using input
examples (a competitive process, also called vector quantization), while "mapping" automatically
classifies a new input vector.A self-organizing map consists of components called nodes or neurons.
Associated with each node are weight vectors of the same dimension as the input data vectors, and a
position in the map space. The usual arrangement of nodes is a two-dimensional regular spacing in
a hexagonal or rectangular grid. The self-organizing map describes a mapping from a higher-
dimensional input space to a lower-dimensional map space. The procedure for placing a vector from
data space onto the map is to find the node with the closest (smallest distance metric) weight vector
to the data space vector.While it is typical to consider this type of network structure as related
to feedforward networks where the nodes are visualized as being attached, this type of architecture is
fundamentally different in arrangement and motivation.Useful extensions include
using toroidal grids where opposite edges are connected and using large numbers of nodes.It has
been shown that while self-organizing maps with a small number of nodes behave in a way that is
similar to K-means, larger self-organizing maps rearrange data in a way that is fundamentally
topological in character.It is also common to use the U-Matrix. The U-Matrix value of a particular
node is the average distance between the node's weight vector and that of its closest neighbours. In a
square grid, for instance, we might consider the closest 4 or 8 nodes (the Von Neumann and Moore
neighbourhoods, respectively), or six nodes in a hexagonal grid.Large SOMs display emergent
properties. In maps consisting of thousands of nodes, it is possible to perform cluster operations on
the map itself.
Aim:Write a Matlabprogramfordrawingfeature maps(KohonenSelfOrganizingFeature
maps)in 1-Dimensionalview.

Program
% Demonstration of Self Organizing Feature Maps using Kohonen's Algorithm
clear;
clc;
czy = input('initialisation? Y/N [Y]: ','s');

if isempty(czy), czy = 'y' ; end
if (czy == 'y') | (czy == 'Y'),
clear
% Generation of the input training patterns.First, the form of the input domain is selected:
indom = menu('Select the form of the input domain:',...

'a rectangle', ...
'a triangle', ...'
'a circle', ...
'a ring' , ...
'a cross' ,...
'a letter A');

if isempty(indom), indom = 2; end
% Next, the dimensionality of the output space, l, is selected.
% The output units ("neurons") can be arranged in a linear, i.e. 1-Dimensional way, or in a rectangle,
i.e., in a 2-D space.
el = menu('Select the dimensionality of the output domain:',...

'1-dimensional output domain', ...
'2-dimensional output domain');

if isempty(el), el = 1; end
m1 = 12 ; m2 = 18; % m1 by m2 array of output units
if (el == 1), m1 = m1*m2 ; m2 = 1 ; end
m = m1*m2 ;
fprintf('The output lattice is %d by %d\n', m1, m2)
mOK = input('would you like to change it? Y/N [N]: ','s');
if isempty(mOK), mOK = 'n' ; end

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

if (mOK == 'y') | (mOK == 'Y')
m = 1 ;
while ~((m1 > 1) & (m > 1) & (m < 4000))

m1 = input('size of the output lattice: \n m1 = ') ;
if (el == 2)
m2 = input('m2 = ') ;

end
m = m1*m2 ;

end
end
fprintf('The output lattice is %d by %d\n', m1, m2)
% The position matrix V
if el == 1

V = (1:m1)' ;
else

[v1 v2] = meshgrid(1:m1, 1:m2); V = [v1(:) v2(:)];
end
% Creating input patterns
N = 20*m ; % N is the number of input vectors
X = rand(1, N)+j*rand(1, N) ;
ix = 1:N;
if (indom == 2),
ix = find((imag(X)<=2*real(X))&(imag(X)<=2-2*real(X))) ;
elseif (indom == 3),

ix = find(abs(X-.5*(1+j))<= 0.5) ;
elseif (indom == 4),

ix = find((abs(X-.5*(1+j))<= 0.5) & (abs(X-.5*(1+j)) >= 0.3)) ;
elseif (indom == 5),

ix = find((imag(X)<(2/3)&imag(X)>(1/3))| ...
(real(X)<(2/3)&real(X)>(1/3))) ;

elseif (indom == 6),
ix = find((2.5*real(X)-imag(X)>0 & 2.5*real(X)-imag(X)<0.5) | ...

(2.5*real(X)+imag(X)>2 & 2.5*real(X)+imag(X)<2.5) | ...
(real(X)>0.2 & real(X)<0.8 & imag(X)>0.2 & imag(X)<0.4));

end
X = X(ix); N = length(X);
figure(1)
clf reset, hold off, % resetting workspace
plot(X, '.'), title('Input Distribution')
% Initialisation of weights:
W = X(1:m).' ; X = X((m+1):N) ; N = N-m ;
% as a check, the count of wins for each output unit is calculated in the matrix "hits".
hits = zeros(m,1);

% An Initial Feature Map
% Initial values of the training gain, eta, and the spread, sigma of the neighborhood function
eta = 0.4 ; % training gain
sg2i = ((m1-1)^2+(m2-1)^2)/4 ; % sg2 = 2 sigma^2
sg2 = sg2i ;
figure(2)
clf reset
plot([0 1],[0 1],'.'), grid, hold on,
if el == 1

plot(W, 'b'),
else

FM = full(sparse(V(:,1), V(:,2), W)) ;
plot(FM, 'b'), plot(FM.', 'r') ;

end

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

title(['eta = ', num2str(eta,2), ...
' sigma^2 = ', num2str(sg2/2,3)])

hold off,
% end of initialisation

else % continuation
eta = input('input the value of eta [0.4]: ') ;

if isempty(eta), eta = 0.4; end
sg2 = input(['input the value of 2sigma^2 [', ...

num2str(sg2i), ']: ']) ;
if isempty(sg2), sg2 = sg2i; end

end
reta = (0.2)^(2/N); rsigma = (1/sg2)^(2/N) ;
% main loop
frm = 1;
for n = 1:N

% for each input pattern, X(n), and for each output unit which store the weight vector W(v1, v2),
the distance between

% X(n) and W is calculate WX = X(n) - W ; Coordinates of the winning neuron, V(kn, :), i.e.,the
neuron for which

% abs(WX) attains minimum
[mnm kn] = min(abs(WX)); vkn = V(kn, :) ;
hits(kn) = hits(kn)+1; % utilization of neurons
% The neighborhood function, NB, of the "bell" shape, is centered around the winning unit V(kn, :)
rho2 = sum(((vkn(ones(m, 1), :) - V).^2), 2) ;
NB = exp(-rho2/sg2) ;
% Finally, the weights are updated according to the Kohonen learning law:
W = W + eta*NB.*WX ;
% Values of "eta", and "sigma" are reduced
if (n<N/2), %ordering and convergence phase

sg2 = sg2*rsigma;
else

eta = eta*reta;
end
% Every 100 updates, the feature map is plotted
if rem(n, 10) == 0

plot([0 1],[0 1],'.'), grid, hold on,
if el == 1

plot(W, 'b'), plot(W, '.r'),
else

FM = full(sparse(V(:,1), V(:,2), W)) ;
plot(FM, 'b'), plot(FM.', 'r') ;

end
title(['eta = ',num2str(eta,2), ...

' sigma^2 = ', num2str(sg2/2,3), ...
' n = ', num2str(n)])

hold off,
end

if sum(n==round([1, N/4, N/2, 3*N/4 N]))==1
print('-depsc2', '-f2', ['Jsom2Dt', num2str(frm)])
frm = frm+1;

end
end
% Final presentation of the result
plot([0 1],[0 1],'.'), grid, hold on,
if el == 1

plot(W, 'b'), plot(W, '.r'),
else

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

FM = full(sparse(V(:,1), V(:,2), W)) ;
plot(FM, 'b'), plot(FM.', 'r') ;

end
title('A Feature Map'), hold off

Exercise 10: UseKohonenSelfOrganizingfeaturemaptoClusterthe
vectors(assumefourbinaryvectors)usingowninitial weights(to be assumed)and learningrate(tobe
assumed).

Description:

Learning Vector Quantization can be understood as a special case of an artificial neural network,
more precisely, it applies a winner-take-all Hebbian learning-based approach. It is a precursor
to self-organizing maps (SOM) and related to neural gas, and to the k-Nearest Neighbor
algorithm (k-NN). LVQ was invented by Teuvo Kohonen.An LVQ system is represented by
prototypes W=(ω(i),…..ω(n)) which are defined in the feature space of observed data. In winner-
take-all training algorithms one determines, for each data point, the prototype which is closest to the
input according to a given distance measure. The position of this so-called winner prototype is then
adapted, i.e. the winner is moved closer if it correctly classifies the data point or moved away if it
classifies the data point incorrectly.

Aim: Write a Matlab program to use Kohonen Self Organizing feature map to Clusterthe
vectors (assumefourbinaryvectors)usingowninitial weights(to be assumed)and
learningrate(tobe assumed).

Program
%Learning Vector Quantization
clc;
clear;
s=[1 1 0 0;0 0 0 1;0 0 1 1;1 0 0 0;0 1 1 0];
st=[1 2 2 1 2];
alpha=0.6;
%initial weight matrix first two vectors of input patterns
w=[s(1,:);s(2,:)]';
disp('Initial weight matrix');
disp(w);
%set remaining as input vector
x=[s(3,:);s(4,:);s(5,:)];
t=[st(3);st(4);st(5)];
con=1;
epoch=0;
while con

for i=1:3
for j=1:2

D(j)=0;
for k=1:4

D(j)=D(j)+(w(k,j)-x(i,k))^2;
end

end
for j=1:2

if D(j)==min(D)
J=j;

end
end
if J==t(i)

w(:,J)=w(:,J)+alpha*(x(i,:)'-w(:,J));
else

w(:,J)=w(:,J)-alpha*(x(i,:)'-w(:,J));

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

end
end
alpha=0.5*alpha;
epoch=epoch+1;
if epoch==100

con=0;
end

end
disp('Weight Matrix after 100 epochs');
disp(w);

Output
Initial weight matrix

1 0
1 0
0 0
0 1

Weight Matrix after 100 epochs
1.0000 0
0.2040 0.5615

0 0.9584
0 0.4385

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Course Description

Title of Course: Seminar
Course Code: MCSE181
L-T-P scheme: 0-2-0 Course Credit: 1

The overall aim of the seminar series is to help develop an emerging field at the intersection of
multi-disciplinary understandings of culture and education. It will build on the existing body of
work on education and culture, but its aim is explore and develop new perspectives in this area.
The objectives of the six exploratory seminars are:
 to explore new research from a range of academic disciplines which sheds light on the

questions outlined above
 to showcase cutting edge research on education and culture from outstanding academic

researchers from the UK and internationally
 to bring together seminar participants from different disciplines such as Sociology,

Philosophy, Psychology, Human Geography, Media Studies as well as Education and
Cultural Studies

 to encourage and financially support the participation of PhD students
 to actively involve practitioners and users from each venue
 to engage a core group of policy makers
 to use the seminars to develop links between academics and stakeholders in the arts,

library, media, community and educational sectors

	1.MCSE101_AEM_LP.pdf
	2.MCSE 102_Adv. OS_LP.pdf
	3.MCSE103_ACA_LP.pdf
	4.MCSE104_AA_LP.pdf
	5.MCS105A_ANN_LP.pdf
	5.MCSE105B_ABIS_LP.pdf
	5.MCSE105C_SC_LP.pdf
	5.MCSE105D_OOISD_LP.pdf
	5.MCSE105E_SE&CASEtools_LP.pdf
	5.MCSE105F_CG&M_LP.pdf
	6.MCSE191_OS_Lab_LM.pdf
	7.MCSE192_AP_Lab_LM.pdf
	8.MCSE181_Seminar_Lab_LP.pdf

