
UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Advanced Engineering Mathematics Subject Code-MVLSI101
Year: 1st Year Semester:First
Mod
ule

Num
ber

Topics Num
ber of
Lectu

res
(33)

1

Complex Variables: 8L

Review ofcomplex variables 1

Conformal mapping &transformations, Function ofcomplex variables,
Poleandsingularity,
Integrationwithrespecttocomplexargument,Residuesandbasictheoremsonresidues

7

2

NumericalAnalysis 8L

Introduction, Interpolationformulae, Differenceequation,Rootsofequations,
Solutionofsimultaneous linear

3

Non-
linearequations,SolutiontechniquesforODEandPDE,Introductiontostability,MatrixEi
genvalueandEigenvectorproblems.

5

3

OptimizationTechnique 9L

Calculus ofseveral variables, Implicit function theorem, Nature ofsingular points,
Necessary and sufficient conditions for optimization

4

Elementsof calculusvariation,ConstrainedOptimization 2
Lagrangemultipliers,Gradientmethod,Dynamic programming 3

4
Probability and Statistics: 8L

Definition and postulates of probability, Field of probability, Mutually exclusive
events, Byes' Theorem, Independence, Bernoulli trial, Discrete Distributions,
Continuous distributions

4

Probable errors, Linear regression, Introduction to non-linear regression,
Correlation, Analysis of variance.

4

UNIVERSITY OF ENGINEERING AND MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: VLSI Devices and Modelling Subject Code-MVLSI 102
Year: 1STYear Semester: 1ST

Module
Number Topics Number of

Lectures

1

Semiconductors, Junctions and MOSFET Overview: 3L
Introduction, Semiconductors, Conduction, Contact
Potentials, 2L
P-N Junction, Overview of the MOS Transistor. 1L

2

Two Terminal MOS Structure: 4L
Flat-band voltage, Potential balance & charge balance, 1L
Effect of Gate-substrate voltage on surface condition, 2L
Inversion, Small signal capacitance; 1L

3
Three Terminal MOS Structure: 3L
Contacting the inversion layer, Body effect, 2L
Regions of inversion , Pinch-off voltage 1L

4

Four Terminal MOS Transistor: 3L
Transistor regions of operation, general charge sheet
models, regions of inversion in terms of terminal
voltage, 1L
strong inversion , weak inversion, moderate inversion,
interpolation models, 1L
effective mobility, temperature effects, break down p-
channel MOSFET 1L

5 CMOS Device Design 2L
Scaling, Threshold voltage, MOSFET channel length 2L

6

CMOS Performance Factors 3L
Basic CMOS circuit elements; parasitic elements; 1L
sensitivity of CMOS delay to device parameters 1L
performance factors of advanced CMOS device 1L

7 Bipolar Devices, Design & Performance 2L

Faculty In-Charge HOD, ECE Dept.

UNIVERSITY OF ENGINEERING AND MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: Digital IC Design Subject Code-MVLSI 103
Year: 1STYear Semester: 1ST

Module
Number Topics

Number
of

Lectures

1

Specification Methods 8L
1. Language based methods including VHDL 4L
2. Hierarchical state machine descriptions such as
State Charts and Petri net based methods. 3L

3. Functional languages for formal verification. 1L

2

Synthesis tools 3L
1. High level synthesis 1L
2. Scheduling allocation 1L
3. communication and control 1L

3

Module Generation 8L
1. Finite State machines 2L
2. State encoding 1L
3. Parameterized blocks PLA, RAM, ROM
generation. 2L

4. Gate Level Synthesis 1L
5. Binary Decision Diagrams 1L
6. Logic minimization, optimization and
retargeting. 1L

4

Layout Synthesis 5L
1. Placement; simulated annealing 1L
2. Genetic algorithms, constructive methods 1L
3. Routing; nets, layers 1L
4. Lees algorithms 1L
5. Cost functions, channel routing. Examples of a
channel router with placement expansion. 1L

5

Complex gates 12L
1. Pseudo NMOS; dynamic logic 2L
2. Dynamic cascaded logic. 1L
3. Domino logic; 2 and 4 phase logic 2L
4. Pass transistor logic 1L
5. Control and timing 1L
6. Synchronous and asynchronous 1L
7. Self-timed systems; 1L
8. Multi-phase clocks 1L
9. Register transfer; examples of ALU 1L
10. Shifters, and registers 1L

6
Effects of scaling circuit dimensions 2L
1. Physical limits to develop fabrication 2L

Total Number Of Hours = 38L

Faculty In-Charge HOD, ECE Dept.

UNIVERSITY OF ENGINEERING AND MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: Microelectronics Technology & IC Fabrication Subject Code-MVLSI 104
Year: 1STYear Semester: 1ST

Sl. No Topic(S)

1

Module – 1: Cleanroom technology 4L
Clean room concept 1L
Growth of single crystal Si 1L
Surface contamination 1L
Cleaning & etching 1L

2

Module – 2: Oxidation 9L
Growth mechanism and kinetic oxidation 1L
Oxidation techniques and systems 1L
Oxide properties 1L
Oxide induced defects 1L
Characterization of oxide films 1L
Use of thermal oxide and CVD oxide 1L
Growth and properties of dry and wet oxide 1L
Dopant distribution 1L
Oxide quality 1L

3

Module 3: Solid State Diffusion 4L
Day 14: Fick's equation 1L
Day 15: Atomic diffusion mechanisms 1L
Day 16: Measurement techniques 1L
Day 17: Diffusion in polysilicon and silicon dioxide diffusion
systems 1L

4

Module -4: Ion implantation 4L
Day 18: Range theory 1L
Day 19: Equipments 1L
Day 20: Annealing, shallow junction 1L
Day 21: High energy implementation 1L

5
Module -5: Lithography 2L
Day 22: Optical lithography 1L
Day 23: Some advanced lithographic techniques 1L

6

Module -6: Physical Vapor Deposition 3L
Day 24: APCVD 1L
Day 25: Plasma CVD 1L
Day 26: MOCVD 1L

7

Module -7: Metallization 3L
Day 27: Different types of metallization 1L
Day 28: Uses & desired properties 1L
Day 29: VLSI Process integration 1L

Faculty In-Charge HOD, ECE Dept.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Advanced Digital Communication Subject Code: MVLSI-105
Year: 1st Year Semester: 1st

Module Number Topics Number of Lectures

1

Spectral analysis of signals: 4L

1. Orthogonal & orthonormal signals. Gram-
Schmidt procedure to represent a set of
arbitrary signals by a set of orthonormal
components; - numerical examples.

2

2. The concept of signal-space coordinate
system, representing a signal vector by its
orthonormal components, measure of
distinguishability of signals.

2

2

Characteristics of random variables and random
processes:

8L

1. Common probability density functions, -
Gaussian, Rayleigh, Poisson, binomial, Rice,
Laplacian, lognormal

3

2. Probability of error in Gaussian Binary
symmetric channel.

1

3. Random processes – time average,
ensemble average, covariance,
autocorrelation, cross correlation,
stationary process, ergodic process,
wide sense stationary process.

4. Power spectral density and
autocorrelation, power spectral
density of a random binary signal.

4

3

Source coding: 10L
Sampling theorem, instantaneous/ flat top/ natural
sampling, band width of PAM signal, quantization,
quantization noise, principle of pulse code
modulation, delta modulation & adaptive delta
modulation.

Parametric coding/ hybrid coding/ sub band coding:
APC, LPC, Pitch predictive, ADPCM, voice excited
vocoder, vocal synthesizer.

5

1. UPNRZ, PNRZ, UPRZ, PRZ, AMI, Manchester
etc.

2. Calculation of their power spectral
densities.

3. Bandwidths and probabilities of error Pe
for different line codes.

4. Principle, transmitter, receiver, signal
vectors, their distinguish ability and signal
band width for BPSK, QPSK, M-ARY PSK,
QASK, MSK, BFSK, M-ARY FSK.

5

4

Spread spectrum modulation: 10L
1. Principle of DSSS, processing gain, jamming

margin, single tone interference, principle
of CDMA, MAI and limit of number of
simultaneous users.

3

2. Digital cellular CDMA system: model of
forward link, reverse link, error rate
performance of decoder using m-sequence
chip codes.

3

3. Properties of m-sequences, their
generation by LFSR, their PSDs, limitations
of m sequences.

2

4. Gold sequence, Kasami sequence –
generating the sequences, their
characteristic mean, cross correlation and
variance of cross correlation, their merits
and limitations as chip codes in CDMA

2

5
Multiplexing & multiple access: 2L

1. TDM/TDMA, FDM/FDMA, Space DMA,
Polarization DMA, OFDM, ALOHA, Slotted
ALOHA, Reservation ALOHA, CSMA-CD,
CSMA-CA – basic techniques and
comparative performances e.g. signal
bandwidth, delay, probability of error etc.

2

6

Noise: 3L
1. Representation of noise in frequency

domain.
2. Effect of filtering on the power spectral

density of noise – Low pass filter, band pass
filter, differentiating filter, integrating filter.

3. Quadrature components of noise, their
power spectral densities and probability
density functions.  Representation of
noise in orthogonal components.

3

7

Characteristics of different types of channels: 5L
1. Gaussian, Poisson etc. Band limited

channel:
2. Characteristics of band limited channel,

inter symbol interference (ISI) - it’s
mathematical expression.

3. Niquist’s theorem for signal design for no
ISI in ideal band limited channel, Niquist’s
criteria, raised cosine pulse signals.

4. Signal design for controlled ISI in ideal band
limited channel, partial response signals,
duobinary & partial duobinary signals -
their methods of generation and detection
of data.

5L

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Advanced Digital Communication Subject Code: MVLSI-105
Year: 1st Year Semester: 1st

5. Concept of maximum likelihood detection,
log likely hood ratio.

6. Detection of data with controlled ISI by
linear transverse filters.
7. Performance of minimum mean
square estimation (MMSE) detection in
channels with ISI.

8

Base band signal receiver and probabilities of bit
error:

5L

1. Peak signal to RMS noise output ration,
probability of error.

2. Optimum filter, its transfer function.
3. Matched filter, its probability of error.
4. Probability of error in PSK, effect of

imperfect phase synchronization or
imperfect bit synchronization.

5. Probability of error in FSK, QPSK.
6. Signal space vector approach to calculate

probability of error in BPSK, BFSK, QPSK.
7. Relation between bit error rate and symbol

error rate.
8. Comparison of various digital modulation

techniques vis-à-vis band width
requirement and probabilities of bit error.

5L

Total Number Of Hours = 45L

Faculty In-Charge HOD, ECE Dept.

UNIVERSITY OF ENGINEERING AND MANAGEMENT,
JAIPUR

Lab Manual

Title of Course: CAD Tools for VLSI Design
Course Code: MVLSI191
L-T-P scheme: 0-0-3 Course Credit: 4

Objectives: The overall course objective is to teach electrical engineering students fundamental
concepts of hardware description languages and advanced techniques in digital system design.
Specific objectives include the following:
1. Learn VHDL (Very high speed integrated circuit Hardware Description Language).
2. Utilize VHDL to design and analyse digital systems including arithmetic units and state machines.
3. Learn field programmable gate array (FPGA) technologies and utilize associated computer aided

design (CAD) tools to synthesize and analyse digital systems.
4. Learn testing strategies and construct test-benches.
5. Conduct laboratory experiments using an FPGA based development board to prototype digital

systems and to confirm the analysis done in class.
6. Prepare informative and organized lab reports that describe the methodologies employed, the

results obtained, and the conclusions made in a laboratory experiment.

Learning Outcomes: The students will have a detailed knowledge of the concepts of IEEE and ANSI
standard HDL. Upon the completion of Operating Systems practical course, the student will be able
to:
 Understand and implement basic digital logic circuits of VLSI.
 Model complex digital systems at several levels of abstractions; behavioural and structural,

synthesis and rapid system prototyping.
 Developand Simulate register-level models of hierarchical digital systems.
 Designand model complex digital system independently or in a team
 Carry out implementations of registers and counters.
 Simulate and synthesize all type of digital logic circuits used in VLSI.
 Finally design a CPU.

Course Contents:
Exercises that must be done in this course are listed below:
Exercise No.1: Design of basic Gates: AND, OR, NOT.
Exercise No. 2: Design of universal gates
Exercise No. 3: Design of XOR and XNOR gate.
Exercise No. 4: Design of 2:1 MUX.
Exercise No. 5: Design of 2 to 4 Decoder.
Exercise No. 6: Design of Half-Adder and Full Adder.
Exercise No. 7: Design of 8:3 Priority Encoder.
Exercise No. 8: Design of 4 Bit Binary to Grey Code Converter.
Exercise No. 9: Design of all Flip-Flops.
Exercise No. 10: Design of Shift register.
Exercise No. 11: Design of ALU.

Text Book:
1. J. Bhaskar, A VHDL Primer, 3rd edition, Prentice Hall.

Recommended Systems/Software Requirements:
1. Intel based desktop PC with minimum of 1GHZ or faster processor with at least 1GB RAM and 8

GB free disk space.
2. Xilinx ISE14.2 software in Windows XP or Linux Operating System.

Experiment No: 1Design of basic Gates: AND, OR, NOT.
Aim: Write VHDL code for basic gates: AND, OR, NOT.
Apparatus: Xilinx ISE 14.2 software
AND Gate

VHDL codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity AND1 is

port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end AND1;
architecture behavioral of AND1 is
begin

process (a, b)
begin
if (a= “1”and b=“1”)
then c<=“1”; else c<=“0”;
end if;
end process;
end behavioral;

OR Gate:

VHDL codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity OR1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end OR1;
architecture behavioral of OR1 is
begin
process (a, b)
begin
if (a=“0”and b=“0”) then c<= “0”; else c<=“1”;
end if;

Experiment No: 1Design of basic Gates: AND, OR, NOT.
Aim: Write VHDL code for basic gates: AND, OR, NOT.
Apparatus: Xilinx ISE 14.2 software
AND Gate

VHDL codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity AND1 is

port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end AND1;
architecture behavioral of AND1 is
begin

process (a, b)
begin
if (a= “1”and b=“1”)
then c<=“1”; else c<=“0”;
end if;
end process;
end behavioral;

OR Gate:

VHDL codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity OR1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end OR1;
architecture behavioral of OR1 is
begin
process (a, b)
begin
if (a=“0”and b=“0”) then c<= “0”; else c<=“1”;
end if;

Experiment No: 1Design of basic Gates: AND, OR, NOT.
Aim: Write VHDL code for basic gates: AND, OR, NOT.
Apparatus: Xilinx ISE 14.2 software
AND Gate

VHDL codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity AND1 is

port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end AND1;
architecture behavioral of AND1 is
begin

process (a, b)
begin
if (a= “1”and b=“1”)
then c<=“1”; else c<=“0”;
end if;
end process;
end behavioral;

OR Gate:

VHDL codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity OR1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end OR1;
architecture behavioral of OR1 is
begin
process (a, b)
begin
if (a=“0”and b=“0”) then c<= “0”; else c<=“1”;
end if;

UNIVERSITY OF ENGINEERING AND MANAGEMENT,
JAIPUR

Lab Manual

end process;
end behavioral;
NOT Gate:

VHDL Codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity NOT1 is
port (a : in STD_LOGIC; c : out STD_LOGIC) ;
end NOT1;
architecture behavioral of NOT1 is
begin
process (a)

begin
if (a=“0”) then c<=“1”;

else c<=“0”;
end if;
end process;
end behavioral;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output:Student will check the output.
Discussion:Student will conclude here.

Experiment No.-2 : Design Universal gates
Aim: Write VHDL code for universal gates: NAND and NOR gate.
Apparatus: Xilinx ISE14.2 software

NAND gate:

VHDL codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity NAND1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;

UNIVERSITY OF ENGINEERING AND MANAGEMENT,
JAIPUR

Lab Manual

end process;
end behavioral;
NOT Gate:

VHDL Codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity NOT1 is
port (a : in STD_LOGIC; c : out STD_LOGIC) ;
end NOT1;
architecture behavioral of NOT1 is
begin
process (a)

begin
if (a=“0”) then c<=“1”;

else c<=“0”;
end if;
end process;
end behavioral;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output:Student will check the output.
Discussion:Student will conclude here.

Experiment No.-2 : Design Universal gates
Aim: Write VHDL code for universal gates: NAND and NOR gate.
Apparatus: Xilinx ISE14.2 software

NAND gate:

VHDL codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity NAND1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;

UNIVERSITY OF ENGINEERING AND MANAGEMENT,
JAIPUR

Lab Manual

end process;
end behavioral;
NOT Gate:

VHDL Codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity NOT1 is
port (a : in STD_LOGIC; c : out STD_LOGIC) ;
end NOT1;
architecture behavioral of NOT1 is
begin
process (a)

begin
if (a=“0”) then c<=“1”;

else c<=“0”;
end if;
end process;
end behavioral;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output:Student will check the output.
Discussion:Student will conclude here.

Experiment No.-2 : Design Universal gates
Aim: Write VHDL code for universal gates: NAND and NOR gate.
Apparatus: Xilinx ISE14.2 software

NAND gate:

VHDL codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity NAND1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;

end NAND1;
architecture
behavioral of NAND1 is

begin
process (a, b)

begin
if (a= “1”and b=“1”)then c<= “0”;

else c<=“1”;
end if;
end process;
end behavioral;

NOR gate:

VHDL codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity NOR1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end NOR1;
architecture behavioral of NOR1 is
begin
process (a, b)
begin
if (a=“0”and b= “0”) then c<=“0”;
else c<=“0”;
end if;
end process;
end behavioral;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-3 : Design XOR and XNOR gate

Aim: Write VHDL code for XOR and XNOR gate.

Apparatus: Xilinx ISE 14.2 software

XOR gate:

end NAND1;
architecture
behavioral of NAND1 is

begin
process (a, b)

begin
if (a= “1”and b=“1”)then c<= “0”;

else c<=“1”;
end if;
end process;
end behavioral;

NOR gate:

VHDL codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity NOR1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end NOR1;
architecture behavioral of NOR1 is
begin
process (a, b)
begin
if (a=“0”and b= “0”) then c<=“0”;
else c<=“0”;
end if;
end process;
end behavioral;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-3 : Design XOR and XNOR gate

Aim: Write VHDL code for XOR and XNOR gate.

Apparatus: Xilinx ISE 14.2 software

XOR gate:

end NAND1;
architecture
behavioral of NAND1 is

begin
process (a, b)

begin
if (a= “1”and b=“1”)then c<= “0”;

else c<=“1”;
end if;
end process;
end behavioral;

NOR gate:

VHDL codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity NOR1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end NOR1;
architecture behavioral of NOR1 is
begin
process (a, b)
begin
if (a=“0”and b= “0”) then c<=“0”;
else c<=“0”;
end if;
end process;
end behavioral;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-3 : Design XOR and XNOR gate

Aim: Write VHDL code for XOR and XNOR gate.

Apparatus: Xilinx ISE 14.2 software

XOR gate:

UNIVERSITY OF ENGINEERING AND MANAGEMENT,
JAIPUR

Lab Manual

VHDL codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity XOR1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end XOR1;
architecture behavioral of XOR1 is
begin

process (a, b)
variable (s1, s2, s3, s4:STD_LOGIC)
begin
s1:=NOT a;
s2:=NOT b;

s3:=s1 AND b;
s4:=s2 AND a;
c<=s3 OR s4;

end process;
end behavioral;

XNOR gate:

VHDL codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity XNOR1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end XNOR1;
architecture behavioral of XNOR1 is
begin

UNIVERSITY OF ENGINEERING AND MANAGEMENT,
JAIPUR

Lab Manual

VHDL codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity XOR1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end XOR1;
architecture behavioral of XOR1 is
begin

process (a, b)
variable (s1, s2, s3, s4:STD_LOGIC)
begin
s1:=NOT a;
s2:=NOT b;

s3:=s1 AND b;
s4:=s2 AND a;
c<=s3 OR s4;

end process;
end behavioral;

XNOR gate:

VHDL codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity XNOR1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end XNOR1;
architecture behavioral of XNOR1 is
begin

UNIVERSITY OF ENGINEERING AND MANAGEMENT,
JAIPUR

Lab Manual

VHDL codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity XOR1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end XOR1;
architecture behavioral of XOR1 is
begin

process (a, b)
variable (s1, s2, s3, s4:STD_LOGIC)
begin
s1:=NOT a;
s2:=NOT b;

s3:=s1 AND b;
s4:=s2 AND a;
c<=s3 OR s4;

end process;
end behavioral;

XNOR gate:

VHDL codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity XNOR1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end XNOR1;
architecture behavioral of XNOR1 is
begin

process (a, b)
variable (s1, s2, s3, s4:STD_LOGIC)
begin
s1:=NOT a;
s2:=NOT b;
s3:=a AND b;
s4:=s1 AND s2;
c<=s3 OR s4;

end process;
end behavioral;

Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-4: Design 2:1 MUX
Aim: Write VHDL code for 2:1 mux using other basic gates.
Apparatus: Xilinx ISE 14.2 software
2:1 MUX:
A digital multiplexer is a combinational circuit that selects binary information from one of many input
lines and directs it to a single output line.

= +
VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity mux_2 to 1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; s : in STD_LOGIC z : out STD_LOGIC) ;

end mux_2 to 1;
architecture behavioral of mux_2 to 1 is
begin
process (a, b, s)
begin
if (s=“0”)then
z<=a;
else z<=b;
end if;
end process;
end behavioral;

S Z
0 A
1 B

process (a, b)
variable (s1, s2, s3, s4:STD_LOGIC)
begin
s1:=NOT a;
s2:=NOT b;
s3:=a AND b;
s4:=s1 AND s2;
c<=s3 OR s4;

end process;
end behavioral;

Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-4: Design 2:1 MUX
Aim: Write VHDL code for 2:1 mux using other basic gates.
Apparatus: Xilinx ISE 14.2 software
2:1 MUX:
A digital multiplexer is a combinational circuit that selects binary information from one of many input
lines and directs it to a single output line.

= +
VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity mux_2 to 1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; s : in STD_LOGIC z : out STD_LOGIC) ;

end mux_2 to 1;
architecture behavioral of mux_2 to 1 is
begin
process (a, b, s)
begin
if (s=“0”)then
z<=a;
else z<=b;
end if;
end process;
end behavioral;

S Z
0 A
1 B

process (a, b)
variable (s1, s2, s3, s4:STD_LOGIC)
begin
s1:=NOT a;
s2:=NOT b;
s3:=a AND b;
s4:=s1 AND s2;
c<=s3 OR s4;

end process;
end behavioral;

Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-4: Design 2:1 MUX
Aim: Write VHDL code for 2:1 mux using other basic gates.
Apparatus: Xilinx ISE 14.2 software
2:1 MUX:
A digital multiplexer is a combinational circuit that selects binary information from one of many input
lines and directs it to a single output line.

= +
VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity mux_2 to 1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; s : in STD_LOGIC z : out STD_LOGIC) ;

end mux_2 to 1;
architecture behavioral of mux_2 to 1 is
begin
process (a, b, s)
begin
if (s=“0”)then
z<=a;
else z<=b;
end if;
end process;
end behavioral;

S Z
0 A
1 B

UNIVERSITY OF ENGINEERING AND MANAGEMENT,
JAIPUR

Lab Manual

2:1 mux using BASIC gates:
VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity mux_2 to 1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; s : in STD_LOGIC z : out STD_LOGIC) ;

end mux_2 to 1 ;
architecture behavioral of mux_2 to 1 is
begin

process (a, b, s)
variable (s1, s2, s3:STD_LOGIC)
begin s1:=NOT s; s2:=s1 AND a; s3:=s AND b; z<=s2 OR s3;
end process;
end behavioral;

Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-5 :Design 2:4 Decoder
Aim: Write VHDL code for 2:4 decoder.
Apparatus: Xilinx ISE 14.2 software
2:4 decoder: A decoder is a combinational circuit that converts binary information from n inputs line
to a maximum of 2n unique output lines.

VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity decoder_2_to_4 is
port (a : in STD_LOGIC_VECTOR; E : in STD_LOGIC; d : out STD_LOGIC_VECTOR (3 downto
0) ;
end decoder_2_to_4 ;
architecture behavioral of decoder_2_to_4 is
begin process (a)

begin

E A B D0 D1 D2 D3
0 X X 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

case a is when “00”=> d<=“0001”;
when “01”=> d<=“0010”;
when “10”=> d<=“0100”;
when others=>d<=“1000”;
end case;
end process;
end behavioral;

Using DATA_FLOW approach

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity decoder_2_to_4 is
port (a : in STD_LOGIC; b : in STD_LOGIC; E : in STD_LOGIC d : out STD_LOGIC_VECTOR (3

downto 0)) ;
end decoder_2_to_4;
architecture dataflow of decoder_2_to_4 is
signal(abar, bbar: STD_LOGIC)

begin
abar<=NOT a;
bbar<=NOT b;
d(0)<=abar AND bbar AND E;
d(1)<=abar AND b AND E;
d(2)<=a AND bbar AND E;

d(3)<=a AND b AND E;
end dataflow;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-6: Design Half adder and Full adder
Aim: Write VHDL code for Half-adder, full-adder.
Apparatus: Xilinx ISE 14.2 software
Half-adder:

VHDL codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
Entity half_adder is

A B Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

UNIVERSITY OF ENGINEERING AND MANAGEMENT,
JAIPUR

Lab Manual

port (a : in STD_LOGIC; b : in STD_LOGIC; s : out STD_LOGIC; c : out STD_LOGIC);
end half_adder;
architecture behavioral of half_adder is
begin
process (a,b)

begin
if (a=“0”and b=“0”) then s<=“0”; c<=“0”;

elsif (a=“1”and b=“1”) s<=“0”; c<=“1”;
else s<=“1”; c<=“0”;
end if;
end process;
end behavioral;

Full-Adder:

A B C Sum Carry
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

VHDL codes:
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

Entity full_adder is
port (a : in STD_LOGIC_VECTOR (0 to 2); s : out STD_LOGIC_VECTOR (0 to 1));
end full_adder;
architecture behavioral of full_adder is
begin
process (a)

begin
case a is
when “000”=> s<=“00”;
when “001”=> s<=“10”;
when “010”=> s<=“10”;
when“011”=> s<=“01”;

when “100”=> s<=“10”;
when “101”=> s<=“01”;
when “110”=> s<=“01”;
when others =>s<=“11”;
end case;
end process;
end behavioral;

Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No-7 : Design 3:8 Decoder
Aim: Write VHDL code for 3:8decoder.
Apparatus: Xilinx ISE 14.2 software
3:8 decoder

Inputs outputs

A B C D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity decoder_3_to_8is
port (a : in STD_LOGIC_VECTOR (2 downto 0);
d : out STD_LOGIC_VECTOR (7 downto 0);
end decoder_3_to_8;
architecture Behavioural of decoder_3_to_8 is
begin

proess(a)
begin

UNIVERSITY OF ENGINEERING AND MANAGEMENT,
JAIPUR

Lab Manual

case a is
when “000”=> d<=“00000001”;

when “001”=> d<=“00000010”;

when “010”=> d<=“00000100”;

when “011”=> d<=“00001000”;

when “100”=> d<=“00010000”;

when “101”=> d<=“00100000”;

when “110”=> d<=“01000000”;

when others=>d<=“10000000”;

end case;

end process;

end Behavioural;

Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-8 : Design 8:3 priority encoder
Aim: Write VHDL code for 8:3priority encoder.
Apparatus: Xilinx ISE 8.1 software
8:3 priority encoder:
An encoder is a digital circuit that performs inverse operation of decoder. An encoder has 2^n input
lines and n output lines. The output lines generate the binary code corresponding to the input value.
Truth-table for 8:3priority encoder

Inputs outputs

A7 A6 A5 A4 A3 A2 A1 A0 D2 D1 D0

0 0 0 0 0 0 0 0 X X X

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 X 0 0 1

0 0 0 0 0 1 X X 0 1 0

0 0 0 0 1 X X X 0 1 1

0 0 0 1 X X X X 1 0 0

0 0 1 X X X X X 1 0 1

0 1 X X X X X X 1 1 0

1 X X X X X X X 1 1 1

VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity p_encoder_8_to_3 is

port (a : in STD_LOGIC_VECTOR (7downto 0);

d : out STD_LOGIC_VECTOR (2downto 0));
endp_encoder_8_to_3;

architecture behavioral of p_encoder_8_to_3 is
begin
process (a)
begin
case a is

when “00000001”=> d<=“000”;

when “0000001X”=> d<=“001”;

when “000001XX”=> d<=“010”;

when “00001XXX”=> d<=“011”;

when “0001XXXX”=> d<=“100”;

when “001XXXXX”=>d<=“101”;

when “01XXXXXX”=> d<=“110”;

when “1XXXXXXX”=> d<= “111”;

when others=>d<=“XXX”;

end case;

end process;

end behavioral;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-8: Design Binary to Gray converter
Aim: Design of 4 Bit Binary to Grey code Converter.
Apparatus: Xilinx ISE 14.2 software
Binary top gray converter:
The binary to grey converter is a combinational circuit that takes binary number as input and converts
it into grey code. Grey code differs from the preceding and succeeding number by a single bit.

VHDL Codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity b2g is

port (b : in std_logic_vector (3 downto0);

UNIVERSITY OF ENGINEERING AND MANAGEMENT,
JAIPUR

Lab Manual

g : out std_logic_vector (3 downto 0));
end b2g;
architecture behavioral of b2g is
begin

process (b)
begin
case b is
when “0000” => g<= “0000”;
when “0001” => g<= “0001”;

when “0010” => g<= “0011”;
when “0011” => g<= “0010”;
when “0100” => g<= “0110”;

when “0101” => g<= “0111”;
when “0110” => g<= “0101”;
when “0111” => g<= “0100”;
when “1000” => g<= “1100”;

when “1001” => g<= “1101”;
when “1010” => g<= “1111”;
when “1011” => g<= “1110”;
when “1100” => g<= “1010”;
when “1101” => g<= “1011”;
when “1110” => g<= “1001”;

when others => g<= “1000”;
end case;

end process;
end behavioral;

Data flow model for binary to grey code converter:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity bin2grey_conv is

port (b : in std_logic_vector (3 downto0);
g : out std_logic_vector (3 downto));

end bin2grey_conv;
architecture dataflow of bin2grey_conv is
begin
g(3)<=b(3);
g(2)<=(b(3)) xor (b(2));
g(1)<=b(2) xor b(1);
g(0)<=b(1) xor b(0);

end dataflow;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-9: Design flip-flops
Aim: Study all Flip-flops using VHDL
Apparatus: Xilinx ISE 14.2 software

(1) S-R flip-flop:

S R Qn+1

0 0 Qn

0 1 0

1 0 1

1 1

VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL; entity flipflop_SR is
port (s, r, clk, rst : in std_logic; q : out std_logic);
end flipflop_SR;
architecture behavioral of flipflop_SR is
begin
process (s, r, clk, rst)
begin

if (clk= “1” and clk‟event) then if (rst= “1”) then
q<= “0”;
elsif (rst= “0”) then
q<= “1”;
elsif (s= “0” and r= “0” and rst= “0”) then
q<=q;
elsif (s= “0” and r= “1” and rst= “0”) then
q<= “0”;
elsif (s= “1” and r= “0” and rst= “0”) then
q<= “1”;
elsif (s= “1” and r= “1” and rst= “0”) then
q<= “U”;
end if;
end if;
end process;
end behavioral;

UNIVERSITY OF ENGINEERING AND MANAGEMENT,
JAIPUR

Lab Manual

(2) J-K flip-flop:

J K Qn+1

0 0 Qn

0 1 0

1 0 1

1 1 Not Qn

VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL; entity flipflop_JK is
port (j, k, clk, rst : in std_logic; q : inoutstd_logic);
end flipflop_JK;
architecture behavioral of flipflop_JK is
begin
process (j, k, clk, rst)
begin
if (clk= “1” and clk‟event) then if (rst= “1”) then
q<= “0”;
elsif (rst= “0”) then
q<= “1”;
elsif (j= “0” and k= “0” and rst= “0”) then
q<=q;
elsif (j= “0” and k= “1” and rst= “0”) then
q<= “0”;
elsif (j= “1” and k= “0” and rst= “0”) then

q<= “1”;

elsif (j= “1” and k= “1” and rst= “0”) then
q<= NOT q;

end if;

end if;

end process;
end behavioral;

(3) D flip-flop:

D Qn+1

0 0

1 1

VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL; entity flipflop_Dis
port (d,clk, rst : in std_logic; q : inoutstd_logic);
end flipflop_D;
architecture behavioral offlipflop_Dis
begin
process (d,clk, rst)
begin
if (clk= “1” and clk‟event) then if (rst= “1”) then

q<= “0”;
else
q<=q;
end if;
end if;
end process;
end behavioral;

Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-10 : Design Shift register
Aim: Design of 8-bit shift register using VHDL.
Apparatus: Xilinx ISE 14.2 software
Shift register

VHDL Codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity eftshift is

UNIVERSITY OF ENGINEERING AND MANAGEMENT,
JAIPUR

Lab Manual

port (a : inoutbit_vector (0 to 7);
r, l, rst, load, clk : in bit;
q : out bit_vector (0 to 7));

end leftshift;
architecture behavioral of leftshift is
begin
process (load, rst, a, clk)
begin
if (clk= “1” and clk‟event) then if (load= “1”) then
q<=a;
elsif(load= “0”) then if (rst= “1”) then q<= “00000000”;
else
if (l= “1”) then
q<=a slll;
end if;
if (r= “1”) then
q<= a srll;
end if;
end if;
end if;
end if;
end process;
end behavioral;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No. 11: Design ALU
Aim: Write VHDL program to perform Arithmetic Logic Unit (ALU) operation.
Apparatus: Xilinx ISE 14.2 software
ALU:
An ALU performs arithmetic and logical operation. It receives data from register file and perform
operations on it given by control signals generated through control unit.

VHDL codes:
Entity ALU is
Port(x,y : in std_logic_vector(0 to 7);
sel : in std_logic_vector (0 to 2);
z : out std_logic_vector (0 to 7));
end ALU;
architecture dataflow of ALU is

Sel Unit Operation
000 z <= x
001

Arithmetic Unit
z <= x+1

010 z <= y
011 z <= x+y
100 z <= not x
101

Logic Unit
z <= x and y

110 z <= x or y
111 z <= x xor y

signal arith, logic : std_logic_vector (0 to 7);
begin

with sel (0 to 1) select
arith <= x when “00”; x+1 when “01”; y when “10”; x+y when others;
with sel (0 to 1) select
logic <= not x when “00”; x and y when “01”; x or y when “10”;
x xor y when others;
with sel (2) select
z <= arith when “0”; logic when others;
end dataflow;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

UNIVERSITY OF ENGINEERING AND MANAGEMENT,JAIPUR
Lab Manual

Title of Course: Embedded System Lab-I
Course Code: MVLSI-192
L-T-P scheme: 0-0-3 Course Credit: 4

Objectives:
An embedded system is some combination of computer hardware and software, either fixed

in capability or programmable, that is specifically designed for a kind of application device.
Industrial machines, automobiles, medical equipment, cameras, household appliances, airplanes,
vending machines, and toys (as well as the more obvious cellular phone and PDA) are among the
myriad possible hosts of an embedded system. Embedded systems that are programmable are
provided with a programming interface, and embedded systems programming is a specialized
occupation. Since the embedded system is dedicated to specific tasks, design engineers can optimize
it, reducing the size and cost of the product, or increasing the reliability and performance. Some
embedded systems are mass-produced, benefiting from economies of scale.

Learning Outcomes: The students will have a detailed knowledge of the concepts ofmicrocontroller
and microcontroller based system and students also study the new language like embedded C. Upon
the completion of this practical course, the student will be able to:
 Understand and implement basic program of embedded C language.
 Use the new processor and synchronization libraries in software/ hardware interfaces.
 Studythe benefits to use microcontroller in our real life.
 Analyze and simulate the various program.
 Interfacevarious hardware interface with 8051 microcontroller.
 Simulate the application based program in proteus environment.

Course Contents:
Exercises that must be done in this course are listed below:
Exercise No.1: Write an assembly language program to add, subtract, multiply, divide 16
bit data by Atmel microcontroller.
Exercise No. 2: Write an assembly language program to generate 10 KHz frequency using 8051.
Exercise No. 3: To study the implementation & interfacing of LCD using 8051 microcontroller
Exercise No. 4: To study implementation & interfacing of LED
Exercise No. 5: To study implementation & interfacing of seven segment display
Exercise No. 6: To study implementation & interfacing stepper motor with 8051 microcontroller
Exercise No. 7: To study implementation & interfacing of relay with 8051 microcontroller
Exercise No. 8: To study implementation & interfacing of keypad with 8051 microcontroller
Exercise No. 9: Study of implementation of DC Motor control using PWM method.
Exercise No. 10: Study and observation of Position control of Servo Motor

Text Book:
1. Muhammad Ali Mazidi, J.G. Mazidi, R.D.McKinlay,The 8051 Microcontroller and Embedded
Systems, Pearson Prentice Hall.

Recommended Systems/Software Requirements:
Minimum system requirement: -
Processor : AMD Athlon ™ 1.67 GHz

RAM : 256 MB
Hard Disk : 40 GB
Mouse : Optical Mouse
Hardware requirement: - Microcontroller kit, Interfacing kit, SMPS for microcontroller,

Microcontroller burner, Microcontroller AT89C51, etc.
Software requirement: - Windows 2007/8/10, keil simulator, ect.

Experiment No: 1

Aim: Write an assembly language program to add, subtract, multiply, divide 16
bit data by Atmel microcontroller.

APPARATUS: M51-02 trainer kit, keyboard and power cord.

PROGRAM:
Addition:
ORG 0000H
CLR C ;make CY=0
MOV A, #0E7H ; load the low byte now A=E7H
ADD A, #8DH ; add the low byte now A=74H and CY=1
MOV R6, A ; save the low byte of the sum in R6
MOV A, #3BH ; load the high byte
ADDC A, #3BH ; add with carry (3B+3C+1=78)
MOV R7, A ; save the high byte of the sum

Subtraction:
ORG 3000H
CLR C ; make CY=0
MOV A, #50H ; load the low byte now A= 50H
MOV R1, #30H ; load the byte now R1=30H
SUBB A, R1 ; subtract contents of A and R1
JNC Next
CPL A
INC A
Next: MOV R2, A
SJMP 3000H

Multiply:
ORG 4000H
MOV A, #03H ; move the first no. into acc
MOV B, #02H ; move the second no. into B
MUL AB ; multiply the contents of acc with B
SJMP 4000H

Divide:
ORG 5000H
MOV A, #25H ; move the first no. into acc.
MOV B, #5H ; move the second no. into B
DIV AB ; divide the contents of acc with B
SJMP 5000H

RESULT: Addition, Subtraction, Multiplication, Division of 16-bit data has been
performedsuccessfullyon the kit.

PRECAUTIONS: Make sure correct power supply is given to the kit/Equipment. Wrong
powersuppliesmay cause damage to your equipment.

UNIVERSITY OF ENGINEERING AND MANAGEMENT,JAIPUR
Lab Manual

Experiment No: 2

Aim: Write an assembly language program to generate 10 KHz frequency usingAtmel
microcontroller.

APPARATUS: E89-01 KIT, power cord, CRO and connecting leads.

Theory: Square waves of any frequency can be generated using the 8051 timer. The
technique is verysimple. Write up a delay subroutine with delay equal to half the time of the
square wave. Make anyport pin high and call the delay subroutine. After the delay
subroutine is finished, make the correspondingport pin low and call the delay subroutine
gain. After the subroutine is finished, repeat the cycle again. Theresult will be a square wave
of the desired frequency at the selected port pin. The circuit diagram is shown
below and it can be used for any square wave, but the program has to be accordingly.

Procedure:
1. Initialize the timer by setting TMOD Register.
2. Load the value in TL1 & TH1 from where Timer starts.
3. Start timer using TR1.
4. Monitor the status of TF1 continuously for an overflow.
5. When overflow occurs stop the Timer.
6. Reset the TF1 flag bit.
7. Go to step2 for next round if required.

Circuit Diagram:

Program: -
ORG 00H
MOV P0, #01H
AGAIN:
MOV TMOD, #01H
MOV TL0, #0E3H
MOV TH0, #0FFH
SETB TR0
BACK:
JNB TF0, BACK
CLR TR0
CPL P3.4
CPL P3.5
CPL P3.6
CPL P3.7
CLR TF0
JMP AGAIN
END

PRECAUTIONS: Make sure correct power supply is given to the kit/Equipment. Wrong
powersuppliesmay cause damage to your equipment.

UNIVERSITY OF ENGINEERING AND MANAGEMENT,JAIPUR
Lab Manual

Experiment No: 3

Aim: To study the implementation & interfacing of LCD.

Apparatus Required: Microcontroller kit, Interfacing kit, Keyboard, Monitor, SMPS for
Microcontroller.

Theory: Liquid Crystal Display (LCD) is very commonly used electronic display module
and having a widerange of applications such as calculators, laptops, mobile phones etc.
16×2 character lcd display is verybasic module which is commonly used in electronics
devices and projects. It can display 2 lines of 16characters. Each character is displayed using
5×7 or 5×10-pixel matrix. LCD can be interfaced withmicrocontroller in 4 Bit or 8 Bit
mode. These differ in how data is send to LCD. In 8-bit mode to write acharacter, 8 bit
ASCII data is send through the data lines D0 – D7 and data strobe is given through E of the
LCD. LCD commands which are also 8 bit are written to LCD in similar way. But 4 Bit
Mode uses only 4 datalines D4 – D7. In this mode 8-bit character ASCII data and command
data are divided into two parts andsend sequentially through data lines. The idea of 4-bit
communication is used save pins of microcontroller.4-bit communication is a bit slower
than 8-bit communication but this speed difference can be neglectedsince LCDs are slow
speed devices.

Circuit Diagram: -

Program:
ORG 0000H
MOV P0, #00H
LCD_INIT:
MOV A, #01H
ACALL SEND_CMD_LCD
ACALL DELAY
MOV A, #06H
ACALL SEND_CMD_LCD
ACALL DELAY
MOV A,#3CH
ACALL SEND_CMD_LCD
ACALL DELAY
MOV A,#0FH
ACALL SEND_CMD_LCD
ACALL DELAY
MOV A,#82H
ACALL SEND_CMD_LCD
ACALL DELAY
MAIN:
MOV A,#'W'
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A,#'E'
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A,#'L'
ACALL SEND_DATA_LCD

ACALL DELAY
MOV A,#'C'
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A,#'O'
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A,#'M'
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A,#'E'
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A,#' '
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A,#'T'
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A,#'O'
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A,#0C0H
ACALL SEND_CMD_LCD
ACALL DELAY
MOV A,#'B'
ACALL SEND_DATA_LCD

ACALL DELAY
MOV A, #'R'
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A,#'C'
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A,#'M'
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A,#'C'
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A,#'E'
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A,#'T'
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A,#','
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A,#'B'
ACALL SEND_DATA_LCD

ACALL DELAY
MOV A,#'A'
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A, #'H'
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A, #'A'
ACALL SEND_DATA_LCD
ACALL DELAY
MOV A, #'L'
ACALL SEND_DATA_LCD
ACALL DELAY
LJMP MAIN
SEND_CMD_LCD:
MOV P0, A
SETB P2.0
CLR P2.1
SETB P2.2
NOP
CLR P2.2
RET
SEND_DATA_LCD:
MOV P0, A

UNIVERSITY OF ENGINEERING AND MANAGEMENT,JAIPUR
Lab Manual

CLR P2.0
CLR P2.1
SETB P2.2
NOP
CLR P2.2
RET
DELAY:
MOV R0, #255
LOOP: DJNZ R0, LOOP
RET
END

PRECAUTIONS: Make sure correct power supply is given to the kit/Equipment. Wrong
powersuppliesmay cause damage to your equipment.

Experiment No: 4

Aim: To study implementation & interfacing of LED

Apparatus Required: Microcontroller kit, Interfacing kit, Keyboard, Monitor, SMPS for
Microcontroller.

Theory: Light Emitting Diodes are the semiconductor light sources. Commonly used LEDs
will have a cut-offvoltage of 1.7V and current of 10mA. When an LED is applied with its
required voltage and current it glows withfull intensity. The Light Emitting Diode is like the
normal PN diode but it emits energy in the form of light.The colour of light depends on the
band gap of the semiconductor.Thus, LED is directly connected to the AT89C51
microcontroller. The negative terminal of the LED is connectedto the ground through a
resistor. Value of this resistor is calculated using the following formula.
R= (V-1.7)/10mA, where V is the input voltage.
Generally, microcontrollers output a maximum voltage of 5V. Thus, the value of resistor
calculated for this is 330Ohms. Thus, this can be connected either to the cathode or anode of
the LED.

Circuit Diagram:

UNIVERSITY OF ENGINEERING AND MANAGEMENT,JAIPUR
Lab Manual

Program: - org 0000h
mov p0,#00h
main:
mov p0,#55h
acall delay
mov p0,#0aah
acall delay
mov p0,#33h
acall delay
mov p0,#0cch
acall delay
mov p0,#0fh
acall delay
mov p0,#0f0h
acall delay
mov p0,#0ffh
acall delay
sjmp main
org 0000h mov
p0,#00h main:
mov p0,#55h
acall delay
mov p0,#0aah
acall delay
mov p0,#33h
acall delay
mov p0,#0cch
acall delay
mov p0,#0fh
acall delay
mov p0,#0f0h
acall delay
mov p0,#0ffh
acall delay
sjmp main

PRECAUTIONS: Make sure correct power supply is given to the kit/Equipment. Wrong
powersuppliesmay cause damage to your equipment.

Experiment No: 5

Aim: To study implementation & interfacing of seven segment display

Apparatus Required: Microcontroller kit, Interfacing kit, Keyboard, Monitor, SMPS for
Microcontroller.

Theory:
Seven segment displays are used in several systems to display the numeric information. The
sevensegment can display one digit at a time. Thus the no. of segments used depends on the
no. of digits in thenumber to be displayed. Interfacing seven segment with a controller or
MCU is tricky.Digit drive pattern.Digit drive pattern of a seven segment LED display is
simply the different logic combinations of itsterminals‘a’ to ‘h’ to display different digits
and characters. The common digit drive patterns (0 to9) of a seven-segment display are
shown in the table below.

Circuit Diagram:

UNIVERSITY OF ENGINEERING AND MANAGEMENT,JAIPUR
Lab Manual

Program:
ORG 0000H
MOV P2,#00H
MAIN:
MOV P2,#0C0H
ACALL DELAY
MOV P2,#0F9H
ACALL DELAY
MOV P2,#0A4H
ACALL DELAY
MOV P2,#0B0H
ACALL DELAY
MOV P2,#99H
ACALL DELAY
MOV P2,#92H
ACALL DELAY
MOV P2,#82H
ACALL DELAY
MOV P2,#0F8H
ACALL DELAY
MOV P2,#80H
ACALL DELAY
MOV P2,#98H
ACALL DELAY
SJMP MAIN
DELAY:
MOV R7,#10
HERE:MOV R6,#255
HERE1:MOV R5,#255
AGAIN:DJNZ R5,AGAIN
DJNZ R6,HERE1
DJNZ R7,HERE
RET
SJMP MAIN
END

PRECAUTIONS: Make sure correct power supply is given to the kit/Equipment. Wrong
powersuppliesmay cause damage to your equipment.

Experiment No: 6

Aim: To study implementation & interfacing stepper motor with 8051 microcontroller.

Apparatus Required: Microcontroller kit, Interfacing kit, Keyboard, Monitor, SMPS for
Microcontroller.

Theory: A stepper motor is a brushless and synchronous motor which divides the complete
rotation into number of steps. Each stepper motor will have some fixed step angle and motor
rotates at this angle. The ULN2003 IC is used to drive the stepper motor as the controller
cannot provide current required by the motor. Stepper motor has 6 pins. In these six pins, 2
pins are connected to the supply of 12V and the remaining are connected to the output of the
stepper motor. Stepper rotates at a given step angle. Each step-in rotation is a fraction of full
cycle. This depends on the mechanical parts and the driving method.

Circuit Diagram:

Program:

MOVP0, #01H
ACALL DELAY
MOVP0, #02H
ACALL DELAY
MOVP0, #04H
ACALL DELAY
MOV P0, #08H

ACALL DELAY
LJMP START
DELAY: MOV TMOD, #10H
AGAIN1: MOV R3, #5
AGAIN: MOV TL1, #08H
MOV TH1, #01H

UNIVERSITY OF ENGINEERING AND MANAGEMENT,JAIPUR
Lab Manual

SETB TR1
BACK: JNB TF1, BACK
CLR TR1
CLR TF1

PRECAUTIONS: Make sure correct power supply is given to the kit/Equipment. Wrong
powersuppliesmay cause damage to your equipment.

Experiment No: 7

Aim: To study implementation & interfacing of relay with 8051 microcontroller

Apparatus Required: Microcontroller kit, Interfacing kit, Keyboard, Monitor, SMPS for
Microcontroller.

Theory:
An electromagnetic relay is a switch which is used to switch High Voltage or Current using
Low power circuits. It magnetically isolates low power circuits from high power circuits. It
is activated by energizing an electromagnet, coil wounded on a soft iron core. A relay
should not be directly connected to a microcontroller, it needs a driving circuit due to the
following reasons.
 A microcontroller will not able to supply current required for the proper working of a
relay. Themaximum current that A89C51 microcontroller can source or sink is 15mA while
a relay needsabout 50 – 100mA current.
 A relay is activated by energizing its coil. Microcontroller may stop working by the
negative voltagesproduced in the relay due to its back emf.

Circuit Diagram:

Program:
ORG 0000H
MAIN:
SETB P3.7
ACALL DELAY
CLR P3.7
ACALL DELAY
SJMP MAIN
DELAY:
MOV R0,#10
HERE: MOV R1,#200

UNIVERSITY OF ENGINEERING AND MANAGEMENT,JAIPUR
Lab Manual

HERE1: MOV R2,#200
HERE2: DJNZ R2,HERE2
DJNZ R1,HERE1
DJNZ R0,HERE
RET
END

PRECAUTIONS: Make sure correct power supply is given to the kit/Equipment. Wrong
powersuppliesmay cause damage to your equipment.

Experiment No: 8

Aim: To study implementation & interfacing of keypad with 8051 microcontroller

Apparatus Required: Microcontroller kit, Interfacing kit, Keyboard, Monitor, SMPS for
Microcontroller.

Theory:
Matrix Keypads are commonly used in calculators, telephones etc. where several input
switches are required. We know that matrix keypad is made by arranging push button
switches in row and columns. In the straight forward way to connect a 4×4 keypad (16
switches) to a microcontroller we need 16 inputs pins. Keypad is a widely-used input device
with lots of application in our everyday life. From a simple telephone to keyboard of a
computer, ATM, electronic lock, etc., keypad is used to take input from the user for further
processing.

Circuit Diagram:

Program:
ORG 0000H
MOV P2,#0FFH
LCD_INIT:
mov a,#38h
acall comwrt
acall delay
mov a,#0Ch
acall comwrt
acall delay
mov a,#01h
acall comwrt
acall delay

mov a,#06h
acall comwrt
acall delay
mov a,#80h
acall comwrt
acall delay
START:
MOV A,#'M'
ACALL DATAWRT
MOV A,#'A'
ACALL DATAWRT
MOV A,#'T'

UNIVERSITY OF ENGINEERING AND MANAGEMENT,JAIPUR
Lab Manual

ACALL DATAWRT
MOV A,#'R'
ACALL DATAWRT
MOV A,#'I'
ACALL DATAWRT
MOV A,#'X'
ACALL DATAWRT
MOV A,#' '
ACALL DATAWRT
MOV A,#'K'
ACALL DATAWRT
MOV A,#'E'
ACALL DATAWRT
MOV A,#'Y'
ACALL DATAWRT
MOV A,#'B'
ACALL DATAWRT
MOV A,#'O'
ACALL DATAWRT
MOV A,#'A'
ACALL DATAWRT
MOV A,#'R'
ACALL DATAWRT
MOV A,#'D'
ACALL DATAWRT
MOV A,#0C0H
ACALL COMWRT
MOV A,#'K'
ACALL DATAWRT
MOV A,#'E'
ACALL DATAWRT
MOV A,#'Y'
ACALL DATAWRT
MOV A,#' '
ACALL DATAWRT
MOV A,#'P'
ACALL DATAWRT
MOV A,#'R'
ACALL DATAWRT
MOV A,#'E'
ACALL DATAWRT
MOV A,#'S'
ACALL DATAWRT
MOV A,#'S'
ACALL DATAWRT
MOV A,#'E'
ACALL DATAWRT
MOV A,#'D'
ACALL DATAWRT
MOV A,#':'
ACALL DATAWRT

PREVIOUS_KEY_RELEASED:
MOV P3,#00H
MOV A,P2
ANL A,#00001111B
CJNE A,#00001111B,PREVIOUS_KEY_RELEASED
NEXT_KEY_SCAN:
ACALL DEBOUNCE_TIME
MOV A,P2
ANL A,#00001111B
CJNE A,#00001111B,KEY_SCAN_AGAIN
SJMP NEXT_KEY_SCAN
KEY_SCAN_AGAIN:
ACALL DEBOUNCE_TIME
MOV A,P2
ANL A,#00001111B
CJNE A,#00001111B,IDENTIFY_KEY_COL
SJMP NEXT_KEY_SCAN
IDENTIFY_KEY_COL:
MOV P3,#11111110B
MOV A,P2
ANL A,#00001111B
CJNE A,#00001111B,ROW_0
MOV P3,#11111101B
MOV A,P2
ANL A,#00001111B
CJNE A,#00001111B,ROW_1
MOV P3,#11111011B
MOV A,P2
ANL A,#00001111B
CJNE A,#00001111B,ROW_2
MOV P3,#11110111B
MOV A,P2
ANL A,#00001111B
CJNE A,#00001111B,ROW_3
ROW_0:
MOV DPTR,#ROW_0_ELEMENTS
SJMP FIND_KEY
ROW_1:
MOV DPTR,#ROW_1_ELEMENTS
SJMP FIND_KEY
ROW_2:
MOV DPTR,#ROW_2_ELEMENTS
SJMP FIND_KEY
ROW_3:
MOV DPTR,#ROW_3_ELEMENTS
SJMP FIND_KEY
FIND_KEY:
RRC A
JNC MATCH_KEY
INC DPTR
SJMP FIND_KEY

MATCH_KEY:
CLR A
MOVC A,@A+DPTR
MOV P0,A
LJMP PREVIOUS_KEY_RELEASED
comwrt:
mov p1,a
clr p3.4
clr P3.5
setb p3.6
acall delay
clr p3.6
ret
datawrt:
mov p1,a
setb p3.4
clr P3.5
setb p3.6
acall delay
clr p3.6
ret
delay:
MOV R1,#255
here:
DJNZ R1,here
ret
DEBOUNCE_TIME:
MOV TMOD,10H
START1:
MOV TL1 ,#0FFH
MOV TH1 ,#0B7H
SETB TR1
AGAIN:
JNB TF1,AGAIN
CLR TR1
CLR TF1
RET
ORG 0500H
ROW_0_ELEMENTS: DB '0','1','2','3'
ROW_1_ELEMENTS: DB '4','5','6','7'
ROW_2_ELEMENTS: DB '8','9','A','B'
ROW_3_ELEMENTS: DB 'C','D','E','F'
END

PRECAUTIONS: Make sure correct power supply is given to the kit/Equipment. Wrong
powersuppliesmay cause damage to your equipment.

UNIVERSITY OF ENGINEERING AND MANAGEMENT,JAIPUR
Lab Manual

Experiment No: 9

Aim: To Study of implementation of Motor control using PWM method.

Apparatus Required: Microcontroller kit, Interfacing kit, Keyboard, Monitor, SMPS for
Microcontroller.

PROCEDURE:
1. Insert AT89C52 Microcontroller in Programmer unit (in NV5001).
2. Connect serial cable between computer serial port and programmer unit serial port female
connector (in NV5001).
3. Switch ‘On’ the programmer switch in programmer unit (in NV5001) and switch ‘On’ the
power supply.
4. Program PWM interface.hex file (Via CD - NV5001/ \Modules programs\MC05 Drive
module \DC motor interface module\PWM Interface program) in AT89C52 Microcontroller
viaprogrammer.
5. Switch ‘Off’ the power supply and remove the programmed controller from programmer
ZIFsocket
6. Switch ‘Off’ the programmer switch in Programmer unit (in NV5001).
7. Insert programmed Microcontroller to microcontroller unit ZIF socket.
8. Connect 20 Pin FRC cable to DC motor /PWM interface block socket (MC05) to Port P2
inNV5001 Trainer.
9. Connect 2 mm patch cord between +12V DC block socket (in NV5001) to +12V DC
socket inDC motor /PWM interface block (in MC05).
10. Switch ‘On’ the power supply.
11. Check the status of port pins on tp7 to tp11
12. Observe the status of PWM switch at tp11.
13. Observe the rotation speed of DC Motor.
14. Press PWM switch and repeat steps 11 to 13 one time and observe the speed change of
DCmotor.

PROGRAM: To monitor the PWM status and control the speed of DC motor in 100% and
25%duty cycle pulse.

PWM_SW EQU P2.4
INPUT2 EQU P2.2
INPUT1 EQU P2.1
PWM_INPUT EQU P2.0

ORG 0000H
JMP START

ORG 0200H
START : MOV A, #00H
CLR C
SETB PWM_SW
SETB PWM_INPUT
SETB INPUT1
CLR INPUT2
JNB PWM_SW, FIR_ROU

SJMP START

FIR_ROU : SETB PWM_SW
CLR PWM_INPUT
LCALL DELAY_1S_2
LCALL DELAY_1S_2
LCALL DELAY_1S_2
LCALL DELAY_1S_2
SETB PWM_INPUT

LCALL DELAY_1S
LCALL DELAY_1S
LCALL DELAY_1S
LCALL DELAY_1S
LCALL DELAY_1S
LCALL DELAY_1S
LCALL DELAY_1S
LCALL DELAY_1S
LCALL DELAY_1S
LCALL DELAY_1S
LCALL DELAY_1S
LCALL DELAY_1S
LCALL DELAY_1S
LCALL DELAY_1S
LCALL DELAY_1S
SJMP FIR_ROU

DELAY_1S_2 : MOV R2, #50
DHERE1_1_1 : MOV R3, #100
DHERE1_2 : NOP
DJNZ R3, DHERE1_2
DJNZ R2, DHERE1_1_1
RET

DELAY_1S : MOV R2,#100
DO3_3 : DEC R2
DJNZ R2, DO3_3
RET

END

PRECAUTIONS: Make sure correct power supply is given to the kit/Equipment. Wrong
powersuppliesmay cause damage to your equipment.

UNIVERSITY OF ENGINEERING AND MANAGEMENT,JAIPUR
Lab Manual

Experiment No: 10

Aim: To Study and observation of Position control of Servo Motor.

Apparatus Required: Microcontroller kit, Interfacing kit, Keyboard, Monitor, SMPS for
Microcontroller.

PROCEDURE:
1. Insert AT89C52 Microcontroller in Programmer unit (in NV5001).
2. Connect serial cable between computer serial port and programmer unit serial port
female connector (in NV5001).
3. Switch ‘On’ the programmer switch in programmer unit (in NV5001) and switch
‘On’ the power supply.
4. Program servo motor module.hex file (Via CD - NV5001/ \Modules
programs\MC05 Drive module \DC motor interface module\Servo motor module) in
AT89C52 Microcontroller via programmer.
5. Switch ‘Off’ the power supply and remove the programmed controller from
programmer ZIF socket
6. Switch ‘Off’ the programmer switch in Programmer unit (in NV5001).
7. Insert programmed Microcontroller to microcontroller unit ZIF socket.
8. Connect 20 Pin FRC cable to servo motor interface block socket (MC05) to Port P2
in NV5001 Trainer.
9. Switch ‘On’ the power supply.
10. Check the status of port pins on tp12 to tp13.
11. Observe servo motor rotates and stop in the centre position or in 90-degree angle.
12. Press position control switch and repeat steps 10.
13. Observe servo motor rotates and stop in l80 degree angle or in a left side position.

PROGRAM: To monitor the status of position control switch and control the angle of
servo motor.
SERVO_PIN EQU P2.0
SW_PIN EQU P2.1

ORG 0000H
JMP START

ORG 0200H
START : CLR SERVO_PIN
SETB SW_PIN
LOOP_S : LCALL DELAY
SETB SW_PIN
SETB SERVO_PIN
LCALL DELAY_15MS_P
CLR SERVO_PIN
LCALL DELAY_16MS
JNB SW_PIN, SW_1_1
LCALL DELAY
SJMP LOOP_S

SW_1_1 : LCALL DELAY
SETB SW_PIN
SETB SERVO_PIN
LCALL DELAY_25MS_P
CLR SERVO_PIN
LCALL DELAY_16MS
LCALL DELAY
SJMP SW_1_1

DELAY_16MS : MOV R2, #150
DHERE1_16 : MOV R3, #32
DAGAIN_16 : NOP
DJNZ R3, DAGAIN_16
DJNZ R2, DHERE1_16
RET

DELAY_25MS_P : MOV R2, #20
DHERE1_25_P : MOV R3, #37
DAGAIN_25_P : NOP
DJNZ R3, DAGAIN_25_P
DJNZ R2, DHERE1_25_P
RET

DELAY_15MS_P : MOV R2, #20
DHERE1_15_P : MOV R3, #20
DAGAIN_15_P : NOP
DJNZ R3, DAGAIN_15_P
DJNZ R2, DHERE1_15_P
RET
DELAY : MOV R5, #250
DHERE1 : MOV R4, #220
DAGAIN : NOP
NOP
DJNZ R4, DAGAIN
DJNZ R5, DHERE1
RET

END

PRECAUTIONS: Make sure correct power supply is given to the kit/Equipment. Wrong
powersuppliesmay cause damage to your equipment.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Course Description

Title of Course: Seminar
Course Code: MVLSI181
L-T-P scheme: 0-2-0 Course Credit: 1

The overall aim of the seminar series is to help develop an emerging field at the intersection of
multi-disciplinary understandings of culture and education. It will build on the existing body of
work on education and culture, but its aim is explore and develop new perspectives in this area.
The objectives of the six exploratory seminars are:
 to explore new research from a range of academic disciplines which sheds light on the

questions outlined above
 to showcase cutting edge research on education and culture from outstanding academic

researchers from the UK and internationally
 to bring together seminar participants from different disciplines such as Sociology,

Philosophy, Psychology, Human Geography, Media Studies as well as Education and
Cultural Studies

 to encourage and financially support the participation of PhD students
 to actively involve practitioners and users from each venue
 to engage a core group of policy makers
 to use the seminars to develop links between academics and stakeholders in the arts,

library, media, community and educational sectors

	1.MVLSI101_AEM_LP.pdf
	2.MVLSI 102_VLSIDM_LP.pdf
	3.MVLSI 103_DICD_LP.pdf
	4.MVLSI 104_MTICF_LP.pdf
	5.MVLSI 105_ADC_LP.pdf
	6.MVLSI191_CAD_Lab_LM.pdf
	7.MVLSI192_ES_Lab_LM.pdf
	8.MVLSI181_Seminar_Lab_LP.pdf

