
UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Data Communication & Computer Networks Subject Code-MCA204
Year: 1ST Year Semester: SECOND
Module Number Topics Number of Lectures

1

Data Communication Fundamentals: 10L
1. Layered Network Architecture; Data

and Signal; Guided Transmission
Media; Unguided Transmission Media;
Transmission Impairments and Channel
Capacity; Transmission of Digital
Signal; Analog Data to Analog Signal;
Digital Data to Analog Signal;
Multiplexing of Signals: The telephone
system and DSL technology; Cable
MODEM and SONET

10

2

Data Link control: 6L
1. Interfacing to the media and

synchronization; Error Detection and
Correction; Flow and Error control;
Data Link Control.

10

3

Switching Communication Networks: 8L
1. Circuit switching; Packet switching;

Routing in packet switched networks;
Congestion control in packet switched
networks; X.25; Frame Relay;
Asynchronous Transfer Mode Switching
(ATM).

8

4

Broadcast communication networks: 10L
1. Network Topology; Medium Access

Control Techniques; IEEE CSMA/CD
based LANs; IEEE Ring LANs; High
Speed LANs – Token Ring Based; High
Speed LANs – CSMA/CD based;
Wireless LANs; Bluetooth; Cellular
Telephone Networks; Satellite
Networks.

10

5
Internetworking: 6L

1. Internetworking Devices; Internet
Protocols; TCP/IP; Transport and
Application layer protocols. Network
Security: Cryptography; Secured
Communication; Firewalls.

6

Total Number Of Hours = 40

Assignments:

Module-1:
1. Write down the functions of OSI Layers
2. What will be SNR value in case of noiseless channel?
3. Define Bandwidth? Create the relationship between Bit Rate and Baud Rate?
4. Write down the names of network impairments?
5. Write down the features and basic components of a computer network
6. What kind of topology is well suited for university or college environment?
7. Why we need layered architecture?
8. What will be the channel capacity of a noisy channel having SNR value= 20dB and

Bandwidth=3 KHz?

Module-2:
1. What is the significance of sequence number in Stop & Wait ARQ protocol?
2. Discuss Stop & Wait ARQ with 010101 bit sequence?
3. In Selective-Repeat ARQ, sender window size > 2m–1." Is it correct? Justify.
4. Suppose a sender is using sliding window protocol of window size 15. What will be the

window status for the following occurrence? Sender has sent packets 0 to 11 and has
received NAK 6.

5. Define ALOHA? Differentiate between Pure and Slotted ALOHA.

Module-3:
1. Differentiate between circuit switching and packet switching.
2. Write short notes on the following topic:

A. Frame Relay
B. X.25
C. ATM

3. Why packet switching is connection less?

Module-4:
1. Discuss CSMA/CA with the help of a flowchart.
2. Why CSMA/CD is not implemented in WLAN?
3. Describe 802.3 header formats. Why padding is required?
4. Describe Bluetooth Architecture.
5. Differentiate between Token Ring and Token Bus.

Module-5:
1. What is distance vector routing protocol? What is the difference between RIP and EGP?
2. Distinguish between gateway and bridge. What is transparent bridge?
3. A network has subnet mask 255.255.255.224 Determine the maximum or number of Host

in this network. Also determine the broadcast address of this network.
4. Compare IPv4 and IPv6
5. What is the purpose of subnetting? Find the netid and the host id of the following IP
address

A. 192.167.78.1
B. 10.10.10.10
C. 189.32.1.34

6. What is CIDR? Define NAT with proper example?

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Data Communication & Computer Networks Subject Code-MCA204
Year: 1ST Year Semester: SECOND

7. Write the differences between ARP and RARP?
8. Write the differences between TCP and UDP?
9. Differentiate Leaky Bucket Algorithm from Token Bucket Algorithm.
10. Why IP address is 32 Bit? How we need so many addresses? Compare IP address, Mac

Address, Port address and Socket address?
11. Define Count to infinity problem? Which routing algorithm faces this problem?
12. Write the short notes on the following

A. DNS
B. FTP
C. EMAIL
D. MIME
E. POP3
F. SMTP

13. How are ‘iterative query resolution and ‘recursive query resolution different from each
other in the context of DNS?

14. What do you understand by data privacy? How can authentication, integrity and non-
repudiation be implemented by Digital Signature?

15. Define Firewall? Discuss all types of Firewall.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Information Systems Analysis & Design Subject Code- MCA205
Year: 1st Year Semester: Second
Module Number Topics Number of Lectures

1

Overview of System analysis and design: 7L
1. Overview of System analysis and

design.
1L

2. Development life cycle- Waterfall,
Spiral, incremental models, feasibility
studies.

3L

3. Requirements determination, Logical
design, Physical design, Program design,
Risk and feasibility analysis,
prototyping.

3L

2
Information requirement analysis: 7L

1. Process modelling with physical and
logical data flow diagrams.

3L

2. Data modelling with entity relationship
diagrams.

2L

3. Normalization up to 3NF. 3L

3
System design: 14L

1. Process descriptions 2L
2. Input/output controls 2L
3. Object modelling 2L
4. Database design 2L
5. User Interface design 2L
6. Documentation 2L
7. Data Dictionary 2L

4

Development methodologies: 4L
1. Top down, bottom up, structured chart 1L
2. Decision table, decision tree, 1L
3. CASE productivity tools. 2L

5

Testing: 5L
1. Unit, integration testing 2L

2. System, Acceptance testing, decision
tree.

3L

6

Case studies: 4L
1. Test Case generation Case studies 4L

Total 41L

Faculty In-Charge HOD, CSE Dept.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Assignment:
Module-1(Overview of System analysis and design):
(i). What is system? Define subsystems and system boundary.

(ii) Explain characteristics of a system.

(iii). Explain abstract systems with example.

(iv). Explain requirement of System Analysis.

(v). Explain Decision Support Systems.

Module-2 (Information requirement analysis):
(i)Draw the DFDs upto 3rd level for Online Admission System for a University.

(ii) Draw ERD for Online Admission System for a University. Make necessary assumptions.

Module-3 (System design):
(i) What are the uses of feasibility study?
(ii)What is a primary key in terms of a database?
(iii)What is a candidate key in terms of a database?
(iv)What is a Alternate key in terms of a database?
(v) What is Data Dictionary?

Module-4 (Development methodologies):
(i) Explain Top-down and bottom-up approach of prototype model.

Module-5 (Testing):
(i). Explain Black box testing with example.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Data Structures with C Subject Code-MCA201
Year: 1ST Year Semester: SECOND
Module Number Topics Number of Lectures

1

Introduction: 5L

1. Why we need data structure? Concepts of data
structures: a) Data and data structure b)
Abstract Data Type and Data Type.
Algorithms and programs, basic idea of
pseudo-code.

.

1

2. Algorithm efficiency and analysis, time and
space analysis of algorithms – order notations.

4

Linear data structure:

2
Array: 2L

1. Different representations – row major, column
major. Sparse matrix - its application and
usage. Array representation of polynomials.

2

3
Linked List: 7L

1. Singly linked list, circular linked list, doubly
linked list, linked list representation of
polynomial and applications.

7

4

Stack and Queue: 6L
1. Stack and its implementations (using array,

using linked list), applications.
2

2. Queue, circular queue, dequeue.
Implementation of queue- both linear and
circular (using array, using linked list),
applications.

4

5

Recursion: 3L
1. Principles of recursion – use of stack,

differences between recursion and iteration,
tail recursion.

1

2. Applications - The Tower of Hanoi, Eight
Queens Puzzle. 2

Non Linear data structure:

6

Trees: 8L
1. Basic terminologies, forest, tree

representation (using array, using linked list).
Binary trees - binary tree traversal (pre-, in-,
post- order), threaded binary tree (left, right,
full) - non-recursive traversal algorithms
using threaded binary tree, expression tree.

4

2. Binary search tree- operations (creation,
insertion, deletion, searching). Height
balanced binary tree – AVL tree (insertion,
deletion with examples only). B- Trees –
operations (insertion, deletion with examples
only

4

Graphs: 5L
1. Graph definitions and concepts

(directed/undirected graph, weighted/un-
weighted edges, sub-graph, degree, cut-

7 vertex/articulation point, pendant node,
clique, complete graph, connected
components – strongly connected component,
weakly connected component, path, shortest
path, isomorphism). Graph
representations/storage implementations –
adjacency matrix, adjacency list, adjacency
multi-list.

1

2. Graph traversal and connectivity – Depth-first
search (DFS), Breadth-first search (BFS) –
concepts of edges used in DFS and BFS (tree-
edge, back-edge, cross-edge, forward-edge),
applications.

2

3. Minimal spanning tree – Prim’s, Kruskal and
Dijkstraalgorithm (basic idea of greedy
methods).

2

8

Sorting, Searching and Hashing Technique:

Sorting Algorithms: 6L
Bubble sort and its optimizations, insertion sort, shell
sort, selection sort, merge sort, quick sort, heap sort
(concept of max heap, application – priority queue),
radix sort.

6

Searching: 2L
Sequential search, binary search, interpolation search.

2
Hashing: 2L
Hashing functions, collision resolution techniques. 2

Total Number Of Hours = 46

Faculty In-Charge HOD, CSE Dept.

Assignment:
Module-1(Introduction):

1. DefineAbstractData Type, big oh, big omega, theta notationoftimecomplexity.
2. Findthetotalfrequency count of following code.

for send=1ton do
forreceive=1tosenddo

forack=2toreceivedo
message=send-(receive+ack)
ack=ack-1
send=send+1

end
end

end

Module-2 (Linear data Structure):
1. Write a function to insert an element after 4th position in an array.
2. Write a function to insert an element before 4th position in a single linked list
3. Write a function to insert an element after a particular data element 4 in a doubly linked list.
4. Write a function to concatenate two circular linked lists.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

5. Write a function to implement stack and queue using linked list.
6. Convert infix to prefix and postfix.

A+B+C-D/E*R(S*T)/W+G
7. Define tail and tree recursion, explain them with example.

Module-3(Non-linear data structure):
1. Why AVL tree is required?
2. Construct the AVL tree.

B,D,A,G,H,R,J,T,C,Y,X
3. Write a short note on B-Tree.
4. Write an algorithm of DFS and Dijkstra algorithm.

Module-4(Sorting, Searching and Hashing):
1. Explain quick and radix sort with example.
2. Why binary search is better than linear search.
3. Write down different techniques of collision resolution techniques.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Database Management System-I Subject Code-MCA202
Year:1ST Year Semester: SECOND
Module Number Topics Number of Lectures

1

Introduction: 2L
1. Concept & Overview of DBMS, Data

Models, Database Languages
1

2. Database Administrator, Database
Users, Three Schema architecture of
DBMS

1

2

Entity-Relationship Model: 4L
1. Basic concepts, Design Issues 1
2. Entity-RelationshipDiagram 2
3. Weak Entity Sets, Extended E-R

features.
1

Relational Model: 5L
1. Structure of relational Databases,

Relational Algebra
2

2. Relational Calculus,Extended
Relational Algebra Operations,

2

3. Views, Modifications of the Database. 1

3

SQL and Integrity Constraints: 7L
1. Concept of DDL, DML, DCL 1

2. Basic Structure, Set operations,
Aggregate Functions 2

3. Null Values, Domain Constraints,
Referential Integrity Constraints

1

4. assertions, views, Nested Sub queries, 1
Relational Database Design: 8L

1. Functional Dependency, Different
anomalies in designing a Database 2

2. Normalization using functional
dependencies 2

3. Decomposition, Boyce-Codd Normal
Form, 3NF 2

4. Normalization using multi-valued
dependencies, 4NF, 5NF 2

4

Transaction: 4L
1. Transaction concept, transaction

model,serializability,transaction
isolation level

2

2. Transaction atomicity and durability,
transaction isolation and atomicity

2

Concurrency control and recovery system: 3L

1. lock based protocol, dead lock handling,
time stamp based and validation based
protocol

2

2. failure classification, storage, recovery
algorithm, recovery and atomicity,backup

1

5
Internals of RDBMS: 3L

1. Physical data structures, Query
optimization: join algorithm 2

2. Statistics and cost based optimization 1

6

File Organization & Index Structures: 5L
1. File & Record Concept, Placing file

records on Disk, Fixed and Variable
sized Records

1

2. Types of Single-Level Index (primary
secondary, clustering), Multilevel
Indexes

2

3. Dynamic Multilevel Indexes using B
tree and B+ tree 2

Total Number Of Hours = 39L

Faculty In-Charge HOD, CSE Dept.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Database Management System-I Subject Code-MCA202
Year:1ST Year Semester: SECOND

Assignment:

Module-I:

1. Explain the three Schema architecture of DBMS.
2. What do you mean by DBA?

Module-II:

1. What do you mean by ENTITY?
2. Explain Weak Entity Sets and Extended E-R features.

Module-III:
1. Explain DDL, DML, and DCL. Differentiate 3NF and BCNF.
2. What is Domain Constraints and Referential Integrity Constraints?

Module-IV:

1.What do you mean by Transaction atomicity?
2.Explain different transaction model. What is serializability?

Module-V:
1. How do you optimize query?
2. Explain cost based optimization process.

Module-VI:
1. What are the types of Single-Level Index?
2. How dynamic Multilevel Indexes using B tree and B+ tree has done in Database?

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Object-Oriented Programming With C++ Subject Code- MCA203
Year: 1st year Semester: SECOND
Module Number Topics Number of Lectures

1

Introduction to Object-oriented Programming
concept

2L

1. Procedure-oriented Programming, Object-
oriented Programming Paradigm

2. Basic concepts of Object-oriented
programming, Benefit of OOP

1

1

2

Beginning with C++ 2L
1. What is C++? A simple C++ program, An

example with class
2. Structure of C++ program, tokens,

keywords, identifiers and constants, data
types, reference variables, scope resolution
operator

1

1

3

Functions in C++ 3L
1. Main function, function prototyping, call by

reference,
2. Inline functions and friend functions.
3. Concept of Function overloading

1

1
1

4

Classes and Objects 5L
1. Specifying a class, defining member

functions
2. A C++ program with class
3. Making an Outside Function inline
4. Static data members
5. static member functions

1

1
1
1
1

5

Constructors and Destructors 5L
1. Constructors, default Constructors
2. Multiple constructors in a class
3. parameterized constructor
4. copy constructor
5. Destructor

1
1
1
1
1

6

Inheritance 6L

1. Defining Derived classes ,single inheritance
2. multilevel inheritance ,multiple inheritance
3. hierarchical, hybrid inheritance
4. virtual base classes, abstract classes
5. constructor in derived classes

1
1

1
2
1

7

Operator overloading 7L
1. Defining Operator overloading, rules for

overloading operators
2. Overloading unary operators using member

function
3. Overloading of unary operator with friend

function.

1

1

1

4. Overloading Binary operators using
member function

5. Overloading Binary operators using friends,
Examples.

6. Type conversion

1

1
2

8

Polymorphism 7L
1. Concept of polymorphism, runtime

polymorphism, compile time polymorphism
2. Pointers, Pointers to objects
3. this pointer
4. Function overloading with an

example(Program)
5. Function overriding with a proper example
6. Virtual function; Pure Virtual function
7. Abstract class

1

1
1
1

1
1

1

9

Exception Handling & Templates 8L
1. Introduction, Basics of Exception Handling;

Exception Handling mechanism
2. Throwing and catching mechanism;

Rethrowing an Exception
3. Introduction of Template; Class templates,

Class templates with multiple parameters
4. Function templates, Function template with

multiple parameters

2

2

2

2
Total Number Of Lectures = 45

Faculty In-Charge HOD, CSE Dept.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Object-Oriented Programming With C++ Subject Code- MCA203
Year: 1st year Semester: SECOND
Assignment:

Module-I: Introduction to Object-oriented Programming concept

1. What do you mean by procedural oriented programming language? What are the main
characteristics of procedural oriented language?

2. Write a brief description about object oriented programming language? What are the
benefits that we are getting by using object oriented programming language?

Module-II: Beginning with C++
1. What is cascading in C++? Describe cascading with help of small program? Briefly

describe the significance of insertion and extraction operator with the help of
example?

2. “Is C++ really a 100% object oriented programming language”. Give an appropriate
reason to support your answer? Describe why we need to include iostream.h header
file in C++ program?

Module-III: Functions in C++
1. “Is friend function really violates the data security of a program” Explain it with

appropriate reason?
2. What do you mean by Inline function? Explain it with the help of example?

Module-IV: Classes and Objects
1. How to design a class in C++? Explain it with an example? Explain how the memory

allocation takes place for a C++ program? Describe it with example? What are objects
in C++?

2. What do you mean static data members? Explain it with example? Describe the
properties of static data member with the help of example?

Module-V: Constructors and Destructors:
1. What do you mean by default constructor? Explain it with an example? Explain how

do we invoke constructor function in a C++ program? Explain when default
destructor is used to destroy the objects?

2. What do you mean by parameterized Constructor? Explain it with the help of
example? Explain with an example how the data member of a class is initialized by
using parameterized Constructor?

Module-VI: Inheritance
1. What do you mean by mode of inheritance? Explain it with the help of an example?

Explain how protected access specifier is used in case of an inheritance?
2. What do you mean by multilevel inheritance? Explain it with an example as well as

suitable diagram? Write a program to demonstrate multilevel inheritance in C++?

Module-VII: Operator overloading
1. Write a C++ program by using class to overload ++ operator? Write a program in

C++ to overload > operator by using member function.

2. Write a program in C++ that will input the details of ten students. User will supply the
roll of the student, on the basis of the roll number; the entire details of the student will
be displayed on the output screen. Write the program by using class.

Module-VIII: Polymorphism
1. What do we need virtual function? Describe it with an example?
2. When do we make a virtual function pure? Write a program by using class that

contains two data members, initialize it with a member function and interchange the
value of data members by using static member function.

Module-IX: Exception Handling & Templates
1. How we can restrict a function to throw only certain specified exception in C++.

Explain with proper example. Write a C++ program to implement the concept of re-
throwing mechanism.
2. Write a C++ program where you can pass more than one parameters.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Data Structure Lab
Course Code: MCA291

L-T-P scheme: 0-0-3 Course Credit: 2

Objectives:
1. Develop problem solving ability using Programming.
2. Develop ability to design and analyse algorithms.
3. Introduce students to data abstraction and fundamental data structures.
4. Develop ability to design and evaluate Abstract Data Types and data structures.
5. Apply data structure concepts to various examples and real life applications

Learning Outcomes:
The course will use hands on practice and applying the knowledge gained in theory course to
different day to day real world applications..Upon the completion of data structure and algorithm
practical course, the student will be able to:
 Understand and implement different type of data structure techniques
 Analyze the hashing method.
 Implement different type of sorting searching techniques.

Course Contents:
Exercises that must be done in this course are listed below:
Exercise No.1: Implementation of array operations
Exercise No. 2: Implementation of linked lists: inserting, deleting a linked list.
Exercise No. 3: Stacks and Queues: adding, deleting elements
Exercise No. 4: Evaluation Problem:Evaluation of infix to postfix expressions on stack.
Exercise No. 5: Circular Queue: Adding & deleting elements
Exercise No. 6: Implementation of stacks using linked lists, Polynomial addition, Polynomial
multiplication
Exercise No. 7: Sparse Matrices: Multiplication, addition.
Exercise No. 8: Recursive and Non-recursive traversal of Trees
Exercise No. 9: Threaded binary tree traversal. AVL tree implementation
Exercise No. 10: Application of sorting and searching algorithms

Text Book:
1. Yashavant Kanetkar, Abduln A.P.J. Kalam,” Data Structure Through C”,2nd edition, BPB

Publications
2. Seymour Lipschutz,“Data Structures”,Revised First edition,McGraw Hill Education.

Recommended Systems/Software Requirements:
1. Intel based desktop PC with minimum of 166 MHZ or faster processor with at least 64 MB RAM

and 100 MB free disk space.
2. Turbo C or TC3 complier in Windows XP or Linux Operating System.

Exercise No.1: Implementation of array operations
Description:
An array is a collection of similar data elements. These data elements have the same data type.The
elements of the array are stored in consecutive memory locations and are referenced by an
index(also known as the subscript). The subscript is an ordinal number which is used to identify an
element of the array.There are a number of operations that can be performed on arrays. These
operations include:
Traversing an array
2) Inserting an element in an array

Searching an element in an array
Deleting an element from an array
Merging two arrays
Sorting an array in ascending or descending order

Aim: Write a program to insert a number at a given location in an array.
Algorithm:
The algorithm INSERT will be declared as INSERT(A,N,POS,VAL). The arguments are
Step1: A, the array in which the element has to be inserted
Step2: N, the number of elements in the array
Step3: POS, the position at which the element has to be inserted
Step4: VAL, the value that has to be inserted

Program:
#include <stdio.h>
#include <conio.h>
int main()
{
int i, n, num, pos, arr[10];
clrscr();
printf("\n Enter the number of elements in the array : ");
scanf("%d", &n);
for(i=0;i<n;i++)
{
printf("\n arr[%d] = ", i);
scanf("%d", &arr[i]);

}
printf("\n Enter the number to be inserted : ");
scanf("%d", &num);
printf("\n Enter the position at which the number has to be added : scanf("%d", &pos);
for(i=n–1;i>=pos;i––)
arr[i+1] = arr[i];

arr[pos] = num;
n = n+1;
printf("\n The array after insertion of %d is : ", num);
for(i=0;i<n;i++)
printf("\n arr[%d] = %d", i, arr[i]);
getch();
return 0;

}
Input:
Enter the number of elements in the array : 5
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5
Enter the number to be inserted : 0
Enter the position at which the number has to be added : 3

Output:
The array after insertion of 0 is :
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 0
arr[4] = 4
arr[5] = 5

Aim:Write a program to delete a number from a given location in an array.
Algorithm:
The algorithm DELETE will be declared as DELETE(A, N,POS). The arguments are:
Step1:A, the array from which the element has to be deleted
Step2: N, the number of elements in the array
Step3: POS, the position from which the element has to be deleted

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Program
#include <stdio.h>
#include <conio.h>
int main()
{
int i, n, pos, arr[10];
clrscr();
printf("\n Enter the number of elements in the array : ");
scanf("%d", &n);
for(i=0;i<n;i++)
{
printf("\n arr[%d] = ", i);
scanf("%d", &arr[i]);

}
printf("\nEnter the position from which the number has to be deleted : ");
scanf("%d", &pos);
for(i=pos; i<n–1;i++)
arr[i] = arr[i+1];

n––;
printf("\n The array after deletion is : ");
for(i=0;i<n;i++)
printf("\n arr[%d] = %d", i, arr[i]);

getch();
return 0;

}
Input:
Enter the number of elements in the array : 5
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5
Enter the position from which the number has to be deleted : 3
Output:
The array after deletion is :
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 5

Lab assignment:
1) Merging two arrays
2) Sorting an array in ascending or descending order

Exercise No. 2: Implementation of linked lists: inserting, deleting a linked list.

Description:
A singly linked list is the simplest type of linked list in which every node contains some data anda
pointer to the next node of the same data type. By saying that the node contains a pointer to the next
node, we mean that the node stores the address of the next node in sequence.
A new node is added into an already existing linked list like
Case 1: The new node is inserted at the beginning.
Case 2: The new node is inserted at the end.
Case 3: The new node is inserted after a given node.
Case 4: The new node is inserted before a given node.

Before we describe the algorithms to perform insertions in all these four cases, let us first discuss an
important term called OVERFLOW. Overflow is a condition that occurs when AVAIL = NULL or
no free memory cell is present in the system. When this condition occurs, the program must give an
appropriate message.
A node is deleted from an already existing linked list like
Case 1: The first node is deleted.
Case 2: The last node is deleted.
Case 3: The node after a given node is deleted.
Before we describe the algorithms in all these three cases, let us first discuss an important
termCalled UNDERFLOW. Underflow is a condition that occurs when we try to delete a node from
a linked list that is empty. This happens when START = NULL or when there are no more nodes to
delete.
Note that when we delete a node from a linked list, we actually have to free the memory occupied by
that node. The memory is returned to the free pool so that it can be used to store other programs and
data. Whatever be the case of deletion, we always change the AVAIL pointer so that it points to the
address that has been recently vacated.
Algorithm:
Insertion(A) Inserting a Node Before a Given Node in a Linked List

Step 1: IF AVAIL=NULL
Write OVERFLOWGo to Step 12
[END OF IF]
NEW_NODE
Step 2: SET = AVAIL
Step 3: SET AVAIL=AVAIL NEXT
Step 4: SET NEW_NODE ->DATA=VAL
Step 5: SET PTR=START
Step 6: SET PREPTR=PTR
Step 7: Repeat Steps8and9while PTR DATA != NUM
Step 8: SET PREPTR=PTR
Step 9: SET PTR=PTR->NEXT
[END OF LOOP]
Step 10:PREPTR->NEXT = NEW_NODE
Step 11: SET NEW_NODE-> NEXT=PTR
Step 12: EXIT
Insertion(B) Inserting a Node After a Given Node in a Linked List
Step 1: IF AVAIL=NULL
Write OVERFLOW Go to Step 12
[END OF IF]
Step 2: SET = AVAIL->NEW_NODE
Step 3: SET AVAIL=AVAIL->NEXT
Step 4: SET DATA=VAL->NEW_NODE
Step 5: SET PTR=START
Step 6: SET PREPTR=PTR
Step 7: Repeat Steps8and9while PREPTR->DATA!= NUM
Step 8: SET PREPTR=PTR
Step 9: SET PTR=PTR->NEXT
[END OF LOOP]
Step 10: PREPTR->NEXT =NEW_NODE
Step 11: SET NEW_NODE->NEXT=PTR
Step 12: EXIT

Deletion
Step 1: IF START=NULL
Write UNDERFLOW
Go to Step 10
[END OF IF]
Step 2: SET PTR=START
Step 3: SET PREPTR=PTR
Step 4: Repeat Steps5and6while PREPTR DATA != NUM
Step 5: SET PREPTR=PTR
Step 6: SET PTR=PTR->NEXT

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

[END OF LOOP]
Step 7: SET TEMP=PTR
Step 8: SET PREPTR->NEXT=PTR->NEXT
Step 9: FREE TEMP
Step 10:EXIT

Aim:Write a program to create a linked list and perform insertions and deletions Write
functions to sort and finally delete the entire list at once.
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <malloc.h>
struct node
{
int data;
struct node *next;

};
struct node *start = NULL;
struct node *create_ll(struct node *);
struct node *display(struct node *);
struct node *insert_beg(struct node *);
struct node *insert_end(struct node *);
struct node *insert_before(struct node *);
struct node *insert_after(struct node *);
struct node *delete_beg(struct node *);
struct node *delete_end(struct node *);
struct node *delete_node(struct node *);
struct node *delete_after(struct node *);
struct node *delete_list(struct node *);
struct node *sort_list(struct node *);
int main(int argc, char *argv[]) {
int option;
do
{
printf(“\n\n *****MAIN MENU *****”);
printf(“\n 1: Create a list”);
printf(“\n 2: Display the list”);
printf(“\n 3: Add a node at the beginning”);
printf(“\n 4: Add a node at the end”);
printf(“\n 5: Add a node before a given node”);
printf(“\n 6: Add a node after a given node”);
printf(“\n 7: Delete a node from the beginning”);

printf(“\n 8: Delete a node from the end”);
printf(“\n 9: Delete a given node”);
printf(“\n 10: Delete a node after a given node”);
printf(“\n 11: Delete the entire list”);
printf(“\n 12: Sort the list”);
printf(“\n 13: EXIT”);
printf(“\n\n Enter your option : “);

scanf(“%d”, &option);
switch(option)
{

case 1: start = create_ll(start);
printf(“\n LINKED LIST CREATED”);

break;
case 2: start = display(start);

break;

case 3: start = insert_beg(start);
break;

case 4: start = insert_end(start);
break;

case 5: start = insert_before(start);
break;

case 6: start = insert_after(start);
break;

case 7: start = delete_beg(start);
break;

case 8: start = delete_end(start);
break;

case 9: start = delete_node(start);
break;

case 10: start = delete_after(start);
break;

case 11: start = delete_list(start);
printf(“\n LINKED LIST DELETED”);

break;
case 12: start = sort_list(start);

break;
}

}while(option !=13);
return 0;
struct node *create_ll(struct node *start)
struct node *new_node, *ptr;
printf(“\n Enter -1 to end”);
printf(“\n Enter the data : “);
scanf(“%d”, &num);
while(num!=-1)
new_node = (struct node*)malloc(sizeof(struct node));
new_node -> data=num;

if(start==NULL)
{

new_node -> next = NULL;
start =

new_node;
}
else
{
ptr=start;
while(ptr->next!=NULL)
ptr=ptr->next;
ptr->next =

new_node;
new_node->next=NULL;

}
printf(“\n Enter the data : “);
scanf(“%d”, &num);

}
return start;

}
struct node *display(struct node *start)
{
struct node *ptr;
ptr = start;
while(ptr != NULL)
{

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

printf(“\t %d”, ptr -> data);
ptr = ptr -> next;

}
return start;

}
struct node *insert_beg(struct node *start)
{
struct node *new_node;
int num;
printf(“\n Enter the data : “);
scanf(“%d”, &num);
new_node = (struct node *)malloc(sizeof(struct node));
new_node -> data = num;
new_node -> next = start;
start = new_node;
return start;

}
struct node *insert_end(struct node *start)
{
struct node *ptr, *new_node;
int num;
printf(“\n Enter the data : “);
scanf(“%d”, &num);
new_node = (struct node *)malloc(sizeof(struct node));
new_node -> data = num;
new_node -> next = NULL;
ptr = start;
while(ptr -> next != NULL)
ptr = ptr -> next;
ptr -> next = new_node;
return start;

}
struct node *insert_before(struct node *start)
{
struct node *new_node, *ptr, *preptr;
int num, val;
printf(“\n Enter the data : “);
scanf(“%d”, &num);
printf(“\n Enter the value before which the data has to be inserted : “);
scanf(“%d”, &val);
new_node = (struct node *)malloc(sizeof(struct node));
new_node -> data = num;
ptr = start;
while(ptr -> data != val)
{
preptr = ptr;
ptr = ptr -> next;

}
preptr -> next = new_node;
new_node -> next = ptr;
return start;

}
struct node *insert_after(struct node *start)
{
struct node *new_node, *ptr, *preptr;
int num, val;
printf(“\n Enter the data : “);

scanf(“%d”, &num);
printf(“\n Enter the value after which the data has to be inserted : “);

scanf(“%d”, &val);
new_node = (struct node *)malloc(sizeof(struct node));
new_node -> data = num;
ptr = start;
preptr = ptr;
while(preptr -> data != val)
{
preptr = ptr;
ptr = ptr -> next;
}

preptr -> next=new_node;
new_node -> next = ptr;
return start;
struct node *delete_beg(struct node *start)
struct node *ptr;
ptr = start;
start = start -> next;
free(ptr);

return start;
struct node *delete_end(struct node *start)
struct node *ptr, *preptr;
ptr = start;
while(ptr -> next != NULL)
{
preptr = ptr;
ptr = ptr -> next;
}

preptr -> next = NULL;
free(ptr);

return start;
struct node *delete_node(struct node *start)
struct node *ptr, *preptr;
int val;
printf(“\n Enter the value of the node which has to be deleted : “);
scanf(“%d”, &val);
ptr = start;
if(ptr -> data == val)
{

start = delete_beg(start);
return start;
}
else
{

while(ptr -> data != val)
{
preptr = ptr;
ptr = ptr -> next;

}
preptr -> next = ptr -> next;
free(ptr);
return start;

}
}
struct node *delete_after(struct node *start)
{
struct node *ptr, *preptr;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

int val;
printf(“\n Enter the value after which the node has to deleted : “);
scanf(“%d”, &val);
ptr = start;
preptr = ptr;
while(preptr -> data != val)
{
preptr = ptr;
ptr = ptr -> next;

}
preptr -> next=ptr -> next;
free(ptr);
return start;

}
struct node *delete_list(struct node *start)
{

struct
node *ptr;

if(start!=NULL){
ptr=start;
while(ptr != NULL)
{
printf(“\n %d is to be deleted next”, ptr -> data);
start =

delete_beg(ptr);
ptr =

start;
}

}

return start;
}
struct node *sort_list(struct node *start)
{
struct node *ptr1, *ptr2;
int temp;
ptr1 = start;
while(ptr1 -> next != NULL)
{
ptr2 = ptr1 -> next;
while(ptr2 != NULL)
{
if(ptr1 -> data > ptr2 -> data)
{

temp = ptr1 -> data;
ptr1 -> data = ptr2 -> data;
ptr2 -> data = temp;

}
ptr2 = ptr2 -> next;

}
ptr1 = ptr1 -> next;
}

return start; // Had to be added
}
Input:
3
4

5
Output:

*****MAIN MENU *****
1: Create a list
2: Display the list
3: Add a node at the beginning
4: Add the node at the end
5: Add the node before a given node
6: Add the node after a given node
7: Delete a node from the beginning
8: Delete a node from the end
9: Delete a given node
10: Delete a node after a given node
11: Delete the entire list
12: Sort the list
13: Exit

Enter your option : 1
Enter the data :3
Enter your option : 2
3
Enter your option : 3
Enter the data : 4
Enter your option : 6
Add after given node:4
Enter the data : 5
Enter your option : 2
4 5 3
Enter your option : 10
Delete after a given node:5
Enter your option : 2
4 5

Lab Assignment:
1) WAP to implement circular linked list.
2) WAP to insert and delete an element in a doubly linked list(all cases).

Exercise No. 3: Stacks and Queues: adding, deleting elements
Description:
A stack is a linear data structure which uses the same principle, i.e., the elements in a stack are added
and removed only from one end, which is called theTOP. Hence, a stack is called a LIFO (Last-In
First-Out) datastructure, as the element that was inserted last is the first one to be taken out.
A stack supports three basic operations: push, pop, and peek. The push operation adds an element to the
top of the stack and the pop operation removes the element from the top of the stack. The peek
operation returns the value of the topmost element of the stack.

Aim: Write a program to perform Push, Pop, and Peek operations on a stack.
Algorithm:
Insertion:
Step 1: IF TOP=MAX-1

PRINT OVERFLOW
Goto Step 4
[END OF IF]

Step 2: SET TOP=TOP+1
Step 3: SET STACK[TOP]=VALUE
Step 4: END

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Deletion:
Step 1: IF TOP=NULL

PRINT UNDERFLOW
Goto Step 4
[END OF IF]

Step 2: SET VAL=STACK[TOP]
Step 3: SET TOP=TOP-1
Step 4: END

Peek:
Step 1: IF TOP=NULL

PRINT STACK IS EMPTY
Goto Step 3

Step 2: RETURN STACK[TOP]
Step 3: END

Program:
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#define MAX 3 // Altering this value changes size of stack created
int st[MAX], top=-1;
void push(int st[], int val);
int pop(int st[]);
int peek(int st[]);
void display(int st[]);
int main(int argc, char *argv[]) {
int val, option;
do
{
printf("\n *****MAIN MENU*****");
printf("\n 1. PUSH");
printf("\n 2. POP");
printf("\n 3. PEEK");
printf("\n 4. DISPLAY");
printf("\n 5. EXIT");
printf("\n Enter your option: ");
scanf("%d", &option);
switch(option)
{
case 1:
printf("\n Enter the number to be pushed on stack: ");
scanf("%d", &val);
push(st, val);
break;

case 2:
val = pop(st);
if(val != -1)
printf("\n The value deleted from stack is: %d", val);
break;

case 3:
val = peek(st);
if(val != -1)
printf("\n The value stored at top of stack is: %d", val);
break;

case 4:
display(st);

break;
}

}while(option != 5);
return 0;

}
void push(int st[], int val)
{
if(top == MAX-1)
{
printf("\n STACK OVERFLOW");

}
else
{
top++;
st[top] = val;

}
}
int pop(int st[])
{
int val;
if(top == -1)
{
printf("\n STACK UNDERFLOW");
return -1;

}
else
{
val = st[top];
top--;
return val;

}
}
void display(int st[])
{
int i;
if(top == -1)
printf("\n STACK IS EMPTY");
else
{
for(i=top;i>=0;i--)
printf("\n %d",st[i]);
printf("\n"); // Added for formatting purposes

}
}
int peek(int st[])
{
if(top == -1)
{
printf("\n STACK IS EMPTY");
return -1;

}
else
return (st[top]);

}
Output
*****MAIN MENU*****
1. PUSH
2. POP

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

3. PEEK
4. DISPLAY
5. EXIT
Enter your option : 1
Enter the number to be pushed on stack : 500
Enter your option : 1
Enter the number to be pushed on stack : 700
Enter your option : 4
700 500
Enter your option : 3
Enter your option : 4
700
Enter your option : 2
Enter your option : 4
500
Description:
A queue is a FIFO (First-In, First-Out) data structure in which the element that is inserted first is the
first one to be taken out.The elements in a queue are added at one end called the REAR and
removed from the other end called the FRONT. Queues can be implemented by using either arrays
or linked lists.
Aim: Write a program to perform Insertion, Deletion, and Peek operations on a queue.
Algorithm:
Insertion:
Step 1: IF REAR=MAX-1

Write OVERFLOW
Goto step 4
[END OF IF]

Step 2: IF FRONT=-1 and REAR=-1
SET FRONT=REAR =ELSE
SET REAR=REAR+1

[END OF IF]
Step 3: SET QUEUE[REAR]=NUM
Step 4: EXIT
Deletion:
Step 1: IF FRONT=-1OR FRONT>REAR

Write UNDERFLOW
ELSE

SET VAL=QUEUE[FRONT]
SET FRONT=FRONT+1

[END OF IF]
Step 2: EXIT
Program:
#include <stdio.h>
#include <conio.h>
#define MAX 10 // Changing this value will change length of array
int queue[MaX];
int front = -1, rear = -1;
void insert(void);
int delete_element(void);
int peek(void);
void display(void);
int main()
{
int option, val;
do
{
printf(“\n\n ***** MAIN MENU *****”);
printf(“\n 1. Insert an element”);
printf(“\n 2. Delete an element”);
printf(“\n 3. Peek”);

printf(“\n 4. Display the queue”);
printf(“\n 5. EXIT”);
printf(“\n Enter your option : “);
scanf(“%d”, &option);
switch(option)
{
case 1:
insert();
break;

case 2:
val = delete_element();
if (val != -1)
printf(“\n The number deleted is : %d”, val);
break;

case 3:
val = peek();
if (val != -1)
printf(“\n The first value in queue is : %d”, val);
break;

case 4:
display();
break;

}
}while(option != 5);
getch();
return 0;

}
void insert()
{
int num;
printf(“\n Enter the number to be inserted in the queue : “);
scanf(“%d”, &num);
if(rear == MAX-1)
printf(“\n OVERFLOW”);
else if(front == -1 && rear == -1)
front = rear = 0;
else
rear++;
queue[rear] = num;

}
int delete_element()
{
int val;

if(front == -1 || front>rear)
{
printf(“\n UNDERFLOW”);
return -1;
}
else
{
val = queue[front];
front++;
if(front > rear)
front = rear = -1;
return val;
}

int peek()

if(front==-1 || front>rear)
{
printf(“\n QUEUE IS EMPTY”);
return -1;
}
else

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

{
return queue[front];
}

void display()
int i;
printf(“\n”);
if(front == -1 || front > rear)
printf(“\n QUEUE IS EMPTY”);
else
{
for(i = front;i <= rear;i++)
printf(“\t %d”, queue[i]);
}

Output:
***** MAIN MENU *****"
1. Insert an element
2. Delete an element
3. Peek
4. Display the queue
5. Exit
Enter your option : 1
Enter the number to be inserted in the queue : 50

Exercise No. 4: Evaluation Problem: Evaluation of infix to postfix expressions on stack.
Description:
Infix, postfix, and prefix notations are three different but equivalent notations of writing algebraic
expressions. For example, if an expression is written as A+B in infix notation, the same expression can
be written as AB+ in postfix notation. The order of evaluation of a postfix expression is always from
left to right. Even brackets cannot alter the order of evaluation. The expression (A+B)*C can be written
as: [AB+]*C =>AB+C* in the postfix notation.
Aim:Write a program to convert a given infix expression into its postfix Equivalent,
Implement the stack using an array.
Algorithm:
Step 1: Add)to the end of the infix expression
Step 2: Push(onto the stack
Step 3: Repeat until each character in the infix notation is scanned
IF a(is encountered, push it on the stack
IF an operand (whetheradigit oracharacter) is encountered, add it to thepostfix expression.
IF a)is encountered, then

a. Repeatedly pop from stack and add it to the postfix expression until a
(is encountered.

b. Discard the (.That is, remove the(from stack and do notadd it to the postfix expression
IF an operator is encountered, then

a. Repeatedly pop from stack and add each operator (popped from the stack) to thepostfix expression
which has the same precedence orahigher precedence than)

b. Push the operator to the stack
[END OF IF]
Step 4: Repeatedly pop from the stack and add it to the postfix expression until the stack is empty
Step 5: EXIT
Program:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define MAX 20
char stack[MAX];
int top=1;
char pop(); /*declaration of pop function*/
void push(char item); /*declaration of push function*/
int prcd(char symbol) /*checking the precedence*/
{

switch(symbol) /*assigning values for symbols*/
{

case '+':
case '-': return 2;
break;
case '*':
case '/': return 4;
break;
case '^':return 6;
break;
case '(':
case ')':
case '#':return 1;

break;
}

}
int(isoperator(char symbol)) /*assigning operators*/
{

switch(symbol)
{

case '+':
case '*':

case '-':
case '/':
case '^':
case '(':
case ')':return 1;
break;
default:return 0;

}
}

/*converting infix to postfix*/
void convertip(char infix[],char postfix[])
{
int i,symbol,j=0;
stack[++top]='#';
for(i=0;i<strlen(infix);i++)
{
symbol=infix[i];
if(isoperator(symbol)==0)
{

postfix[j]=symbol;
j++;

}
else
{

if(symbol=='(')
push(symbol); /*function call for pushing elements into the stack*/
else if(symbol==')')
{

while(stack[top]!='(')
{

postfix[j]=pop();
j++;

}
pop(); /*function call for popping elements into the stack*/

}
else

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

{
if(prcd(symbol)>prcd(stack[top]))
push(symbol);
else
{

while(prcd(symbol)<=prcd(stack[top]))
{

postfix[j]=pop();
j++;

}
push(symbol);

}/*end of else loop*/
}/*end of else loop*/

} /*end of else loop*/
}/*end of for loop*/

While (stack[top]!='#')
{

postfix[j]=pop();
j++;

}
postfix[j]='\0'; /*null terminate string*/

}
/*main program*/
void main()
{

char infix[20],postfix[20];
printf("enter the valid infix string \n");
gets(infix);
convertip(infix,postfix); /*function call for converting infix to postfix */
printf("the corresponding postfix string is:\n");

puts(postfix);
}

/*push operation*/
void push(char item)
{

top++;
stack[top]=item;

}
/*pop operation*/
char pop()
{

char a;
a=stack[top];
top--;
return a;

}
Input:
A+B*C
Output:
ABC*+
Exercise No. 5: Circular Queue: Adding & deleting elements
Description:
In the circular queue, the first index comes right after the last index.The circular queue will be

full only when FRONT=0 and REAR=Max–1. A circular queue is implemented in the same manner as a
linear queue is implemented.
Aim: Write a program to implement a circular queue using array.
Algorithm:

Insertion:
Step 1: IF FRONT = and Rear=MAX-1

Write OVERFLOW
Goto step 4

[End OF IF]

Step 2:
IF FRONT=-1 and REAR=-1

SET FRONT=REAR =0
ELSE IF REAR=MAX-1and FRONT !=0

SET REAR =0
ELSE

SET REAR=REAR+1
[END OF IF]
Step 3: SET QUEUE[REAR]=VAL
Step 4: EXIT
Deletion:
Step 1: IF FRONT=-1

Write UNDERFLOW
Goto Step 4

[END of IF]
Step 2: SET VAL=QUEUE[FRONT]
Step 3: IF FRONT=REAR

SET FRONT=REAR=-1
ELSE

IF FRONT=MAX -1
SET FRONT =0

ELSE
SET FRONT=FRONT+1

[END of IF]
[END OF IF]

Step 4: EXIT

Program:
#include <stdio.h>
#include <conio.h>
#define MAX 10
int queue[MAX];
int front=–1, rear=–1;
void insert(void);
int delete_element(void);
int peek(void);
void display(void);
int main()
{
int option, val;
clrscr();
do
{
printf("\n ***** MAIN MENU *****");
printf("\n 1. Insert an element");
printf("\n 2. Delete an element");
printf("\n 3. Peek");
printf("\n 4. Display the queue");
printf("\n 5. EXIT");
printf("\n Enter your option : ");
scanf("%d", &option);
switch(option)
{
case 1:
insert();
break;

case 2:
val = delete_element();

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

if(val!=–1)
printf("\n The number deleted is : %d", val);
break;

case 3:
val = peek();
if(val!=–1)
printf("\n The first value in queue is : %d", break;

case 4:
display();
break;

}
}while(option!=5);
getch();
return 0;

}
void insert()
{
int num;
printf("\n Enter the number to be inserted in the queue : ");
scanf("%d", &num);
if(front==0 && rear==MAX–1)
printf("\n OVERFLOW");

else if(front==–1 && rear==–1)
{
front=rear=0;
queue[rear]=num;

}
else if(rear==MAX–1 && front!=0)
{
rear=0;
queue[rear]=num;

}
else
{
rear++;
queue[rear]=num;

}
}
int delete_element()
{
int val;
if(front==–1 && rear==–1)
{
printf("\n UNDERFLOW");
return –1;
}

val = queue[front];
if(front==rear)
front=rear=–1;

else
{
if(front==MAX–1)
front=0;

else
front++;

}
return val;

}
int peek()
{
if(front==–1 && rear==–1)
{
printf("\n QUEUE IS EMPTY");

return –1;
}
else
{
return queue[front];

}
}
void display()
{
int i;
printf("\n");
if (front ==–1 && rear= =–1)
printf ("\n QUEUE IS EMPTY");

else
{
if(front<rear)
{
for(i=front;i<=rear;i++)
printf("\t %d", queue[i]);

}
else
{
for(i=front;i<MAX;i++)
printf("\t %d", queue[i]);

for(i=0;i<=rear;i++)
printf("\t %d", queue[i]);

}
}

}
Output
***** MAIN MENU *****
1. Insert an element
2. Delete an element
3. Peek
4. Display the queue
5. EXIT
Enter your option : 1
Enter the number to be inserted in the queue : 25
Enter your option : 2
The number deleted is : 25
Enter your option : 3
QUEUE IS EMPTY
Enter your option : 5

Exercise No. 6: Implementation of Polynomial addition, Polynomial
multiplicationusing linked lists.
Description:
A polynomial is represented in the memory using a linked list. Consider a polynomial 6x3+9x2+7x+1.
Every individual term in a polynomial consists of two parts, a coefficientand a power. Here, 6, 9, 7,
and 1 are the coefficients of the terms that have 3, 2, 1, and 0 as theirpowers respectively.
Every term of a polynomial can be represented as a node of the linked list

Aim:Write a program to add two polynomials.
Program:
#include <stdio.h>
typedef struct pnode
{
float coef;
int exp;
struct pnode *next;
}p;

6 3 9 2 7 1 1 0 x

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

p *getnode();
void main()
{
p *p1,*p2,*p3;

p *getpoly(),*add(p*,p*);

void display(p*);
clrscr();
printf(“\n enter first polynomial”);
p1=getpoly();
printf(“\n enter second polynomial”);
p2=getpoly();
printf(“\nthe first polynomial is”);
display(p1);
printf(“\nthe second polynomial is”);
display(p2);
p3=add(p1,p2);
printf(“\naddition of two polynomial is :\n”);
display(p3);

}
p *getpoly()
{
p *temp,*New,*last;
int flag,exp;
char ans;
float coef;
temp=NULL;
flag=1;
printf(“\nenter the polynomial in descending order of exponent”);
do
{
printf(“\nenter the coef & exponent of a term”);
scanf(“%f%d”,&coef,&exp);
New=getnode();
if(New==NULL)
printf(“\nmemory cannot be allocated”);
New->coef=coef;
New->exp=exp;
if(flag==1)
{
temp=New;
last=temp;
flag=0;
}
else
{
last->next=New;
last=New;
}
printf(“\ndou want to more terms”);
ans=getch();
}
while(ans==’y');
return(temp);
}
p *getnode()
{
p *temp;
temp=(p*) malloc (sizeof(p));
temp->next=NULL;
return(temp);

}
void display(p*head)
{
p*temp;
temp=head;
if(temp==NULL)
printf(“\npolynomial empty”);
while(temp->next!=NULL)
{
printf(“%0.1fx^%d+”,temp->coef,temp->exp);
temp=temp->next;
}
printf(“\n%0.1fx^%d”,temp->coef,temp->exp);
getch();
}
p*add(p*first,p*second)
{
p *p1,*p2,*temp,*dummy;
char ch;
float coef;
p *append(int,float,p*);
p1=first;
p2=second;
temp=(p*)malloc(sizeof(p));
if(temp==NULL)
printf(“\nmemory cannot be allocated”);
dummy=temp;
while(p1!=NULL&&p2!=NULL)
{
if(p1->exp==p2->exp)
{
coef=p1->coef+p2->coef;
temp=append(p1->exp,coef,temp);
p1=p1->next;
p2=p2->next;
}
else
if(p1->expexp)
{
coef=p2->coef;
temp=append(p2->exp,coef,temp);
p2=p2->next;
}
else
if(p1->exp>p2->exp)
{
coef=p1->coef;
temp=append(p1->exp,coef,temp);
p1=p1->next;
}
}
while(p1!=NULL)
{
temp=append(p1->exp,p1->coef,temp);
p1=p1->next;
}
while(p2!=NULL)
{
temp=append(p2->exp,p2->coef,temp);
p2=p2->next;
}
temp->next=NULL;
temp=dummy->next;
free(dummy);

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

return(temp);
}
p*append(int Exp,float Coef,p*temp)
{
p*New,*dum;
New=(p*)malloc(sizeof(p));
if(New==NULL)
printf(“\ncannot be allocated”);
New->exp=Exp;
New->coef=Coef;
New->next=NULL;
dum=temp;
dum->next=New;
dum=New;
return(dum);
}
Input:
A^2+2A+2
A^3+3A+3
Output:
A^3+A^2+5A+5
Lab Assignment:

1) Write a program to multiply two polynomials.

Exercise No. 7: Sparse Matrices: Multiplication, addition.
Description:
Sparse matrix is a matrix that has large number of elements with a zero value. In order to efficiently
utilize the memory, specialized algorithms and data structures that take advantage of the sparse
structure should be used. If we apply the operations using standard matrix structures and algorithms
to sparse matrices, then the execution will slow down and the matrix will consume large amount of
memory. Sparse data can be easily compressed, which in turn can significantly reduce memory
usage.
Aim: Write a program to multiply sparse matrices.
Program:
#include<stdio.h>
#include<conio.h>
#include<alloc.h>
#define MAX1 3
#define MAX2 3
#define MAXSIZE 20
#define TRUE 1
#define FALSE 2
struct sparse
{
int *sp ;
int row ;
int *result ;
} ;
void initsparse (struct sparse *) ;
void create_array (struct sparse *) ;
int count (struct sparse) ;
void display (struct sparse) ;
void create_tuple (struct sparse*, struct sparse) ;
void display_tuple (struct sparse) ;
void prodmat (struct sparse *, struct sparse, struct sparse) ;
void searchina (int *sp, int ii, int*p, int*flag) ;
void searchinb (int *sp, int jj, int colofa, int*p, int*flag) ;

void display_result (struct sparse) ;
void delsparse (struct sparse *) ;
void main()
{
struct sparse s[5] ;
int i ;
clrscr() ;
for (i = 0 ; i<= 3 ; i++)
initsparse (&s[i]) ;
create_array (&s[0]) ;
create_tuple (&s[1], s[0]) ;
display_tuple (s[1]) ;
create_array (&s[2]) ;
create_tuple (&s[3], s[2]) ;
display_tuple (s[3]) ;
prodmat (&s[4], s[1], s[3]) ;
printf ("\nResult of multiplication of two matrices: ") ;
display_result (s[4]) ;
for (i = 0 ; i<= 3 ; i++)
delsparse (&s[i]) ;
getch() ;
}
/* initialises elements of structure */
void initsparse (struct sparse *p)
{
p -> sp = NULL ;
p -> result = NULL ;
}
/* dynamically creates the matrix */
void create_array (struct sparse *p)
{
int n, i ;
/* allocate memory */
p -> sp = (int *) malloc (MAX1 * MAX2 * sizeof (int)) ;
/* add elements to the array */
for (i = 0 ; i< MAX1 * MAX2 ; i++)
{
printf ("Enter element no. %d: ", i) ;
scanf ("%d", &n) ;
* (p -> sp + i) = n ;
}
}
/* displays the contents of the matrix */
void display (struct sparse s)
{
int i ;
/* traverses the entire matrix */
for (i = 0 ; i< MAX1 * MAX2 ; i++)
{
/* positions the cursor to the new line for every new row */
if (i % 3 == 0)
printf ("\n") ;
printf ("%d\t", * (s.sp + i)) ;
}
}

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

/* counts the number of non-zero elements */
int count (struct sparse s)
{
int cnt = 0, i ;
for (i = 0 ; i< MAX1 * MAX2 ; i++)
{
if (* (s.sp + i) != 0)
cnt++ ;
}
return cnt ;
}
/* creates an array that stores information about non-zero elements */
void create_tuple (struct sparse *p, struct sparse s)
{
int r = 0 , c = -1, l = -1, i ;
/* get the total number of non-zero elements */
p -> row = count (s) + 1 ;
/* allocate memory */
p -> sp = (int *) malloc (p -> row * 3 * sizeof (int)) ;
/* store information about total no. of rows, cols, and non-zero values */
* (p -> sp + 0) = MAX1 ;
* (p -> sp + 1) = MAX2 ;
* (p -> sp + 2) = p -> row - 1 ;
l = 2 ;
/* scan the array and store info. about non-zero values in the 3-tuple */
for (i = 0 ; i< MAX1 * MAX2 ; i++)
{
c++ ;
/* sets the row and column values */
if (((i % 3) == 0) && (i != 0))
{
r++ ;
c = 0 ;
}
/* checks for non-zero element, row, column and non-zero value is assigned to the matrix */
if (* (s.sp + i) != 0)
{
l++ ;
* (p -> sp + l) = r ;
l++ ;
* (p -> sp + l) = c ;
l++ ;
* (p -> sp + l) = * (s.sp + i) ;
}
}
}
/* displays the contents of the matrix */
void display_tuple (struct sparse s)
{
int i, j ;
/* traverses the entire matrix */
printf ("\nElements in a 3-tuple: ") ;
j = (* (s.sp + 2) * 3) + 3 ;
for (i = 0 ; i< j ; i++)

{
/* positions the cursor to the new line for every new row */
if (i % 3 == 0)
printf ("\n") ;
printf ("%d\t", * (s.sp + i)) ;
}
printf ("\n") ;
}
/* performs multiplication of sparse matrices */
void prodmat (struct sparse *p, struct sparse a, struct sparse b)
{
int sum, k, position, posi, flaga, flagb, i , j ;
k = 1 ;
p -> result = (int *) malloc (MAXSIZE * 3 * sizeof (int)) ;
for (i = 0 ; i< * (a.sp + 0 * 3 + 0) ; i++)
{
for (j = 0 ; j< * (b.sp + 0 * 3 + 1) ; j++)
{
/* search if an element present at ith row */
searchina (a.sp, i, &position, &flaga) ;
if (flaga == TRUE)
{
sum = 0 ;
/* run loop till there are element at ith row in first 3-tuple */
while (* (a.sp + position * 3 + 0) == i)
{
/* search if an element present at ith col. in second 3-tuple */
searchinb (b.sp, j, * (a.sp + position * 3 + 1), &posi, &flagb) ;
/* if found then multiply */
if (flagb == TRUE)
sum = sum + * (a.sp + position * 3 + 2) * * (b.sp + posi * 3 + 2) ;
position = position + 1 ;
}
/* add result */
if (sum != 0)
{
* (p -> result + k * 3 + 0) = i ;
* (p -> result + k * 3 + 1) = j ;
* (p -> result + k * 3 + 2) = sum ;
k = k + 1 ;
}
}
}
}
/* add total no. of rows, cols and non-zero values */
* (p -> result + 0 * 3 + 0) = * (a.sp + 0 * 3 + 0) ;
* (p -> result + 0 * 3 + 1) = * (b.sp + 0 * 3 + 1) ;
* (p -> result + 0 * 3 + 2) = k - 1 ;
}
/* searches if an element present at iith row */
void searchina (int *sp, int ii, int *p, int *flag)
{
int j ;
*flag = FALSE ;
for (j = 1 ; j<= * (sp + 0 * 3 + 2) ; j++)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

{
if (* (sp + j * 3 + 0) == ii)
{
*p = j ;
*flag = TRUE ;
return ;
}
}
}
/* searches if an element where col. of first 3-tuple is equal to row of second 3-tuple */
void searchinb (int *sp, int jj, int colofa, int *p, int *flag)
{
int j ;
*flag = FALSE ;
for (j = 1 ; j<= * (sp + 0 * 3 + 2) ; j++)
{
if (* (sp + j * 3 + 1) == jj && * (sp + j * 3 + 0) == colofa)
{
*p = j ;
*flag = TRUE ;
return ;
}
}
}
/* displays the contents of the matrix */
void display_result (struct sparse s)
{
int i ;
/* traverses the entire matrix */
for (i = 0 ; i< (* (s.result + 0 + 2) + 1) * 3 ; i++)
{
/* positions the cursor to the new line for every new row */
if (i % 3 == 0)
printf ("\n") ;
printf ("%d\t", * (s.result + i)) ;
}
}
/* deallocates memory */
void delsparse (struct sparse *s)
{
if (s -> sp != NULL)
free (s -> sp) ;
if (s -> result != NULL)
free (s -> result) ;
}
Input:
First matrices
[0 2 3]
[4 0 0]
[0 0 5]
Second matrices
[0 0 7]
[0 8 0]
[0 9 6]
Output:

[0 43 18]
[0 0 28]
[0 45 30]
Lab assignment:

1) Write a program to add two sparse matrices.

Exercise No. 8: Recursive and Non-recursive traversal of Trees
Description:
A binary tree is a data structure that is defined as a collection of elements called nodes. In a binary
tree, the topmost element is called the root node, and each node has 0, 1, or at the most 2 children.
A node that has zero children is called a leaf node or a terminal node. Every node contains a data
element, a left pointer which points to the left child, and a right pointer which points to the right
child. The root element is pointed by a'root' pointer. If root = NULL, then it means the tree is empty.
Aim: Write a program to implement a binary tree using recursion.
Program:
#include<stdio.h>
#include<conio.h>
#include<alloc.h>
struct node
{
int data;
struct node *left,*right;
};
struct node *root;
void insert(int x)
{

struct node *p,*previous,*current;
p=(struct node *)malloc(sizeof(struct node));
if(p==NULL)
{

printf("\n Out of memory");
}
p->data=x;
p->left=NULL;
p->right=NULL;
if(root=NULL)
{

root=p;
return;

}
previous=NULL;
current=root;
while(current!=NULL)
{

previous=current;
if(p->data<current->data)

current=current->left;
else

current=current->right;
}

if(p->data<previous->data)
previous->left=p;

else
previous->right=p;

}
void inorder(struct node *t)
{

if (t!=NULL)
{
inorder(t->left);
printf("\n %5d",t->data);
inorder (t->right);
}

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

}
void del(int x)
{

int tright=0,tleft=0;
struct node *ptr=root;
struct node *parent=root;
struct node *t1=root;
struct node *temp=root;
while(ptr!=NULL&& ptr->data!=x)
{

parent=ptr;
if (x<ptr->data)

ptr=ptr->left;
else

ptr=ptr->right;
}
if (ptr==NULL)
{

printf("\n Delete element not found");
return ;

}
else if(t1->data==x && (t1->left ==NULL || t1->right==NULL))

if(t1->left==NULL)
t1=t1->right;

else
t1=t1->left;

else if (ptr->left==NULL)
if (x<parent->data)

parent->left=ptr->right;
else

parent->right=ptr->right;
else if (ptr->right==NULL)

if (x<parent->data)
parent->left=ptr->left;

else
parent->right=ptr->left;

else
{
temp=ptr;
parent=ptr;
if((ptr->left)>=(ptr->right))
{

ptr=ptr->left;
while(ptr->right!=NULL)
{

tright=1;
parent=ptr;
ptr=ptr->right;

}
temp->data=ptr->data;
if(tright)

parent->right=ptr->left;
else

parent->left=ptr->left;
}

else
{
ptr=ptr->right;
while (ptr->left!=NULL)
{

tleft=1;
parent=ptr;
ptr=ptr->left;

}
temp->data=ptr->data;
if(tleft)

parent->left=ptr->right;
else

parent->right=ptr->right;
}
free(ptr);

}
}

void main()
{
int op,n,srchno;
root=(struct node *)malloc(sizeof(struct node));
root->data=30;
root->right=root->left=NULL;
clrscr();
do
{

printf("\n 1.Insertion");
printf("\n 2.Deletion");
printf("\n 3.Inorder");
printf("\n 4.Quit");
printf("\n Enter your choice\n");
scanf("%d",&op);

switch (op)
{
case 1: printf("\n Enter the element to insert\n");

scanf("%d",&n);
insert(n);
break;

case 2: printf("\n Enter the element to be deleted\n");
scanf("%d",&srchno);
del(srchno);
break;

case 3: printf("\n The inorder elements are\n");
inorder(root);
getch();
break;

default: exit(0);
}

}while(op<4);
getch();

}
Input:
1 2 3
Output:
Enter the element to insert1
Enter the element to insert2
Enter the element to insert3
The inorder elements are
2 1 3
Lab assignment:

1) Write a program to implement a binary tree without using recursion

Exercise No. 9: AVL tree implementation
Description:
An AVL tree is the same as that of a binary search tree but with a little difference.
In its structure, it stores an additional variable called theBalance Factor. Thus, every node has a
balance factor associated with it. The balance factor of a node is calculated by subtracting the height

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

of its right sub-tree from the height of its left sub-tree. A binary search tree in which every node has
a balance factor of –1, 0, or 1 is said to be height balanced. A node with any other balance factor is
considered to be unbalanced and requires rebalancing of the tree.
Balance factor = Height (left sub-tree) – Height (right sub-tree)

Aim: Write a program to implement AVL tree
Program:
#include <stdio.h>
typedef enum { FALSE ,TRUE } bool;
struct node
{
int val;
int balance;
struct node *left_child;
struct node *right_child;

};
struct node* search(struct node *ptr, int data)
{
if(ptr!=NULL)

if(data < ptr -> val)
ptr = search(ptr -> left_child,data);
else if(data > ptr -> val)
ptr = search(ptr -> right_child, data);

return(ptr);
}
struct node *insert (int data, struct node *ptr, int *ht_inc)
{
struct node *aptr;

struct node *bptr;
if(ptr==NULL)
{
ptr = (struct node *) malloc(sizeof(struct node));
ptr -> val = data;
ptr -> left_child = NULL;
ptr -> right_child = NULL;
ptr -> balance = 0;
*ht_inc = TRUE;
return (ptr);
}

if(data < ptr -> val)
{
ptr -> left_child = insert(data, ptr -> left_child, ht_inc);
if(*ht_inc==TRUE)
{
switch(ptr -> balance)
{

case -1: /* Right heavy */

ptr -> balance = 0;
*ht_inc = FALSE;
break;

case 0: /* Balanced */

ptr -> balance = 1;

break;

case 1: /* Left heavy */

aptr = ptr -> left_child;
if(aptr -> balance == 1)
{

printf(“Left to Left Rotation\n”);

ptr -> left_child= aptr -> right_child;

aptr -> right_child = ptr;

ptr -> balance = 0;

aptr -> balance=0;
ptr = aptr;
}

else
{
printf(“Left to right rotation\n”);

bptr = aptr -> right_child;
aptr -> right_child = bptr -> left_child;

bptr -> left_child = aptr;

ptr -> left_child = bptr -> right_child;

bptr -> right_child = ptr;

if(bptr -> balance == 1)

pt
r -> balance = -1;

else

pt
r -> balance = 0;

if(bptr -> balance == -1)

aptr -> balance = 1;

else

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

aptr -> balance = 0;

bptr -> balance=0;

ptr = bptr;
}

*ht_inc = FALSE;
}

}
}

if(data > ptr -> val)
{

ptr -> right_child = insert(info, ptr -> right_child, ht_inc);
if(*ht_inc==TRUE)
{
switch(ptr -> balance)
{

case 1: /* Left heavy */
ptr -> balance = 0;
*ht_inc = FALSE;
break;

case 0: /* Balanced */
ptr -> balance = -1;
break;

case -1: /* Right heavy */

aptr = ptr -> right_child;
if(aptr -> balance == -1)

{
printf(“Right to Right Rotation\n”);

ptr -> right_child= aptr -> left_child;
aptr -> left_child = ptr;

ptr -> balance = 0;
aptr -> balance=0;

ptr = aptr;
}

else
{

printf(“Right to Left Rotation\n”);
bptr = aptr -> left_child;

aptr -> left_child = bptr -> right_child;
bptr -> right_child = aptr;
ptr -> right_child = bptr -> left_child;

bptr -> left_child = pptr;
if(bptr -> balance == -1)
ptr -> balance = 1;

else
ptr -> balance = 0;

if(bptr -> balance == 1)
aptr -> balance = -1;

else
aptr -> balance = 0;

bptr -> balance=0;
ptr = bptr;

}/*End of else*/
*ht_inc = FALSE;

}

}
}
return(ptr);

}
void display(struct node *ptr, int level)
{
int i;
if (ptr!=NULL)
{
display(ptr -> right_child, level+1);
printf(“\n”);
for (i = 0; i < level; i++)
printf(“ “);

printf(“%d”, ptr -> val);
display(ptr -> left_child, level+1);

}
}
void inorder(struct node *ptr)
{
if(ptr!=NULL)
{
inorder(ptr -> left_child);
printf(“%d “,ptr -> val);
inorder(ptr -> right_child);

}
}
main()
{
bool ht_inc;
int data ;
int option;
struct node *root = (struct node *)malloc(sizeof(struct node));

root = NULL;
while(1)
{
printf(“1.Insert\n”);
printf(“2.Display\n”);
printf(“3.Quit\n”);
printf(“Enter your option : “);
scanf(“%d”,&option);
switch(choice)

{
case 1:
printf(“Enter the value to be inserted : “);
scanf(“%d”, &data);
if(search(root,data) == NULL)
root = insert(data, root, &ht_inc);

else
printf(“Duplicate value ignored\n”);
break;

case 2:
if(root==NULL)
{

printf(“Tree is empty\n”);
continue;
}

printf(“Tree is :\n”);
display(root, 1);

printf(“\n\n”);
printf(“Inorder Traversal is: “);
inorder(root);

printf(“\n”);
break;

case 3:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

exit(1);
default:
printf(“Wrong option\n”);

}
}

}
Input:
6 11 2 4 3 5
Output:
2 3 5 4 6 11

Lab Assignment:
1) Write a program to implement AVL tree

Exercise No. 10: Application of sorting and searching algorithms
Description:
To search an element in an array is known as searching and to sort the element in an ascending and
descending order is known as sorting.Two type of searching linear and binary. Mainly five type of
sorting like bubble ,insertion ,selection, merge and quick sort.here we mainly focus on binary search
and merge and quick sort.
Aim:Implement Binary search without using recursion
Program:

#include<stdio.h>

int main(){

int a[10],i,n,m,c=0,l,u,mid;

printf("Enter the size of an array: ");
scanf("%d",&n);

printf("Enter the elements in ascending order: ");
for(i=0;i<n;i++){

scanf("%d",&a[i]);
}

printf("Enter the number to be search: ");
scanf("%d",&m);

l=0,u=n-1;
while(l<=u){

mid=(l+u)/2;
if(m==a[mid]){

c=1;
break;

}
else if(m<a[mid]){

u=mid-1;
}
else

l=mid+1;
}
if(c==0)

printf("The number is not found.");
else

printf("The number is found.");

return 0;
}

OUTPUT:

Enter the size of an array: 5
Enter the element in ascending order: 2 4 8 9 12
Enter the number to be search: 3
The number is not found.

Aim: Implement Merge Sort using Divide and Conquer approach
Program:
#include<stdio.h>
#include<conio.h>
void merge(int [],int ,int ,int);
void part(int [],int ,int);
int main()
{
int arr[30];
int i,size;
printf("\n\t------- Merge sorting method -------\n\n");
printf("Enter total no. of elements : ");
scanf("%d",&size);
for(i=0; i<size; i++)
{

printf("Enter %d element : ",i+1);
scanf("%d",&arr[i]);

}
part(arr,0,size-1);
printf("\n\t------- Merge sorted elements -------\n\n");
for(i=0; i<size; i++)
printf("%d ",arr[i]);
getch();
return 0;

}

void part(int arr[],int min,int max)
{
int mid;
if(min<max)
{

mid=(min+max)/2;
part(arr,min,mid);
part(arr,mid+1,max);
merge(arr,min,mid,max);

}
}

void merge(int arr[],int min,int mid,int max)
{

int tmp[30];
int i,j,k,m;
j=min;
m=mid+1;
for(i=min; j<=mid && m<=max ; i++)
{

if(arr[j]<=arr[m])

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

{
tmp[i]=arr[j];
j++;

}
else
{

tmp[i]=arr[m];
m++;

}
}
if(j>mid)
{

for(k=m; k<=max; k++)
{

tmp[i]=arr[k];
i++;

}
}
else
{

for(k=j; k<=mid; k++)
{

tmp[i]=arr[k];
i++;

}
}
for(k=min; k<=max; k++)

arr[k]=tmp[k];
}
Output:
Enter the no of elements:7
7 8 9 4 5 3 1
The unsorted list is: 7 8 9 4 5 3 1
The sorted list is
1 3 4 5 7 8 9
Aim:Implement Quick Sort using Divide and Conquer approach
Program:
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#define MAX 6000

void quick(int x[],int lb,int ub);
int partition(int x[],int lb,int ub);

void main()
{

int i,n,x[MAX];
time_t start,end;
clrscr();

printf("Enter the number of elements: ");
scanf("%d",&n);

for(i=0;i<n;i++)
x[i]=rand();

printf("\nEntered array is \n");
for(i=0;i<n;i++)

printf("%d ",x[i]);

start=time(NULL);
quick(x,0,n-1);
end=time(NULL);
printf("Sorted array is as shown:\n");
for(i=0;i<n;i++)

printf("%d ",x[i]);
printf("\nTIME for %d elements : %f", n, difftime(end,start));
getch();

}

void quick(int x[],int lb,int ub)
{

int j;
if(lb<ub)
{

printf("\n");
j=partition(x,lb,ub);
quick(x,lb,j-1);
quick(x,j+1,ub);

}
}

int partition(int x[],int lb,int ub)
{

int a,down,up,temp;
a=x[lb];
up=ub;
down=lb;
while(down<up)
{

while(x[down]<=a&&down<ub)
down++;

while(x[up]>a)
up--;

if(down<up)
{

temp=x[down];
x[down]=x[up];
x[up]=temp;

}

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

}
x[lb]=x[up];
x[up]=a;
return up;

}
Output:
Enter the number of elements:5

Entered array is
41 18467 6334 26500 19169

Sorted array is as shown
41 6334 18467 19169 26500

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Database Lab
Course Code: MCA292
L-T-P Scheme: 0-0-3 Course Credits: 2

Objective:
At the end of the semester, the students should have clearly understood and implemented the following:
1. Stating a database design problem.
2. Preparing ER diagram
3. Finding the data fields to be used in the database.
4. Selecting fields for keys.
5. Normalizing the database including analysis of functional dependencies.
6. Installing and configuring the database server and the front end tools.
7. Designing database and writing applications for manipulation of data for a stand alone and shared database including
concepts like concurrency control, transaction roll back, logging, report generation etc.
8. Get acquainted with SQL. In order to achieve the above objectives, it is expected that each students will chose one
problem. The implementation shall being with the statement of the objectives to be achieved, preparing ER diagram,
designing of database, normalization and finally manipulation of the database including generation of reports, views etc.
The problem may first be implemented for a standalone system to be used by a single user. All the above steps may then
be followed for development of a database application to be used by multiple users in a client server environment with
access control. The application shall NOT use web techniques. One exercise may be assigned on creation of table,
manipulation of data and report generation using SQL.

Learning Outcomes:
• Ability to build normalized databases.
• Knowledge of Entity Relationship Modelling.
• Familiarity with SQL, embedded SQL and PLSQL.
• Familiarity with query processing and query optimization techniques.
• Understanding of transaction processing.
• Ability to handle recovery and concurrency issues.
• Familiarity with ODBC, JDBC.

Course Contents:
Exercises that must be done in this course are listed below:
Exercise No.1: ER Model: An entity-relationship model (ERM) is an abstract and conceptual representation of data.
Entity-relationship modeling is a database modeling method, used to produce a type of conceptual schema or semantic data
model of a system
Exercise No. 2: EER Model: In computer science, the enhanced entity-relationship (EER) model is a high-level or
conceptual data model incorporating extensions to the original entity-relationship (ER) model, used in the design of
databases. It was developed by a need to reflect more precisely properties and constraints that are found in more complex
databases.
Exercise No. 3: Relational Model: The relational model for database management is a database model based on first-order
4predicate logic, first formulated and proposed in 1969 by E.F. Codd. The model uses the concept of a mathematical
relation, which looks somewhat like a table of values - as its basic building block, and has its theoretical basis in set theory
and first-order predicate logic.
Exercise No. 4: 1 NF: First normal form (1NF or Minimal Form) is a normal form used in database normalization. A
relational database table that adheres to 1NF is one that meets a certain minimum set of criteria. These criteria are basical ly
concerned with ensuring that the table is a faithful representation of a relation and that it is free of repeating groups.
Exercise No. 5: 2 NF: Second normal form (2NF) is a normal form used in database normalization. 2NF was originally
defined by E.F. Codd in 1971. A table that is in first normal form (1NF) must
Exercise No. 6: 3 NF: The Third normal form (3NF) is an important form of database normalization. 3NF is said to hold if
and only if both of the following conditions hold:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

• The relation R (table) is in second normal form (2NF)
• Every non-prime attribute of R is non-transitively dependent (i.e. directly dependent) on every candidate key of R.
Exercise No. 7: BCNF: A relation R is in Boyce-Codd normal form (BCNF) if and only if every determinant is a candidate
key. 4The definition of BCNF addresses certain (rather unlikely) situations which 3NF does not handle.
Exercise No. 8: SQL-1: In this lab., we discuss basic SQL operations like creating a table, deleting a table, changing the
schema of the table, primary key and foreign key constraints on a table and creating indexes on tables.
Exercise No. 9: SQL-2: Its scope includes efficient data insert, query, update and delete, schema creation and
modification, and data access control. In this lab., we discuss SQL operations for populating the tables like inserting into a
table, deleting values from a table, and updating the content of the tables.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

1 Introduction of Data Base

What is a database?

A database is a collection of information that is organized so that it can easily be accessed, managed, and updated. In one view,
databases can be classified according to types of content: bibliographic, full-text, numeric, and images.

In computing, databases are sometimes classified according to their organizational approach. The most prevalent approach is the
relational database, a tabular database in which data is defined so that it can be reorganized and accessed in a number of
different ways. A distributed database is one that can be dispersed or replicated among different points in a network. An object-
oriented programming database is one that is congruent with the data defined in object classes and subclasses.

Computer databases typically contain aggregations of data records or files, such as sales transactions, product catalogs and
inventories, and customer profiles. Typically, a database manager provides users the capabilities of controlling read/write
access, specifying report generation, and analyzing usage. Databases and database managers are prevalent in large mainframe
systems, but are also present in smaller distributed workstation and mid-range systems such as the AS/400 and on personal
computers. SQL (Structured Query Language) is a standard language for making interactive queries from and updating a
database such as IBM's DB2, Microsoft's Access, and database products from Oracle, Sybase, and Computer Associates.

A Database Management System (DBMS) is a set of computer programs that controls the creation, maintenance, and the use
of a database. It allows organizations to place control of database development in the hands of database administrators (DBAs)
and other specialists. A DBMS is a system software package that helps the use of integrated collection of data records and fi les
known as databases. It allows different user application programs to easily access the same database. DBMSs may use any of a
variety of database models, such as the network model or relational model. In large systems, a DBMS allows users and other
software to store and retrieve data in a structured way. Instead of having to write computer programs to extract information, user
can ask simple questions in a query language. Thus, many DBMS packages provide Fourth-generation programming language
(4GLs) and other application development features. It helps to specify the logical organization for a database and access and use
the information within a database. It provides facilities for controlling data access, enforcing data integrity, managing
concurrency, and restoring the database from backups. A DBMS also provides the ability to logically present database
information to users

A DBMS is a set of software programs that controls the organization, storage, management, and retrieval of data in a database.
DBMSs are categorized according to their data structures or types. The DBMS accepts requests for data from an application
program and instructs the operating system to transfer the appropriate data. The queries and responses must be submitted and
received according to a format that conforms to one or more applicable protocols. When a DBMS is used, information systems
can be changed much more easily as the organization's information requirements change. New categories of data can be added
to the database without disruption to the existing system.

Database servers are computers that hold the actual databases and run only the DBMS and related software. Database servers are
usually multiprocessor computers, with generous memory and RAID disk arrays used for stable storage. Hardware database
accelerators, connected to one or more servers via a high-speed channel, are also used in large volume transaction processing
environments. DBMSs are found at the heart of most database applications. DBMSs may be built around a custom multitasking
kernel with built-in networking support, but modern DBMSs typically rely on a standard operating system to provide these
functions.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

A database management system (DBMS), sometimes just called a database manager, is a program that lets one or more
computer users create and access data in a database. The DBMS manages user requests (and requests from other programs) so
that users and other programs are free from having to understand where the data is physically located on storage media and, in a
multi-user system, who else may also be accessing the data. In handling user requests, the DBMS ensures the integrity of the
data (that is, making sure it continues to be accessible and is consistently organized as intended) and security (making sure only
those with access privileges can access the data). The most typical DBMS is a relational database management system
(RDBMS). A standard user and program interface is the Structured Query Language (SQL). A newer kind of DBMS is the
object-oriented database management system (ODBMS).

A DBMS can be thought of as a file manager that manages data in databases rather than files in file systems. In IBM's
mainframe operating systems, the nonrelational data managers were (and are, because these legacy application systems are still
used) known as access methods.

A DBMS is usually an inherent part of a database product. On PCs, Microsoft Access is a popular example of a single- or small-
group user DBMS. Microsoft's SQL Server is an example of a DBMS that serves database requests from multiple (client) users.
Other popular DBMSs (these are all RDBMSs, by the way) are IBM's DB2, Oracle's line of database management products, and
Sybase's products.

IBM's Information Management System (IMS) was one of the first DBMSs. A DBMS may be used by or combined with
transaction managers, such as IBM's Customer Information Control System (CICS).

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

2 Uses of Database in Real Life

Real-Life Database Examples

To say that the databases are everywhere would be an understatement. They virtually permeate our lives: Online stores,
health care providers, clubs, libraries, video stores, beauty salons, travel agencies, phone companies, government agencies
like FBI, INS, IRS, and NASA — they all use databases. These databases can be very different in their nature and usually
have to be specifically designed to cater to some special customer needs. Here are some examples.

Note All relational databases can be divided into two main categories according to their primary function
— online transaction processing (OLTP) and data warehouse systems. OLTP typically has many
users simultaneously creating and updating individual records; in other words it's volatile and
computation-intensive. Data warehouse is a database designed for information processing and
analysis, with focus on planning for the future rather than on day-to-day operations. The information
in these is not going to change very often, which ensures the information consistency (repeatable
result) for the users. In the real world most systems are hybrids of these two, unless specifically
designed as data warehouse.

Order management system database

A typical database for a company that sells building materials might be arranged as follows: The company must have at
least one customer. Each customer in the database is assigned one or more addresses, one or more contact phones, and a
default salesperson who is the liaison between the customer and the company. The company sells a variety of products.
Each product has a price, a description, and some other characteristics. Orders can be placed for one or more product at a
time. Each product logically forms an order line. When an order is complete it can be shipped and then invoiced. Invoice
number and shipment number are populated automatically in the database and can not be changed by users. Each order has
a status assigned to it: COMPLETE, SHIPPED, INVOICED, and so on. The database also contains specific shipment
information (bill of lading number, number of boxes shipped, dates, and so on). Usually one shipment contains one order,
but the database is designed in such a way that one order can be distributed between more than one shipment, as well as
one shipment can contain more than one order. Some constraints also exist in the database. For example, some fields
cannot be empty, and some other fields can contain only certain types of information.

You already know that a database is a multi user environment by definition. It's a common practice to group users
according to the functions they perform and security levels they are entitled to. The order management system described
here could have three different user groups: Sales department clerks' function is to enter or modify order and customer
information; shipping department employees create and update shipment data; warehouse supervisors handle products. In
addition, all three user groups view diverse database information under different angles, using reports and ad-hoc queries.

We'll use this database, which we'll call ACME, throughout this book for examples and exercises. ACME database is a
simplified version of a real production database. It has only 13 tables, and the real one would easily have over a hundred.
Health care provider database

A health provider company has multiple offices in many different states. Many doctors work for the company, and each
doctor takes care of multiple patients. Some doctors just work in one office, and others work in different offices on
different days. The database keeps information about each doctor, such as name, address, contact phones, area of
specialization, and so on. Each patient can be assigned to one or more doctors. Specific patient information is also kept in
the database (name, address, phones, health record number, date of birth, history of appointments, prescriptions, blood
tests, diagnoses, etc.). Customers can schedule and cancel appointments and order prescription drugs either over the phone
or using the company Web site. Some restrictions apply — for example, to see a specialist, the patient needs an approval
from his/her primary physician; to order a prescription the patient should have at least one valid refill left, and so on.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Now, what are the main database user groups? Patients should be able to access the database using a Web browser to order
prescriptions and make appointments. This is all that patients may do in the database. Doctors and nurses can browse
information about their patients, write and renew prescriptions, schedule blood tests and X-Rays, and so on. Administrative
staff (receptionists, pharmacy assistants) can schedule appointments for patients, fill prescriptions, and run specific reports.

Again, in real life this database would be far more complicated and would have many more business rules, but our main
goal now is just to give a general idea what kind of information a database could contain.
The health provider and order management system databases are both examples of a typical hybrid database (though the
former is probably closer to an OLTP).
Scientific database

A database for genome research and related research areas in molecular and cellular biology can be a good example of a
scientific database. It contains gene catalogs for completely sequenced genomes and some partial genomes, genome maps
and organism information, and data about sequence similarities among all known genes in all organisms in the database. It
also contains information on molecular interaction networks in the cell and chemical compounds and reactions.

This database has just one user group — all researchers have the same access to all the information. This is an example of a
data warehouse.
Nonprofit organization database

A database of an antique automobile club can be pretty simple. Also, such an organization would not typically have too
many members, so the database is not going to be very large. You need to store members' personal information such as
address, phone number, area of interest, and so on. The database might also contain the information about the autos (brand,
year, color, condition, etc.). Autos are tied to their owners (members of the club). Each member can have one or more
vehicles, and a vehicle can be owned by just one member.

The database would only have a few users — possibly, the chairman of the club, an assistant, and a secretary.

The last two examples are not business-critical databases and don't have to be implemented on expensive enterprise
software. The data still have to be kept safely and should not be lost, but in case of, let's say, hardware failure it probably
can wait a day or two before the database is restored from a backup. So, the use of a free database, like mySQL,
PostgreSQL, or even nonrelational Posgres is appropriate. Another good choice might be MS Access, which is a part of
Microsoft Office Tools; if you bought MS Office just because you want to use Word and Excel, you should be aware that
you've got a free relational database as well. (MS Access works well with up to 15 users.)

3. Overview of SQL DDL, DML and DCL Commands With Examples.

DDL is Data Definition Language statements. Some examples:

CREATE - to create objects in the database
ALTER - alters the structure of the database
DROP - delete objects from the database
TRUNCATE - remove all records from a table, including all spaces allocated for the records are removed
COMMENT - add comments to the data dictionary
GRANT - gives user's access privileges to database
REVOKE - withdraw access privileges given with the GRANT command

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

DML is Data Manipulation Language statements. Some examples:
SELECT - retrieve data from the a database
INSERT - insert data into a table
UPDATE - updates existing data within a table
DELETE - deletes all records from a table, the space for the records remain
CALL - call a PL/SQL or Java subprogram
EXPLAIN PLAN - explain access path to data
LOCK TABLE - control concurrency
DCL is Data Control Language statements. Some examples:
COMMIT - save work done
SAVEPOINT - identify a point in a transaction to which you can later roll back
ROLLBACK - restore database to original since the last COMMIT
SET TRANSACTION - Change transaction options like what rollback segment to use

Basic SQL DDL Commands.
To practice basic SQL DDL Commands such as CREATE, DROP, etc.

1. SQL - CREATE TABLE
Syntax: CREATE TABLE tablename (column_name data_ type constraints, …)
Example:

INPUT:
SQL> CREATE TABLE Emp (EmpNo short CONSTRAINT PKey PRIMARY KEY,
EName VarChar(15), Job Char(10) CONSTRAINT Unik1 UNIQUE,
Mgr short CONSTRAINT FKey1 REFERENCES EMP (EmpNo),
Hiredate Date, DeptNo short CONSTRAINT FKey2 REFERENCES DEPT(DeptNo));
RESULT: Table created.
SQL>Create table prog20 (pname varchar2(20) not null), doj date not null,dob date not null,
sex varchar(1) not null, prof1 varchar(20),prof2 varchar(20),salary number(7,2) not null);
RESULT:
Table created.
SQL>desc prog20;
Name Null? Type
--------------------------------- -------- ----------------------------
PNAME NOT NULL VARCHAR2(20)
DOJ NOT NULL DATE
DOB NOT NULL DATE
SEX NOT NULL VARCHAR2(1)
PROF1 VARCHAR2(20)
PROF2 VARCHAR2(20)
SALARY NOT NULL NUMBER(7,2)

2. SQL - ALTER TABLE

INPUT:
SQL>ALTER TABLE EMP ADD CONSTRAINT Pkey1 PRIMARY KEY (EmpNo);
RESULT: Table Altered.
Similarly, ALTER TABLE EMP DROP CONSTRAINT Pkey1;

3. SQL - DROP TABLE

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

– Deletes table structure – Cannot be recovered – Use with caution

INPUT:
SQL> DROP TABLE EMP; Here EMP is table name
RESULT: Table Dropped.

4. TRUNCATE TRUNCATE TABLE <TABLE NAME>;
Basic SQL DML Commands.
To practice basic SQL DML Commands such as INSERT, DELETE, etc.

1. SQL - INSERT INTO
Syntax: INSERT INTO tablename VALUES (value list)
Single-row insert
INSERT INTO S VALUES(‘S3’,’SUP3’,’BLORE’,10)
Inserting one row, many columns at a time
INSERT INTO S (SNO, SNAME) VALUES (‘S1’, ‘Smith’);S1’ Smith’
Inserting many rows, all/some columns at a time.
INSERT INTO NEW_SUPPLIER (SNO, SNAME)
SELECT SNO, SNAME FROM S
WHERE CITY IN (‘BLORE’,’MADRAS’)

Other Examples:

INPUT:
SQL>Insert into prog values (‘kkk’,’05-may-56’);
RESULT: 1 row created.

INPUT:
SQL>Insert into prog20 values(‘Hema’,’25-sept-01’28-jan-85’,’f’,’c’,’c++’,’25000’);
RESULT: 1 row created.

INPUT:
SQL>Insert into prog values(‘&pname’,’&doj’);
SQL> Insert into prog values('&pname','&doj');
Enter value for pname: ravi
Enter value for doj: 15-june-81
RESULT:
old 1: Insert into prog values('&pname','&doj')
new 1: Insert into prog values('ravi','15-june-81')
1 row created.

2. SQL - UPDATE
Syntax: UPDATE tablename SET column_name =value [WHERE condition]
Examples:
UPDATE SET CITY = ‘KANPUR’ WHERE SNO=‘S1’
UPDATE EMP SET SAL = 1.10 * SAL
SQL> update emp set sal=20000 where empno=7369;
1 row updated.

3. SQL - DELETE FROM
Syntax: DELETE FROM tablename WHERE condition

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Examples:
DELETE FROM SP WHERE PNO= ‘P1’
DELETE FROM SP
INPUT:
SQL>Delete from emp where empno=7369;
RESULT: 1 row deleted.

Basic SQL DCL Commands.
To practice basic SQL DCL Commands such as COMMIT, ROLLBACK etc.

1. COMMIT
Save changes (transactional).
Syntax:
COMMIT [WORK] [COMMENT 'comment_text']
COMMIT [WORK] [FORCE 'force_text' [,int]]
FORCE - will manually commit an in-doubt distributed transaction
force_text - transaction identifier (see the DBA_2PC_PENDING view)
int - sets a specific SCN.
If a network or machine failure prevents a distributed transaction from committing
properly, Oracle will store any commit comment in the data dictionary along with the
transaction ID.
INPUT:
SQL>commit;
RESULT: Commit complete.

2. ROLLBACK
Undo work done (transactional).
Syntax:
ROLLBACK [WORK] [TO [SAVEPOINT]'savepoint_text_identifier'];
ROLLBACK [WORK] [FORCE 'force_text'];
FORCE - will manually rollback an in-doubt distributed transaction
INPUT:
SQL>rollback;
RESULT:Rollback complete.

3. SAVEPOINT
Save changes to a point (transactional).
Syntax:
SAVEPOINT text_identifier
Example:
UPDATE employees
SET salary = 95000
WHERE last_name = 'Smith';
SAVEPOINT justsmith;
UPDATE employees
SET salary = 1000000;
SAVEPOINT everyone;
SELECT SUM(salary) FROM employees;
ROLLBACK TO SAVEPOINT justsmith;
COMMIT;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Writing and Practice of Simple Queries.
To write simple queries and practice them.

1. Get the description of EMP table.
SQL>desc emp;
RESULT:
Name Null? Type
-------------------------------- ----------------------- -------------------------
EMPNO NOT NULL NUMBER(4)
ENAME VARCHAR2(10)
JOB VARCHAR2(9)
MGR NUMBER(4)
HIREDATE DATE
SAL NUMBER(7,2)
COMM NUMBER(7,2)
DEPTNO NUMBER(3)
AGE NUMBER(3)
ESAL NUMBER(10)

2. Get the description DEPT table.
SQL>desc dept;
RESULT:
Name Null? Type
--------------------------------- --------------------- ---------------------------
DEPTNO NOT NULL NUMBER(2)
DNAME VARCHAR2(14)
LOC VARCHAR2(13)

3.List all employee details.
SQL>select * from emp;
RESULT:
EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO AGE ESAL
-------- ---------- --------- ---------- --------- ---------- ---------- ---------- ---------- -----------------
7369 SMITH CLERK 7902 17-DEC-80 800 0 20 25 0
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30 25 0
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30 25 0
7566 JONES MANAGER 7839 02-APR-81 2975 500 20 25 0
7698 BLAKE MANAGER 7839 01-MAY-81 2850 1400 30 25 0

4.List all employee names and their salaries, whose salary lies between
1500/- and 3500/- both inclusive.
INPUT
SQL>select ename from emp where sal between 1500 and 3500;
RESULT
ENAME

ALLEN
JONES
BLAKE
CLARK
SCOTT
TURNER

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

FORD
russel
greg
9 rows selected.

5. List all employee names and their and their manager whose manager is
7902 or 7566 0r 7789.
INPUT SQL>select ename from emp where mgr in(7602,7566,7789);
RESULT
ENAME

SCOTT
FORD

6. List all employees which starts with either J or T.
INPUT SQL>select ename from emp where ename like ‘J%’ or ename like ‘T%’;
RESULT:
ENAME

JONES
TURNER
JAMES

7. List all employee names and jobs, whose job title includes M or P.
INPUT SQL>select ename,job from emp where job like ‘M%’ or job like ‘P%’;
RESULT:
ENAME JOB
---------- ---------
JONES MANAGER
BLAKE MANAGER
CLARK MANAGER
KING PRESIDENT

8. List all jobs available in employee table.
INPUT SQL>select distinct job from emp;
RESULT:
JOB

ANALYST
CLERK
MANAGER
PRESIDENT
SALESMAN
assistant
clerk
7 rows selected.

9. List all employees who belongs to the department 10 or 20.
INPUT SQL>select ename from emp where deptno in (10,20);
RESULT:
ENAME

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

SMITH
JONES
CLARK
SCOTT
KING
ADAMS
FORD
MILLER
8 rows selected.

10. List all employee names , salary and 15% rise in salary.
INPUT SQL>select ename , sal , sal+0.15* sal from emp;
RESULT:
ENAME SAL SAL+0.15*SAL
---------- ---------- ------------
SMITH 800 920
ALLEN 1600 1840
WARD 1250 1437.5
JONES 2975 3421.25
MARTIN 1250 1437.5
BLAKE 2850 3277.5
CLARK 2450 2817.5
7 rows selected.

11. List minimum , maximum , average salaries of employee.
INPUT SQL>select min(sal),max(sal),avg(sal) from emp;
RESULT:
MIN(SAL) MAX(SAL) AVG(SAL)
--------- ---------- ----------
3 5000 1936.94118

12. Find how many job titles are available in employee table.
INPUT SQL>select count (distinct job) from emp;
RESULT:
COUNT(DISTINCTJOB)

7

13. What is the difference between maximum and minimum salaries of
employees in the organization?
INPUT SQL>select max(sal)-min(sal) from emp;
RESULT:
MAX(SAL)-MIN(SAL)

4997

14. Display all employee names and salary whose salary is greater than
minimum salary of the company and job title starts with ‘M’.
INPUT SQL>select ename,sal from emp where job like ‘M%’ and sal > (select min (sal)
from emp);
RESULT

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

ENAME SAL
---------- ----------
JONES 2975
BLAKE 2850
CLARK 2450

15. Find how much amount the company is spending towards salaries.
INPUT SQL>select sum (sal) from emp;
RESULT
SUM(SAL)

32928

16. Display name of the dept. with deptno 20.
INPUT SQL>select ename from emp where deptno = 20;
RESULT
ENAME

SMITH
JONES
SCOTT
ADAMS

17. List ename whose commission is NULL.
INPUT SQL>select ename from emp where comm is null;
ENAME
RESULT ----------
CLARK
SCOTT
KING
ADAMS
JAMES
FORD
6 rows selected.

18. Find no.of dept in employee table.
INPUT SQL>select count (distinct ename) from emp;
RESULT
COUNT(DISTINCTENAME

17

19. List ename whose manager is not NULL.
INPUT SQL>select ename from emp where mgr is not null;
RESULT
ENAME

SMITH
ALLEN
WARD
JONES
MARTIN

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

5 rows selected.

Writing Queries using GROUP BY and other clauses.
To write queries using clauses such as GROUP BY, ORDER BY, etc. and retrieving
information by joining tables.

Source tables: emp, dept, programmer, software, study.

Order by : The order by clause is used to display the results in sorted order.

Group by : The attribute or attributes given in the clauses are used to form groups. Tuples
with the same value on all attributes in the group by clause are placed in one group.

Having: SQL applies predicates (conditions) in the having clause after groups have been
formed, so aggregate function be used.

1. Display total salary spent for each job category.

INPUT SQL>select job,sum (sal) from emp group by job;
RESULT
JOB SUM(SAL)
--------- ----------
ANALYST 6000
CLERK 23050
MANAGER 8275
PRESIDENT 5000
SALESMAN 5600
assistant 2200
clerk 2003
7 rows selected.

2. Display lowest paid employee details under each manager.
INPUT SQL>select ename, sal from emp where sal in (select min(sal) from emp group by
mgr);
RESULT
ENAME SAL
---------- ----------
chai 3
JAMES 950
MILLER 1000
ADAMS 1100
russel 2200
5 rows selected.

3. Display number of employees working in each department and their
department name.
INPUT SQL> select dname, count (ename) from emp, dept where emp.deptno=dept.deptno
group by dname;
RESULT
DNAME COUNT(ENAME)
-------------- ------------
ACCOUNTING 3

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

RESEARCH 5
SALES 9

4. Display the sales cost of package developed by each programmer.
INPUT SQL>select pname, sum(scost) from software group by pname;
RESULT
PNAME SUM(SCOST)
-------------------- ----------
john 12000
kamala 12000
raju 12333
3 rows selected.

5. Display the number of packages sold by each programmer.
INPUT SQL>select pname, count(title) from software group by pname;
RESULT
PNAME COUNT(TITLE)
-------------------- ------------
john 1
kamala 1
raju 1
ramana 1
rani 1
5 rows selected.

6. Display the number of packages in each language for which the
development cost is less than thousand.
INPUT SQL>select devin, count(title) from software where dcost < 1000 group by devin;
RESULT
DEVIN COUNT(TITLE)
---------- ------------
cobol 1

7. Display each institute name with number of students.
INPUT SQL>select splace, count(pname) from study group by splace;
RESULT
SPLACE COUNT(PNAME)
-------------------- ------------
BDPS 2
BITS 1
BNRILLIANI 1
COIT 1
HYD 1
5 rows selected.

8. How many copies of package have the least difference between
development and selling cost, were sold?
INPUT SQL>select sold from software where scost – dcost=(select min(scost – dcost) from
software);
RESULT
SOLD

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

11

9. Which is the costliest package developed in Pascal.
INPUT SQL>select title from software where devin = ‘PASCAL’ and dcost = (select
max(dcost)from software where devin = ‘PASCAL’);
RESULT
no rows selected

10. Which language was used to develop most no .of packages.
INPUT SQL>select devin, count (*) from software group by devin having count(*) = (select
max(count(*)) from software group by devin);
RESULT
DEVIN COUNT(*)
---------- ----------
jsp 2

11.Who are the male programmers earning below the average salary of
female programmers?
INPUT SQL>select pname from programmer where sal < (select avg(sal) from programmer
where sex = ‘F’) and sex = ‘M’;
RESULT
PNAME

vijay

12. Display the details of software developed by the male programmers
earning more than 3000/-.
INPUT SQL>select programmer.pname, title, devin from programmer, software where sal >
3000 and sex = ‘M’ and programmer.pname = software.pname;
RESULT
no rows selected

13. Display the details of software developed in c language by female
programmers of pragathi.
INPUT SQL>select software.pname, title, devin, scost, dcost, sold from programmer,
software, study where devin = ‘c’ and sex =’F’ and splace = ‘pragathi’ and
programmer.pname = software.pname and software.pname = study.pname;

14. Which language has been stated by the most of the programmers as
proficiency one?
INPUT SQL>select prof1, count(*) from programmer group by prof1 having count (*) =
(select max (count (*)) from programmer group by prof1);
Writing Nested Queries.
To write queries using Set operations and to write nested queries.
Set Operations:
UNION - OR
INTERSECT - AND
EXCEPT - - NOT
NESTED QUERY:- A nested query makes use of another sub-query to compute or retrieve
the information.

1. Find the name of the institute in which the person studied and

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

developed the costliest package.
INPUT SQL>select splace, pname from study where pname = (select pname from software
where scost = (select max (scost) from software);
RESULT
SPLACE PNAME
------------ -------------
SAHBHARI MARY

2. Find the salary and institute of a person who developed the highest
selling package.
INPUT SQL> select study.pname, sal, splace from study, programmer where study.pname =
programmer.pname and study.pname = (select pname from software where scost = (select
max (scost) from software));
RESULT
PNAME SAL SPLACE
----------- ------ -----------
MARY 4500 SABHARI

3. How many packages were developed by the person who developed the
cheapest package.
INPUT SQL>select pname, count (title) from software where dcost = (select min(dcost)
from software) group by pname;
RESULT
PNAME COUNT(TITLE)
------------- ----------------------
VIJAY 1

4. Calculate the amount to be recovered for those packages whose
development cost has not yet recovered.
INPUT SQL>select title , (dcost-scost) from software where dcost > scost;

5. Display the title, scost, dcost, difference of scost and dcost in the
descending order of difference.
INPUT SQL> select title, scost, dcost, (scost - dcost) from software descending order by
(scost-dcost);

6. Display the details of those who draw the same salary.
INPUT SQL> select p.pname, p.sal from programmer p, programmer t where p.pname <>
t.pname and p.sal = t.sal;(or)
INPUT SQL>select pname,sal from programmer t where pname<>t.pname and sal= t.sal;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Writing Queries using functions.

AIM: To write queries using single row functions and group functions.

1. Display the names and dob of all programmers who were born in
january.
INPUT SQL>select pname , dob from programmer where to_char (dob,’MON’)=’JAN’;

2. Calculate the experience in years of each programmer and display along
with programmer name in descending order.
INPUT SQL> select pname, round (months_between(sysdate, doj)/12, 2) "EXPERIENCE"
from programmer order by months_between (sysdate, doj) desc;

3. List out the programmer names who will celebrate their birthdays
during current month.
INPUT SQL>select pname from programmer where to_char(dob,’MON’) like to_char
(sysdate, ‘MON’);

4. Display the least experienced programmer’s details.
INPUT SQL>select * from programmer where doj = (select max (doj) from programmer);

5. Who is the most experienced programmer knowing pascal.
INPUT SQL>select pname from programmer where doj = (select min (doj) from
programmer);

6. Who is the youngest programmer born in 1965.
INPUT SQL> select pname , dob from programmer where dob = (select max (dob) from
programmer where to_char (dob,'yy') = 65);

7. In which year, most of the programmers are born.
INPUT SQL>select to_char (dob , ‘YY’) from programmer group by to_char (dob, ‘YY’)
having count(*) = (select max (count(*)) from programmer group by to_char(dob,’YY’);

8. In which month most number of programmers are joined.
INPUT SQL>select to_char (doj,’YY’) from programmer group by to_char (doj,’YY’)
having count (*) = (select max (count(*)) from programmer group by to_char (doj,’YY’);

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

9. What is the length of the shortest name in programmer table ?
INPUT SQL>select length (pname) from programmer where length (pname) = select min
(length (pname) from programmer);

10. Display the names of the programmers whose name contains up to 5
characters.
INPUT SQL>select pname from programmer where length (pname) <=5;

11. Display all packages names in small letters and corresponding
programmer names in uppercase letters.
INPUT SQL>select lower (title), upper (pname) from software;

Writing Queries on views.

AIM: To write queries on views.

1. Create a view from single table containing all columns from the base
table.
SQL>create view view1 as (select * from programmer);

2. Create a view from single table with selected columns.
SQL>create a view view2 as (select pname,dob,doj,sex,sal from programmer);

3. Create a view from two tables with all columns.
SQL>create view xyz as select * from programmer full natural join software;

4. Create a view from two tables with selected columns.
SQL> create view lmn as (select programmer, pname, title, devin from programmer, software
where sal < 3000 and programmer.pname = software.pname);

5. Check all DML commands with above 4 views.
INPUT SQL> insert into view1 values (‘ramu’,’12-sep-03’,’28-jan-
85’,’f’,’dbase’,’oracle’,74000);
RESULT
1 row created;
INPUT SQL>update view1 set salary =50000 where pname like ‘raju’;
RESULT 1 row updated.
Note: update command does not works for all queries on views.
INPUT SQL>delete from view1 where pname like ‘raju’;
RESULT 1 row deleted.

6. Drop views which you generated.
INPUT SQL>drop view view1;
RESULT View dropped;
INPUT SQL>drop view view2;
RESULT View dropped;
INPUT SQL>drop view xyz;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

The CREATE TABLE Command

Example:
Create all tables shown in the previous chapter along with their structure.

CREATE TABLE "DBA_BANKSYS"."BRANCH_MSTR"(
"BRANCH_NO" VARCHAR2(10), "NAME" VARCHAR2(25));

CREATE TABLE "DBA_BANKSYS"."EMP_MSTR"(
"EMP_NO" VARCHAR2(10), "BRANCH_NO" VARCHAR2(10),
"FNAME" VARCHAR2(25), "MNAME" VARCHAR2(25),
"LNAME" VARCHAR2(25), "DEPT" VARCHAR2(30),
"DESIG" VARCHAR2(30));

CREATE TABLE "DBA_BANKSYS"."CUST_MSTR"(
"CUST_NO" VARCHAR2(10), "FNAME" VARCHAR2(25),
"MNAME" VARCHAR2(25), "LNAME" VARCHAR2(25),
"DOB_INC" DATE, "OCCUP" VARCHAR2(25),
"PHOTOGRAPH" VARCHAR2(25), "SIGNATURE" VARCHAR2(25),
"PANCOPY" VARCHAR2(1), "FORM60" VARCHAR2(1));

CREATE TABLE "DBA_BANKSYS"."SPRT_DOC"(
"ACCT_CODE" VARCHAR2(4), "TYPE" VARCHAR2(40),
"DOCS" VARCHAR2(75));

CREATE TABLE "DBA_BANKSYS"."ACCT_MSTR"(
"ACCT_NO" VARCHAR2(10), "SF_NO" VARCHAR2(10),
"LF_NO" VARCHAR2(10), "BRANCH_NO" VARCHAR2(10),
"INTRO_CUST_NO" VARCHAR2(10), "INTRO_ACCT_NO" VARCHAR2(10),
"INTRO_SIGN" VARCHAR2(1), "TYPE" VARCHAR2(2),
"OPR_MODE" VARCHAR2(2), "CUR_ACCT_TYPE" VARCHAR2(4),
"TITLE" VARCHAR2(30), "CORP_CUST_NO" VARCHAR2(10),
"APLNDT" DATE, "OPNDT" DATE,
"VERI_EMP_NO" VARCHAR2(10), "VERI_SIGN" VARCHAR2(1),
"MANAGER_SIGN" VARCHAR2(1), "CURBAL" NUMBER(8, 2),
"STATUS" VARCHAR2(1));

CREATE TABLE "DBA_BANKSYS"."FD_MSTR"(
"FD_SER_NO" VARCHAR2(10), "SF_NO" VARCHAR2(10),
"BRANCH_NO" VARCHAR2(10), "INTRO_CUST_NO" VARCHAR2(10),
"INTRO_ACCT_NO" VARCHAR2(10), "INTRO_SIGN" VARCHAR2(1),
"ACCT_NO" VARCHAR2(10), "TITLE" VARCHAR2(30),
"CORP_CUST_NO" VARCHAR2(10), "CORP_CNST_TYPE" VARCHAR(4),
"VERI_EMP_NO" VARCHAR2(10), "VERI_SIGN" VARCHAR2(1),
"MANAGER_SIGN" VARCHAR2(1));

CREATE TABLE "DBA_BANKSYS"."FDSLAB_MSTR"(
"FDSLAB_NO" NUMBER(2), "MINPERIOD" NUMBER(5),
"MAXPERIOD" NUMBER(5), "INTRATE" NUMBER(5,2));

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

CREATE TABLE "DBA_BANKSYS"."FD_DTLS"(
"FD_SER_NO" VARCHAR2(10), "FD_NO" VARCHAR2(10),
"TYPE" VARCHAR2(1), "PAYTO_ACCTNO" VARCHAR2(10),

"PERIOD" NUMBER(5), "OPNDT" DATE,
"DUEDT" DATE, "AMT" NUMBER(8,2),
"DUEAMT" NUMBER(8,2), "INTRATE" NUMBER(3),
"STATUS" VARCHAR2(1), "AUTO_RENEWAL" VARCHAR2(1));

CREATE TABLE "DBA_BANKSYS"."ACCT_FD_CUST_DTLS"(
"ACCT_FD_NO" VARCHAR2(10), "CUST_NO" VARCHAR2(10));

CREATE TABLE "DBA_BANKSYS"."NOMINEE_MSTR"(
"NOMINEE_NO" VARCHAR2(10), "ACCT_FD_NO" VARCHAR2(10),
"NAME" VARCHAR2(75), "DOB" DATE,
"RELATIONSHIP" VARCHAR2(25));

CREATE TABLE "DBA_BANKSYS"."ADDR_DTLS"(
"ADDR_NO" NUMBER(6), "CODE_NO" VARCHAR2(10),
"ADDR_TYPE" VARCHAR2(1), "ADDR1" VARCHAR2(50),
"ADDR2" VARCHAR2(50), "CITY" VARCHAR2(25),
"STATE" VARCHAR2(25), "PINCODE" VARCHAR2(6));

CREATE TABLE "DBA_BANKSYS"."CNTC_DTLS"(
"ADDR_NO" NUMBER(6), "CODE_NO" VARCHAR2(10),
"CNTC_TYPE" VARCHAR2(1), "CNTC_DATA" VARCHAR2(75));

CREATE TABLE "DBA_BANKSYS"."TRANS_MSTR"(
"TRANS_NO" VARCHAR2(10), "ACCT_NO" VARCHAR2(10),
"DT" DATE, "TYPE" VARCHAR2(1),
"PARTICULAR" VARCHAR2(30), "DR_CR" VARCHAR2(1),
"AMT" NUMBER(8,2), "BALANCE" NUMBER(8,2));

CREATE TABLE "DBA_BANKSYS"."TRANS_DTLS"(
"TRANS_NO" VARCHAR2(10), "INST_NO" NUMBER(6),
"INST_DT" DATE, "PAYTO" VARCHAR2(30),
"INST_CLR_DT" DATE, "BANK_NAME" VARCHAR2(35),
"BRANCH_NAME" VARCHAR2(25), "PAIDFROM" VARCHAR2(10));

Output for each of the above CREATE TABLE statements:
Table created.

Inserting Data Into Tables

Example:

Insert the values into the BRANCH_MSTR table (For values refer to 6th chapter under Test Records)

INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B1', 'Vile Parle (HO)');
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B2', 'Andheri');
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B3', 'Churchgate');
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B4', 'Sion');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B5', 'Borivali');
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B6', 'Matunga');

Output for each of the above INSERT INTO statements:
1 row created.

Insert the values into the EMP_MSTR table (For values refer to 6th chapter under Test Records)

INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG)
VALUES('E1', 'B1', 'Ivan', 'Nelson', 'Bayross', 'Administration', 'Managing Director');

INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG)
VALUES('E2', 'B1', 'Amit', null, 'Desai', 'Loans And Financing', 'Head Of Dept.');

INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG)
VALUES('E3', 'B1', 'Maya', 'Mahima', 'Joshi', 'Accounts', 'Head Of Dept.');

INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG)
VALUES('E4', 'B1', 'Peter', 'Iyer', 'Joseph', 'Client Servicing', 'Clerk');

INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG)
VALUES('E5', 'B1', 'Mandhar', 'Dilip', 'Dalvi', 'Marketing', 'Head Of Dept.');

INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG)
VALUES('E6', 'B1', 'Sonal', 'Abdul', 'Khan', 'Administration', 'Admin. Executive');

INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG)
VALUES('E7', 'B1', 'Anil', 'Ashutosh', 'Kambli', 'Administration', 'Office Asst.');

INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG)
VALUES('E8', 'B1', 'Seema', 'P.', 'Apte', 'Client Servicing', 'Clerk');

INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG)
VALUES('E9', 'B1', 'Vikram', 'Vilas', 'Randive', 'Accounts', 'Office Asst.');

INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG)
VALUES('E10', 'B1', 'Anjali', 'Sameer', 'Pathak', 'Marketing', 'Marketing Manager');

Output for each of the above INSERT INTO statements:
1 row created.

Insert the values into the CUST_MSTR table (For values refer to 6th chapter under Test Records)

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP,
PHOTOGRAPH, SIGNATURE, PANCOPY, FORM60)
VALUES('C1', 'Ivan', 'Nelson', 'Bayross', '25-JUN-1952', 'Self Employed',
'D:/ClntPht/C1.gif', 'D:/ClntSgnt/C1.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP,
PHOTOGRAPH, SIGNATURE, PANCOPY, FORM60)
VALUES('C2', 'Chriselle', 'Ivan', 'Bayross', '29-OCT-1982', 'Service',
'D:/ClntPht/C2.gif', 'D:/ClntSgnt/C2.gif', 'N', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP,
PHOTOGRAPH, SIGNATURE, PANCOPY, FORM60)
VALUES('C3', 'Mamta', 'Arvind', 'Muzumdar', '28-AUG-1975', 'Service',
'D:/ClntPht/C3.gif', 'D:/ClntSgnt/C3.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP,
PHOTOGRAPH, SIGNATURE, PANCOPY, FORM60)
VALUES('C4', 'Chhaya', 'Sudhakar', 'Bankar', '06-OCT-1976', 'Service',
'D:/ClntPht/C4.gif', 'D:/ClntSgnt/C4.gif', 'Y', 'Y');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP,
PHOTOGRAPH, SIGNATURE, PANCOPY, FORM60)
VALUES('C5', 'Ashwini', 'Dilip', 'Joshi', '20-NOV-1978', 'Business',
'D:/ClntPht/C5.gif', 'D:/ClntSgnt/C5.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP,
PHOTOGRAPH, SIGNATURE, PANCOPY, FORM60)
VALUES('C6', 'Hansel', 'I.', 'Colaco', '01-JAN-1982', 'Service',
'D:/ClntPht/C6.gif', 'D:/ClntSgnt/C6.gif', 'N', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP,
PHOTOGRAPH, SIGNATURE, PANCOPY, FORM60)
VALUES('C7', 'Anil', 'Arun', 'Dhone', '12-OCT-1983', 'Self Employed',
'D:/ClntPht/C7.gif', 'D:/ClntSgnt/C7.gif', 'N', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP,
PHOTOGRAPH, SIGNATURE, PANCOPY, FORM60)
VALUES('C8', 'Alex', 'Austin', 'Fernandes', '30-SEP-1962', 'Executive',
'D:/ClntPht/C8.gif', 'D:/ClntSgnt/C8.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP,
PHOTOGRAPH, SIGNATURE, PANCOPY, FORM60)
VALUES('C9', 'Ashwini', 'Shankar', 'Apte', '19-APR-1979', 'Service',
'D:/ClntPht/C9.gif', 'D:/ClntSgnt/C9.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP,
PHOTOGRAPH, SIGNATURE, PANCOPY, FORM60)
VALUES('C10', 'Namita', 'S.', 'Kanade', '10-JUN-1978', 'Self Employed',
'D:/ClntPht/C10.gif', 'D:/ClntSgnt/C10.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP,
PHOTOGRAPH, SIGNATURE, PANCOPY, FORM60)
VALUES('O11', null, null, null, '14-NOV-1997', 'Retail Business', null, null, 'Y', 'N');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP,
PHOTOGRAPH, SIGNATURE, PANCOPY, FORM60)
VALUES('O12', null, null, null, '23-OCT-1992', 'Information Technology', null, null, 'Y', 'N');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP,
PHOTOGRAPH, SIGNATURE, PANCOPY, FORM60)
VALUES('O13', null, null, null, '05-FEB-1989', 'Community Welfare', null, null, 'Y', 'N');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP,
PHOTOGRAPH, SIGNATURE, PANCOPY, FORM60)
VALUES('O14', null, null, null, '24-MAY-1980', 'Retail Business', null, null, 'N', 'Y');

Output for each of the above INSERT INTO statements:
1 row created.

Insert the values into the SPRT_DOC table (For values refer to 6th chapter under Test Records)

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('0S', 'Individuals / Savings Bank Account', 'Driving Licence / Ration Card / Passport');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('0S', 'Individuals / Savings Bank Account', 'Birth Certificate / School Leaving Certificate');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('1C', 'Propriety / Sole Trading Concerns', 'Letter From The Propriety');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('2C', 'Partnership Concerns', 'Letter From The Partners');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('2C', 'Partnership Concerns', 'Partnership Deed / Registration Certificate');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('3C', 'Hindu Undivided Family Businesses', 'Letter From The Karta');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('3C', 'Hindu Undivided Family Businesses', 'List Of Members');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('4C', 'Limited Companies', 'Copy Of Board Of Directors'' Resolution For Opening The Account');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('4C', 'Limited Companies', 'Memorandum and Articles Of Association');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('4C', 'Limited Companies', 'Certificate Of Incorporation');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('4C', 'Limited Companies', 'Certificate Of Commencement Of Business / Registration Certificate');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('5C', 'Trust Accounts', 'Trust Deed');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('5C', 'Trust Accounts', 'Resolution Of Trustees');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('5C', 'Trust Accounts', 'List Of Trusties');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('6C', 'Clubs / Societies', 'Resolution');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('6C', 'Clubs / Societies', 'Constitution And Bye-laws');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('6C', 'Clubs / Societies', 'Certificate Of Registration');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('7C', 'Legislative Bodies', 'Letter From The Authority');

Output for each of the above INSERT INTO statements:
1 row created.

Insert the values into the ACCT_MSTR table (For values refer to 6th chapter under Test Records)

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO,
INTRO_ACCT_NO, INTRO_SIGN, TYPE, OPR_MODE, CUR_ACCT_TYPE, TITLE, CORP_CUST_NO,
APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN, CURBAL, STATUS)
VALUES('SB1', 'SF-0001', 'JAN03-05', 'B1', 'C1', 'SB1', 'Y', 'SB', 'SI', '0S', null, null, '05-JAN-2003', '05-JAN-

2003', 'E1', 'Y', 'Y', 500, 'A');
INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO,
INTRO_ACCT_NO, INTRO_SIGN, TYPE, OPR_MODE, CUR_ACCT_TYPE, TITLE, CORP_CUST_NO,
APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN, CURBAL, STATUS)
VALUES('CA2', 'SF-0002', 'JAN03-10', 'B1', 'C1', 'SB1', 'Y', 'CA', 'JO', '1C', 'Uttam Stores', 'O11', '07-JAN-

2003', '10-JAN-2003', 'E1', 'Y', 'Y', 2000, 'A');
INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO,
INTRO_ACCT_NO, INTRO_SIGN, TYPE, OPR_MODE, CUR_ACCT_TYPE, TITLE, CORP_CUST_NO,
APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN, CURBAL, STATUS)
VALUES('SB3', 'SF-0003', 'JAN03-22', 'B1', 'C4', 'SB3', 'Y', 'SB', 'SI', '0S', null, null, '20-JAN-2003', '22-JAN-

2003', 'E4', 'Y', 'Y', 500, 'A');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO,
INTRO_ACCT_NO, INTRO_SIGN, TYPE, OPR_MODE, CUR_ACCT_TYPE, TITLE, CORP_CUST_NO,
APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN, CURBAL, STATUS)
VALUES('CA4', 'SF-0004', 'FEB03-05', 'B1', 'C4', 'SB3', 'Y', 'CA', 'AS', '4C', 'Sun''s Pvt. Ltd.', 'O12', '02-FEB-

2003', '05-FEB-2003', 'E4', 'Y', 'Y', 2000, 'A');
INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO,
INTRO_ACCT_NO, INTRO_SIGN, TYPE, OPR_MODE, CUR_ACCT_TYPE, TITLE, CORP_CUST_NO,
APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN, CURBAL, STATUS)
VALUES('SB5', 'SF-0005', 'FEB03-15', 'B1', 'C1', 'SB1', 'Y', 'SB', 'JO', '0S', null, null, '14-FEB-2003', '15-FEB-

2003', 'E1', 'Y', 'Y', 500, 'A');
INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO,
INTRO_ACCT_NO, INTRO_SIGN, TYPE, OPR_MODE, CUR_ACCT_TYPE, TITLE, CORP_CUST_NO,
APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN, CURBAL, STATUS)
VALUES('SB6', 'SF-0006', 'FEB03-27', 'B1', 'C5', 'SB6', 'Y', 'SB', 'ES', '0S', null, null, '27-FEB-2003', '27-FEB-

2003', 'E4', 'Y', 'Y', 500, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO,
INTRO_ACCT_NO, INTRO_SIGN, TYPE, OPR_MODE, CUR_ACCT_TYPE, TITLE, CORP_CUST_NO,
APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN, CURBAL, STATUS)
VALUES('CA7', 'SF-0007', 'MAR03-14', 'B1', 'C8', 'CA7', 'Y', 'CA', 'AS', '6C', 'Puru Hsg. Soc', 'O13', '14-MAR-

2003', '14-MAR-2003', 'E4', 'Y', 'Y', 2000, 'A');
INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO,
INTRO_ACCT_NO, INTRO_SIGN, TYPE, OPR_MODE, CUR_ACCT_TYPE, TITLE, CORP_CUST_NO,
APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN, CURBAL, STATUS)
VALUES('SB8', 'SF-0008', 'MAR03-29', 'B1', 'C9', 'SB8', 'Y', 'SB', 'SI', '0S', null, null, '27-MAR-2003', '29-

MAR-2003', 'E1', 'Y', 'Y', 500, 'A');
INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO,
INTRO_ACCT_NO, INTRO_SIGN, TYPE, OPR_MODE, CUR_ACCT_TYPE, TITLE, CORP_CUST_NO,
APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN, CURBAL, STATUS)
VALUES('SB9', 'SF-0009', 'APR03-05', 'B1', 'C10', 'SB9', 'Y', 'SB', 'JO', '0S', null, null, '05-APR-2003', '05-APR-

2003', 'E4', 'Y', 'Y', 500, 'A');
INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO,
INTRO_ACCT_NO, INTRO_SIGN, TYPE, OPR_MODE, CUR_ACCT_TYPE, TITLE, CORP_CUST_NO,
APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN, CURBAL, STATUS)
VALUES('CA10', 'SF-0010', 'APR03-19', 'B1', 'C10', 'SB9', 'Y', 'CA', 'AS', '3C', 'Ghar Karobar', 'O14', '19-APR-

2003', '19-APR-2003', 'E4', 'Y', 'Y', 2000, 'A');

Output for each of the above INSERT INTO statements:
1 row created.

Insert the values into the FD_MSTR table (For values refer to 6th chapter under Test Records)

INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO, INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN)
VALUES ('FS1', 'SF-0011', 'B1', 'CA2', 'Uttam Stores', 'O11', '1C', null, null, 'N', 'E1', 'Y', 'Y');

INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO, INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN)
VALUES ('FS2', 'SF-0012', 'B1', 'CA4', 'Sun''s Pvt. Ltd.', 'C12', '4C', null, null, 'N', 'E1', 'Y', 'Y');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO, INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN)
VALUES ('FS3', 'SF-0013', 'B1', 'CA7', 'Puru Hsg. Soc', 'O13', '6C', null, null, 'N', 'E4', 'Y', 'Y');

INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO, INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN)
VALUES ('FS4', 'SF-0014', 'B1', 'CA10', 'Ghar Karobar', 'O14', '3C', null, null, 'N', 'E4', 'Y', 'Y');

INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO, INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN)
VALUES ('FS5', 'SF-0015', 'B1', null, null, null, '0S', 'C7', 'SB6', 'Y', 'E4', 'Y', 'Y');

Output for each of the above INSERT INTO statements:
1 row created.

Insert the values into the FDSLAB_MSTR table (For values refer to 6th chapter under Test Records)

INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE)
VALUES(1, 1, 30, 5);

INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE)
VALUES(2, 31, 92, 5.5);

INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE)
VALUES(3, 93, 183, 6);

INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE)
VALUES(4, 184, 365, 6.5);

INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE)
VALUES(5, 366, 731, 7.5);

INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE)
VALUES(6, 732, 1097, 8.5);

INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE)
VALUES(7, 1098, 1829, 10);

Output for each of the above INSERT INTO statements:
1 row created.

Insert the values into the FD_DTLS table (For values refer to 6th chapter under Test Records)

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT, INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS1', 'F1', 'S', 'CA2', 365, '02-APR-2003', '01-APR-2004', 5000, 5350.00, 6.5, 'A', 'Y');

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT, INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS1', 'F2', 'S', 'CA2', 365, '02-APR-2003', '01-APR-2004', 5000, 5350.00, 6.5, 'A', 'N');

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT, INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS2', 'F3', 'S', 'CA4', 366, '25-MAY-2003', '25-MAY-2004', 10000, 10802.19, 7.5, 'A', 'Y');

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT, INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS2', 'F4', 'S', 'CA4', 366, '15-JUN-2003', '15-JUN-2004', 10000, 10802.19, 7.5, 'A', 'Y');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT, INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS3', 'F5', 'S', 'CA7', 183, '24-JUN-2003', '24-DEC-2003', 2000, 2060.16, 6, 'A', 'Y');

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT, INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS4', 'F6', 'S', 'CA10', 732, '19-JUL-2003', '20-JUL-2005', 5000, 5902.47, 8.5, 'A', 'Y');

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT, INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS5', 'F7', 'S', 'SB6', 366, '27-JUL-2003', '27-JUL-2004', 5000, 5401.10, 7.5, 'A', 'N');

Output for each of the above INSERT INTO statements:
1 row created.

Insert the values into the ACCT_FD_CUST_DTLS table (For values refer to 6th chapter under Test Records)

INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB1', 'C1');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA2', 'C2');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA2', 'C3');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB3', 'C4');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA4', 'C4');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA4', 'C5');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB5', 'C1');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB5', 'C4');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB6', 'C5');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB6', 'C7');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA7', 'C6');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA7', 'C8');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB8', 'C9');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB9', 'C3');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB9', 'C10');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA10', 'C10');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA10', 'C9');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS1', 'C2');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS1', 'C3');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS2', 'C4');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS2', 'C5');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS2', 'C5');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS3', 'C6');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS3', 'C8');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS4', 'C10');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS4', 'C9');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS5', 'C5');

Output for each of the above INSERT INTO statements:
1 row created.

Insert the values into the NOMINEE_MSTR table (For values refer to 6th chapter under Test Records)

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

VALUES('N1', 'CA2', 'Joseph Martin Dias', '17-SEP-1984', 'Colleague');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N2', 'CA2', 'Nilesh Sawant', '25-AUG-1987', 'Colleague');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N3', 'SB1', 'Chriselle Ivan Bayross', '25-JUN-1952', 'Daughter');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N4', 'SB3', 'Mamta Arvind Muzumdar', '28-AUG-1975', 'Friend');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N5', 'SB6', 'Preeti Suresh Shah', '12-FEB-1978', 'Friend');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N6', 'SB8', 'Rohit Rajan Sahakarkar', '30-MAY-1985', 'Relative');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N7', 'CA10', 'Namita S. Kanade', '10-JUN-1978', 'Niece');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N8', 'FS1', 'Rohit Rajan Sahakarkar', '30-MAY-1985', 'Relative');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N9', 'FS2', 'Joseph Martin Dias', '17-SEP-1984', 'Colleague');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N10', 'FS2', 'Nilesh Sawant', '25-AUG-1987', 'Colleague');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N11', 'FS3', 'Chriselle Ivan Bayross', '25-JUN-1952', 'Colleague');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N12', 'FS3', 'Mamta Arvind Muzumdar', '28-AUG-1975', 'Friend');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N13', 'FS4', 'Namita S. Kanade', '10-JUN-1978', 'Relative');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N14', 'FS5', 'Pramila P. Pius', '10-OCT-1985', 'Niece');

Output for each of the above INSERT INTO statements:
1 row created.

Insert the values into the ADDR_DTLS table (For values refer to 6th chapter under Test Records)

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(1, 'B1', 'H', 'A/5, Jay Chambers,', 'Service Road, Vile Parle (East),', 'Mumbai', 'Maharashtra', '400057');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(2, 'B2', 'B', 'BSES Chambers, 10th floor,', 'Near Rly. Station, Andheri (West),', 'Mumbai', 'Maharashtra',

'400058');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(3, 'B3', 'B', 'Prabhat Complex, No. 5 / 6,', 'Opp. Air India Bldg., Churchgate,', 'Mumbai', 'Maharashtra',

'400004');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(4, 'B4', 'B', '23/A, Swarna Bldg., Smt. Rai Marg,', 'Eastern Express Highway, Kurla (East),', 'Mumbai',

'Maharashtra', '400045');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(5, 'B5', 'B', 'Vikas Centre, Shop 37, Near National Park,', 'Western Express Highway, Borivali (East),',

'Mumbai', 'Maharashtra', '400078');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(6, 'B6', 'B', '24/A, Mahim Plaza, First Floor,', 'Mahim (West),', 'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(7, 'E1', 'N', 'F-12, Diamond Palace, West Avenue,', 'North Avenue, Santacruz (West),', 'Mumbai',

'Maharashtra', '400056');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(8, 'E2', 'C', 'Desai House, Plot No. 25, P.G. Marg,',
'Near Malad Rly. Stat., Malad (West),', 'Mumbai', 'Maharashtra', '400078');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(9, 'E3', 'N', 'Room No. 56, 3rd Floor, Swamibhavan,', 'J. P. Road Junction, Andheri (East),', 'Mumbai',

'Maharashtra', '400059');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(10, 'E4', 'C', '301, Thomas Palace, Opp. Indu Child Care,', 'Yadnik Nagar, Andheri (West),', 'Mumbai',

'Maharashtra', '400058');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(11, 'E5', 'C', '456/A, Bldg. No. 4, Vahatuk Nagar,', 'Amboli, Andheri (West),', 'Mumbai', 'Maharashtra',

'400058');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(12, 'E6', 'N', '201, Meena Towers, Nr. Sun Gas Agency,', 'S. V. Rd., Goregoan (West),', 'Mumbai',

'Maharashtra', '400076');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(13, 'E7', 'N', 'Patel Chawl, Rm. No. 15, B. P. Lal Marg,', 'Mahim (West),', 'Mumbai', 'Maharashtra',

'400016');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(14, 'E8', 'C', 'A - 10, Neelam, L. J. Road,', 'Mahim (East),', 'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(15, 'E9', 'N', '1/12 Bal Govindas Society, M. B. Raut Rd.,', 'Dadar (East),', 'Mumbai', 'Maharashtra',

'400028');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(16, 'E10', 'C', 'Pathak Nagar, Cadal Road,', 'Mahim (West),', 'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(17, 'C1', 'C', 'F-12, Diamond Palace, West Avenue,', 'North Avenue, Santacruz (West),', 'Mumbai',

'Maharashtra', '400056');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(18, 'C2', 'C', 'F-12, Silver Stream,', 'Santacruz (East),', 'Mumbai', 'Maharashtra', '400056');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(19, 'C3', 'C', 'Magesh Prasad,', 'Saraswati Baug, Jogeshwari(E),', 'Mumbai', 'Maharashtra', '400060');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(20, 'C4', 'C', '4, Sampada,', 'Kataria Road, Mahim,', 'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(21, 'C5', 'C', '104, Vikram Apts. Bhagat Lane,', 'Shivaji Park, Mahim,', 'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(22, 'C6', 'C', '12, Radha Kunj, N.C Kelkar Road,', 'Dadar,', 'Mumbai', 'Maharashtra', '400028');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(23, 'C7', 'C', 'A/14, Shanti Society, Mogal Lane,', 'Mahim,', 'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(24, 'C8', 'C', '5, Vagdevi, Senapati Bapat Rd.,', 'Dadar,', 'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(25, 'C9', 'C', 'A-10 Nutan Vaishali,', 'Shivaji Park, Mahim,', 'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(26, 'C10', 'C', 'B-10, Makarand Society,', 'Cadal Road, Mahim,', 'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(27, 'N1', 'C', '307/E, Meena Mansion,', 'R. S. Road, Andheri (West),', 'Mumbai', 'Maharashtra', '400058');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(28, 'N2', 'C', 'Smt. Veenu Chawl, Sawant Colony Rd.,', 'Opp. Veer Road, Matunga (West),', 'Mumbai',

'Maharashtra', '400016');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(29, 'N3', 'C', 'F-12, Silver Stream,', 'Santacruz (East),', 'Mumbai', 'Maharashtra', '400056');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(30, 'N4', 'C', 'Magesh Prasad,', 'Saraswati Baug, Jogeshwari(E),', 'Mumbai', 'Maharashtra', '400060');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(31, 'N5', 'C', 'Rita Apartment, Room No. 46, 2nd Floor,', 'J. P. Road, Andheri (East),', 'Mumbai',

'Maharashtra', '400067');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(32, 'N6', 'N', '106/A, Sunrise Apmt., Opp. Vahatuk Nagar,', 'Kevni-Pada, Jogeshwari (West),', 'Mumbai',

'Maharashtra', '400102');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(33, 'N7', 'C', 'Pathak Nagar, Cadal Road,', 'Mahim (West),', 'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(34, 'O11', 'H', 'Shop No. 4, Simon Streams,', 'V. P. Road, Andheri (West),', 'Mumbai', 'Maharashtra',

'400058');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(35, 'O12', 'H', '230-E, Patel Chambers,', 'Service Road, Vile Parle (East),', 'Mumbai', 'Maharashtra',

'400057');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(36, 'O13', 'H', 'G-2, Puru Hsg. Society,', 'Senapati Bapat Rd., Dadar,', 'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(37, 'O14', 'H', 'B-10, Makarand Society,', 'Cadal Road, Mahim,', 'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(38, 'N8', 'N', '106/A, Sunrise Apmt., Opp. Vahatuk Nagar,', 'Kevni-Pada, Jogeshwari (West),', 'Mumbai',

'Maharashtra', '400102');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(39, 'N9', 'C', '307/E, Meena Mansion,', 'R. S. Road, Andheri (West),', 'Mumbai', 'Maharashtra', '400058');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(40, 'N10', 'C', 'Smt. Veenu Chawl, Sawant Colony Rd.,', 'Opp. Veer Road, Matunga (West),', 'Mumbai',

'Maharashtra', '400016');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(41, 'N11', 'C', 'F-12, Silver Stream,', 'Santacruz (East),', 'Mumbai', 'Maharashtra', '400056');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(42, 'N12', 'C', 'Magesh Prasad', 'Saraswati Baug, Jogeshwari(E),',
'Mumbai', 'Maharashtra', '400060');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(43, 'N13', 'C', 'Pathak Nagar, Cadal Road,', 'Mahim (West),', 'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE,
PINCODE)
VALUES(44, 'N14', 'C', '405,Vahatuk Nagar, Kevni-Pada,', 'Jogeshwari (West),', 'Mumbai', 'Maharashtra', '400102');

Output for each of the above INSERT INTO statements:
1 row created.

Insert the values into the CNTC_DTLS table

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(1, 'B1', 'O', '26124571');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(1, 'B1', 'F', '26124533');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(1, 'B1', 'E', 'admin_vileparle@bom2.vsnl.in');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(2, 'B2', 'O', '26790014');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(2, 'B2', 'E', 'admin_andheri@bom2.vsnl.in');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(3, 'B3', 'O', '23457855');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(3, 'B3', 'E', 'admin_churchgate@bom2.vsnl.in');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(4, 'B4', 'O', '25545455');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(4, 'B4', 'E', 'admin_sion@bom2.vsnl.in');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

VALUES(5, 'B5', 'O', '28175454');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(5, 'B5', 'E', 'admin_borivali@bom2.vsnl.in');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(6, 'B6', 'O', '24304545');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(6, 'B6', 'E', 'admin_matunga@bom2.vsnl.in');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(7, 'E1', 'R', '26045953');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(8, 'E2', 'R', '28883779');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(9, 'E3', 'R', '28377634');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(10, 'E4', 'R', '26323560');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(11, 'E5', 'R', '26793231');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(12, 'E6', 'R', '28085654');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(13, 'E7', 'R', '24442342');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(14, 'E8', 'R', '24365672');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(15, 'E9', 'R', '24327349');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(16, 'E10', 'R', '24302579');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(17, 'C1', 'R', '26405853');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(17, 'C1', 'O', '26134553');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(17, 'C1', 'O', '26134571');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(17, 'C1', 'M', '9820178955');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(18, 'C2', 'R', '26045754');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(18, 'C2', 'O', '26134571');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(19, 'C3', 'R', '28324567');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

VALUES(19, 'C3', 'O', '26197654');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(20, 'C4', 'R', '24449852');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(20, 'C4', 'O', '28741370');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(21, 'C5', 'R', '24302934');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(21, 'C5', 'O', '22819964');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(22, 'C6', 'R', '24217592');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(23, 'C7', 'R', '24372247');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(24, 'C8', 'O', '26480903');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(25, 'C9', 'R', '24313408');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(25, 'C9', 'M', '9821176651');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(26, 'C10', 'R', '24362680');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(26, 'C10', 'O', '28973355');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(26, 'C10', 'M', '9820484648');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(27, 'N1', 'R', '26762154');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(28, 'N2', 'R', '24307887');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(29, 'N3', 'R', '260455754');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(30, 'N4', 'R', '28645489');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(31, 'N5', 'R', '30903564');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(32, 'N6', 'R', '26793771');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(33, 'N7', 'R', '24304455');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(34, 'O11', 'O', '26790055');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(34, 'O11', 'F', '26784409');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(35, 'O12', 'O', '26120455');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(35, 'O12', 'O', '26120456');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(35, 'O12', 'F', '26121450');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(35, 'O12', 'E', 'admin@sunpvtltd.com');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(35, 'O12', 'W', 'www.sunpvtltd.com');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(36, 'O13', 'O', '24301090');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(36, 'O13', 'O', '24301196');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(37, 'O14', 'O', '24321122');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(38, 'N8', 'R', '26793771');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(39, 'N9', 'R', '26762154');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(40, 'N10', 'R', '24307887');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(41, 'N11', 'R', '26045754');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(42, 'N12', 'R', '28645489');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(43, 'N13', 'R', '24304455');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(44, 'N14', 'R', '26790180');

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA)
VALUES(44, 'N14', 'R', '26771275');

Output for each of the above INSERT INTO statements:
1 row created.

Insert the values into the TRANS_MSTR table (For values refer to 6th chapter under Test Records)

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T1', 'SB1', '05-JAN-2003', 'C', 'Initial Payment', 'D', 500, 500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T2', 'CA2', '10-JAN-2003', 'C', 'Initial Payment', 'D', 2000, 2000);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T3', 'SB3', '22-JAN-2003', 'C', 'Initial Payment', 'D', 500, 500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T4', 'CA4', '05-FEB-2003', 'B', 'Initial Payment', 'D', 2000, 2000);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T5', 'SB5', '15-FEB-2003', 'B', 'Initial Payment', 'D', 500, 500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T6', 'SB6', '27-FEB-2003', 'C', 'Initial Payment', 'D', 500, 500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T7', 'CA7', '14-MAR-2003', 'B', 'Initial Payment', 'D', 2000, 2000);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T8', 'SB8', '29-MAR-2003', 'C', 'Initial Payment', 'D', 500, 500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T9', 'SB9', '05-APR-2003', 'C', 'Initial Payment', 'D', 500, 500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T10', 'SB9', '15-APR-2003', 'B', 'CLR-204907', 'D', 3000, 3500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

VALUES('T11', 'SB9', '17-APR-2003', 'C', 'Self', 'W', 2500, 1000);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T12', 'CA10', '19-APR-2003', 'B', 'Initial Payment', 'D', 2000, 2000);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T13', 'SB9', '05-JUN-2003', 'B', 'CLR-204908', 'D', 3000, 4000);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T14', 'SB9', '27-JUN-2003', 'C', 'Self', 'W', 2500, 1500);

Output for each of the above INSERT INTO statements:
1 row created.

Insert the values into the TRANS_DTLS table (For values refer to 6th chapter under Test Records)

INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)
VALUES('T4', 098324, '02-FEB-2003', 'Self', '05-FEB-2003', 'HDFC', 'Vile Parle (East)', '2982');

INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)
VALUES('T5', 232324, '14-FEB-2003', 'Self', '15-FEB-2003', 'India Bank', 'Andheri (West)', '30434');

INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)
VALUES('T7', 434560, '14-MAR-2003', 'Self', '14-MAR-2003', 'ICICI Bank', 'Bandra (West)', '4882');

INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)
VALUES('T10', 204907, '14-APR-2003', 'Self', '15-APR-2003', 'Memon Co-operative Bank', 'Jogeshwari (West)',

'1767');
INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)
VALUES('T12', 100907, '19-APR-2003', 'Self', '19-APR-2003', 'Memon Co-operative Bank', 'Jogeshwari (West)',

'2001');
INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)
VALUES('T13', 204908, '01-JUN-2003', 'Self', '05-JUN-2003', 'Memon Co-operative Bank', 'Jogeshwari (West)',

'1767');

Output for each of the above INSERT INTO statements:
1 row created.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

4. Relational Databases

The frustration with the inadequate capabilities of network and hierarchical databases resulted in the invention of the
relational data model. The relational data model took the idea of the network database some several steps further.
Relational models — just like hierarchical and network models — are based upon tables and use parent/child relationships.
(Though this relationship was implemented through column values as opposed to a low-level physical pointer defining the
relationship; more on that later in the chapter.)
Tables
A table is a basic building unit of the relational database. It is a fairly intuitive way of organizing data and has been around
for centuries. A table consists of rows and columns (called records and fields in database jargon). Each table has a unique
name in the database (i.e., unique fully qualified name, the one that includes schema or database name as a prefix).

Note The Dot (.) notation in a fully qualified name is commonly used in the programming world to
describe hierarchy of the objects and their properties. This could refer not only to the database objects
but also to the structures, user-defined types, and such. For example, a table field in an MS SQL
Server database could be referred to as ACME.DBO.CUSTOMER. CUST_ID_N where ACME is a
database name, DBO is the table owner (Microsoft standard), CUSTOMER is the name of the table,
and CUST_ID_N is the column name in the CUSTOMER table.

Each field has a unique name within the table, and any table must have at least one field. The number of fields per table is
usually limited, the actual limitation being dependent on a particular implementation. Unlike legacy database structure,
records in a table are not stored or retrieved in any particular order, the task of sorting the record in relational databases
systems (RDBMS) is relegated to SQL.

A record thus is composed of a number of cells, where each cell has a unique name and might contain some data. A table
that has no records is called an empty table.
Data within the field must be of the same type, for example, the field AMOUNT contains only numbers, and field
DESCRIPTION, only words. The set of the data within one field is said to be column's domain.

Note Early databases — relational or otherwise — were designed to contain only text data; modern
databases store anything that could be converted into binary format: pictures, movies, audio records,
and so on.

The good relational design would make sure that such a record describes an entity — another relational database term to be
discussed later in the book but worth mentioning here. To put it in other words, the record should not contain irrelevant
information: CUSTOMER table deals with the customer information only, its records should not contain information about,
say, products that this customer ordered.

There is no theoretical limit on the number of rows a table could have, though some implementations impose restrictions;
also there are (or at least ought to be) practical considerations to the limits: data retrieval speed, amount of storage, and so
on.

Relationships
Tables in RDBMS might or might not be related. As it was mentioned before, RDBMS is built upon parent/child
relationship notion (hence the name — relational), but unlike "in legacy databases (hierarchical, network) these relations
are based solely on the values in the table columns; these relationships are meaningful in logical terms, not in low-level
computer specific pointers. Let's take the example of our fictitious order entry database (the one that we will design, build,
and use throughout the book). The ORDER_HEADER table is related to CUSTOMER table since both of these tables have
a common set of values: The field ORDHDR_CUSTID_FN (customer ID) in ORDER_HEADER (and its values)
corresponds to CUST_ID_N in CUSTOMER. The field CUST_ID_N is said to be a primary key for the CUSTOMER table
and a foreign key for the ORDER_HEADER table (under different name).
Primary key

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

The primary key holds more than one job in RDBMS. We've said already that it is used to define a relationship; but its
primary role is to uniquely identify each record in a table.

In the days of legacy databases, the records were always stored in some predefined order; if such an order had to be broken
(because somebody had inserted records in a wrong order or business rule was changed), then the whole table (and, most
likely, the whole database) had to be rebuilt. The RDBMS abolishes fixed order for the records, but it still needs some
mechanism of identifying the records uniquely, and the primary key, based on the idea of a field (or fields) that contains set
unique values, serves exactly this purpose.

By it is very nature, the primary key cannot be empty; this means that in a table with defined primary key, the primary key
fields must contain data for each record.

Note Though it is not a requirement to have a primary key on each and every table, it is considered to be a
good practice to have one; in fact, many RDBMS implementations would warn you if you create a
table without defining a primary key. Some purists go even further, specifying that the primary key
should be meaningless in the sense that they would use some generated unique value (like
EMPLOYEE_ID) instead of, say, Social Security numbers (despite that these are unique as well).

A primary key could consist of one or more columns, i.e., though some fields may contain duplicate values, their
combination (set) is unique through the entire table. A key that consists of several columns is called a composite key.

Note In the world of RDBMS, only tables that have primary keys can be related. Though the primary key
is a cornerstone for defining relation in RDBMS, the actual implementations (especially early ones)
have not always provided a built-in support for this logical concept. In practice, the task of enforcing
uniqueness of a chosen primary key was the responsibility of programmers (requiring them to check
for existing values before inserting new records, for example). Today all major relational database
products have built-in support for primary keys; on a very basic level this means that the database
does its own checking for unique constraint violations and will raise an error whenever an attempt to
insert a duplicate record is made.

Foreign key

Let's go back to our CUSTOMER and ORDER_HEADER tables. By now you understand why the CUST_ID_N was
designated as a primary key — it has unique value, no customer can possibly have more than one ID, and no ID could be
assigned to more than one customer. To track what customers placed which orders, you need something that will provide a
link between customers and their orders.
Table ORDER_HEADER has its own primary key — ORDHDR_ID_N which uniquely identifies orders; in addition to
that it will have a foreign key ORDHDR_CUSTID_FN field. The values in that field correspond to the values in the
CUST_ID_N primary key field for the CUSTOMER table. Note that, unlike the primary key, the foreign key is not
required to be unique — one customer could place several orders.
Now, by looking into ORDER_HEADER table you can find which customers placed particular orders. The table
ORDER_HEADER became related to table CUSTOMER. It became easy to find a customer based on orders, or find orders
for a customer. You no longer need to know database layout, order of the records in the table, or master some low-level
proprietary programming language to query data; it's now possible to run ad-hoc queries formulated in standard English-
like language — the Structured Query Language.
Invasion of RDBMS

In spite of the clear advantages of the relational database model, it took some time for it to become workable. One of the
main reasons was the hardware. The logically clear and clean model proved to be quite a task to implement, and even then
it required much more in terms of memory and processing power than legacy databases.

The development of relational databases was driven by the need of the medium to big businesses to gather, preserve, and
analyze data. In 1965, Gordon Moore, the cofounder of Intel, made his famous observation that the number of transistors
per square inch on the integrated circuits (IC) doubles every year ever since the IC was invented. Surprisingly, this rule still
holds true. More powerful machines made it feasible to implement and sell RDBMS; cheap memory and powerful
processors made them fast; perpetually growing appetites for information made RDBMS products a commodity, drastically

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

cutting their price down. Today, according to some estimates, less than 10 percent of the market is being held by the
database legacy "dinosaurs" — mostly because of significant investment made by their owners more than 20 years ago. For
better or for worse, relational database systems have come to rule on planet Earth.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

5. Stating a database design problem.

Before I start with the list, let me be honest for a minute. I used to have a preacher who made sure to tell us before some
sermons that he was preaching to himself as much as he was to the congregation. When I speak, or when I write an article, I
have to listen to that tiny little voice in my head that helps filter out my own bad habits, to make sure that I am teaching only the
best practices. Hopefully, after reading this article, the little voice in your head will talk to you when you start to stray from what
is right in terms of database design practices.

So, the list:

1. Poor design/planning
2. Ignoring normalization
3. Poor naming standards
4. Lack of documentation
5. One table to hold all domain values
6. Using identity/guid columns as your only key
7. Not using SQL facilities to protect data integrity
8. Not using stored procedures to access data
9. Trying to build generic objects
10. Lack of testing

Poor design/planning

"If you don't know where you are going, any road will take you there" – George Harrison

Prophetic words for all parts of life and a description of the type of issues that plague many projects these days.

Let me ask you: would you hire a contractor to build a house and then demand that they start pouring a foundation the very next
day? Even worse, would you demand that it be done without blueprints or house plans? Hopefully, you answered "no" to both of
these. A design is needed make sure that the house you want gets built, and that the land you are building it on will not sink into
some underground cavern. If you answered yes, I am not sure if anything I can say will help you.

Like a house, a good database is built with forethought, and with proper care and attention given to the needs of the data that
will inhabit it; it cannot be tossed together in some sort of reverse implosion.

Since the database is the cornerstone of pretty much every business project, if you don't take the time to map out the needs of the
project and how the database is going to meet them, then the chances are that the whole project will veer off course and lose
direction. Furthermore, if you don't take the time at the start to get the database design right, then you'll find that any substantial
changes in the database structures that you need to make further down the line could have a huge impact on the whole project,
and greatly increase the likelihood of the project timeline slipping.

Far too often, a proper planning phase is ignored in favor of just "getting it done". The project heads off in a certain direction
and when problems inevitably arise – due to the lack of proper designing and planning – there is "no time" to go back and fix
them properly, using proper techniques. That's when the "hacking" starts, with the veiled promise to go back and fix things later,
something that happens very rarely indeed.

Admittedly it is impossible to predict every need that your design will have to fulfill and every issue that is likely to arise, but it
is important to mitigate against potential problems as much as possible, by careful planning.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Ignoring Normalization

Normalization defines a set of methods to break down tables to their constituent parts until each table represents one and only
one "thing", and its columns serve to fully describe only the one "thing" that the table represents.

The concept of normalization has been around for 30 years and is the basis on which SQL and relational databases are
implemented. In other words, SQL was created to work with normalized data structures. Normalization is not just some plot by
database programmers to annoy application programmers (that is merely a satisfying side effect!)

SQL is very additive in nature in that, if you have bits and pieces of data, it is easy to build up a set of values or results. In the
FROM clause, you take a set of data (a table) and add (JOIN) it to another table. You can add as many sets of data together as
you like, to produce the final set you need.

This additive nature is extremely important, not only for ease of development, but also for performance. Indexes are most
effective when they can work with the entire key value. Whenever you have to use SUBSTRING, CHARINDEX, LIKE, and
so on, to parse out a value that is combined with other values in a single column (for example, to split the last name of a person
out of a full name column) the SQL paradigm starts to break down and data becomes become less and less searchable.

So normalizing your data is essential to good performance, and ease of development, but the question always comes up: "How
normalized is normalized enough?" If you have read any books about normalization, then you will have heard many times that
3rd Normal Form is essential, but 4th and 5th Normal Forms are really useful and, once you get a handle on them, quite easy to
follow and well worth the time required to implement them.

In reality, however, it is quite common that not even the first Normal Form is implemented correctly.

Whenever I see a table with repeating column names appended with numbers, I cringe in horror. And I cringe in horror quite
often. Consider the following example Customer table:

Are there always 12 payments? Is the order of payments significant? Does a NULL value for a payment mean UNKNOWN (not
filled in yet), or a missed payment? And when was the payment made?!?

A payment does not describe a Customer and should not be stored in the Customer table. Details of payments should be stored
in a Payment table, in which you could also record extra information about the payment, like when the payment was made, and
what the payment was for:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

In this second design, each column stores a single unit of information about a single "thing" (a payment), and each row
represents a specific instance of a payment.

This second design is going to require a bit more code early in the process but, it is far more likely that you will be able to figure
out what is going on in the system without having to hunt down the original programmer and kick their butt…sorry… figure out
what they were thinking

Poor naming standards

"That which we call a rose, by any other name would smell as sweet"

This quote from Romeo and Juliet by William Shakespeare sounds nice, and it is true from one angle. If everyone agreed that,
from now on, a rose was going to be called dung, then we could get over it and it would smell just as sweet. The problem is that
if, when building a database for a florist, the designer calls it dung and the client calls it a rose, then you are going to have some
meetings that sound far more like an Abbott and Costello routine than a serious conversation about storing information about
horticulture products.

Names, while a personal choice, are the first and most important line of documentation for your application. I will not get into
all of the details of how best to name things here– it is a large and messy topic. What I want to stress in this article is the need
for consistency. The names you choose are not just to enable you to identify the purpose of an object, but to allow all future
programmers, users, and so on to quickly and easily understand how a component part of your database was intended to be used,
and what data it stores. No future user of your design should need to wade through a 500 page document to determine the
meaning of some wacky name.

Consider, for example, a column named, X304_DSCR. What the heck does that mean? You might decide, after some head
scratching, that it means "X304 description". Possibly it does, but maybe DSCR means discriminator, or discretizator?

Unless you have established DSCR as a corporate standard abbreviation for description, then X304_DESCRIPTION is a much
better name, and one leaves nothing to the imagination.

That just leaves you to figure out what the X304 part of the name means. On first inspection, to me, X304 sounds like more like
it should be data in a column rather than a column name. If I subsequently found that, in the organization, there was also an
X305 and X306 then I would flag that as an issue with the database design. For maximum flexibility, data is stored in columns,
not in column names.

Along these same lines, resist the temptation to include "metadata" in an object's name. A name such as tblCustomer or
colVarcharAddress might seem useful from a development perspective, but to the end user it is just confusing. As a developer,

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

you should rely on being able to determine that a table name is a table name by context in the code or tool, and present to the
users clear, simple, descriptive names, such as Customer and Address.

A practice I strongly advise against is the use of spaces and quoted identifiers in object names. You should avoid column names
such as "Part Number" or, in Microsoft style, [Part Number], therefore requiring you users to include these spaces and
identifiers in their code. It is annoying and simply unnecessary.

Acceptable alternatives would be part_number, partNumber or PartNumber. Again, consistency is key. If you choose
PartNumber then that's fine – as long as the column containing invoice numbers is called InvoiceNumber, and not one of the
other possible variations.

Lack of documentation

I hinted in the intro that, in some cases, I am writing for myself as much as you. This is the topic where that is most true. By
carefully naming your objects, columns, and so on, you can make it clear to anyone what it is that your database is modeling.
However, this is only step one in the documentation battle. The unfortunate reality is, though, that "step one" is all too often the
only step.

Not only will a well-designed data model adhere to a solid naming standard, it will also contain definitions on its tables,
columns, relationships, and even default and check constraints, so that it is clear to everyone how they are intended to be used.
In many cases, you may want to include sample values, where the need arose for the object, and anything else that you may
want to know in a year or two when "future you" has to go back and make changes to the code.

NOTE:
Where this documentation is stored is largely a matter of corporate standards and/or convenience to the developer and end
users. It could be stored in the database itself, using extended properties. Alternatively, it might be in maintained in the data
modeling tools. It could even be in a separate data store, such as Excel or another relational database. My company maintains
a metadata repository database, which we developed in order to present this data to end users in a searchable, linkable format.
Format and usability is important, but the primary battle is to have the information available and up to date.

Your goal should be to provide enough information that when you turn the database over to a support programmer, they can
figure out your minor bugs and fix them (yes, we all make bugs in our code!). I know there is an old joke that poorly
documented code is a synonym for "job security." While there is a hint of truth to this, it is also a way to be hated by your
coworkers and never get a raise. And no good programmer I know of wants to go back and rework their own code years later. It
is best if the bugs in the code can be managed by a junior support programmer while you create the next new thing. Job security
along with raises is achieved by being the go-to person for new challenges.

One table to hold all domain values

"One Ring to rule them all and in the darkness bind them"

This is all well and good for fantasy lore, but it's not so good when applied to database design, in the form of a "ruling" domain
table. Relational databases are based on the fundamental idea that every object represents one and only one thing. There should
never be any doubt as to what a piece of data refers to. By tracing through the relationships, from column name, to table name,
to primary key, it should be easy to examine the relationships and know exactly what a piece of data means.

The big myth perpetrated by architects who don't really understand relational database architecture (me included early in my
career) is that the more tables there are, the more complex the design will be. So, conversely, shouldn't condensing multiple
tables into a single "catch-all" table simplify the design? It does sound like a good idea, but at one time giving Pauly Shore the
lead in a movie sounded like a good idea too.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

For example, consider the following model snippet where I needed domain values for:

 Customer CreditStatus
 Customer Type
 Invoice Status
 Invoice Line Item BackOrder Status
 Invoice Line Item Ship Via Carrier

On the face of it that would be five domain tables…but why not just use one generic domain table, like this?

This may seem a very clean and natural way to design a table for all but the problem is that it is just not very natural to work
with in SQL. Say we just want the domain values for the Customer table:

SELECT *
FROM Customer

JOIN GenericDomain as CustomerType
ON Customer.CustomerTypeId = CustomerType.GenericDomainId

and CustomerType.RelatedToTable = 'Customer'
and CustomerType.RelatedToColumn = 'CustomerTypeId'

JOIN GenericDomain as CreditStatus
ON Customer.CreditStatusId = CreditStatus.GenericDomainId

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

and CreditStatus.RelatedToTable = 'Customer'
and CreditStatus.RelatedToColumn = ' CreditStatusId'

As you can see, this is far from being a natural join. It comes down to the problem of mixing apples with oranges. At first
glance, domain tables are just an abstract concept of a container that holds text. And from an implementation centric standpoint,
this is quite true, but it is not the correct way to build a database. In a database, the process of normalization, as a means of
breaking down and isolating data, takes every table to the point where one row represents one thing. And each domain of values
is a distinctly different thing from all of the other domains (unless it is not, in which case the one table will suffice.). So what
you do, in essence, is normalize the data on each usage, spreading the work out over time, rather than doing the task once and
getting it over with.

So instead of the single table for all domains, you might model it as:

Looks harder to do, right? Well, it is initially. Frankly it took me longer to flesh out the example tables. But, there are quite a
few tremendous gains to be had:

 Using the data in a query is much easier:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

SELECT *
FROM Customer

JOIN CustomerType
ON Customer.CustomerTypeId = CustomerType.CustomerTypeId

JOIN CreditStatus
ON Customer.CreditStatusId = CreditStatus.CreditStatusId

 Data can be validated using foreign key constraints very naturally, something not feasible for the other solution unless
you implement ranges of keys for every table – a terrible mess to maintain.

 If it turns out that you need to keep more information about a ShipViaCarrier than just the code, 'UPS', and
description, 'United Parcel Service', then it is as simple as adding a column or two. You could even expand the table to
be a full blown representation of the businesses that are carriers for the item.

 All of the smaller domain tables will fit on a single page of disk. This ensures a single read (and likely a single page in
cache). If the other case, you might have your domain table spread across many pages, unless you cluster on the
referring table name, which then could cause it to be more costly to use a non-clustered index if you have many values.

 You can still have one editor for all rows, as most domain tables will likely have the same base structure/usage. And
while you would lose the ability to query all domain values in one query easily, why would you want to? (A union
query could easily be created of the tables easily if needed, but this would seem an unlikely need.)

I should probably rebut the thought that might be in your mind. "What if I need to add a new column to all domain tables?" For
example, you forgot that the customer wants to be able to do custom sorting on domain values and didn't put anything in the
tables to allow this. This is a fair question, especially if you have 1000 of these tables in a very large database. First, this rarely
happens, and when it does it is going to be a major change to your database in either way.

Second, even if this became a task that was required, SQL has a complete set of commands that you can use to add columns to
tables, and using the system tables it is a pretty straightforward task to build a script to add the same column to hundreds of
tables all at once. That will not be as easy of a change, but it will not be so much more difficult to outweigh the large benefits.

The point of this tip is simply that it is better to do the work upfront, making structures solid and maintainable, rather than trying
to attempt to do the least amount of work to start out a project. By keeping tables down to representing one "thing" it means that
most changes will only affect one table, after which it follows that there will be less rework for you down the road.

Using identity/guid columns as your only key

First Normal Form dictates that all rows in a table must be uniquely identifiable. Hence, every table should have a primary key.
SQL Server allows you to define a numeric column as an IDENTITY column, and then automatically generates a unique value
for each row. Alternatively, you can use NEWID() (or NEWSEQUENTIALID()) to generate a random, 16 byte unique value
for each row. These types of values, when used as keys, are what are known as surrogate keys. The word surrogate means
"something that substitutes for" and in this case, a surrogate key should be the stand-in for a natural key.

The problem is that too many designers use a surrogate key column as the only key column on a given table. The surrogate key
values have no actual meaning in the real world; they are just there to uniquely identify each row.

Now, consider the following Part table, whereby PartID is an IDENTITY column and is the primary key for the table:

PartID PartNumber Description
1 XXXXXXXX The X part
2 XXXXXXXX The X part
3 YYYYYYYY The Y part

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

How many rows are there in this table? Well, there seem to be three, but are rows with PartIDs 1 and 2 actually the same row,
duplicated? Or are they two different rows that should be unique but were keyed in incorrectly?

The rule of thumb I use is simple. If a human being could not pick which row they want from a table without knowledge of the
surrogate key, then you need to reconsider your design. This is why there should be a key of some sort on the table to guarantee
uniqueness, in this case likely on PartNumber.

In summary: as a rule, each of your tables should have a natural key that means something to the user, and can uniquely identify
each row in your table. In the very rare event that you cannot find a natural key (perhaps, for example, a table that provides a log
of events), then use an artificial/surrogate key.

Not using SQL facilities to protect data integrity

All fundamental, non-changing business rules should be implemented by the relational engine. The base rules of nullability,
string length, assignment of foreign keys, and so on, should all be defined in the database.

There are many different ways to import data into SQL Server. If your base rules are defined in the database itself can you
guarantee that they will never be bypassed and you can write your queries without ever having to worry whether the data you're
viewing adheres to the base business rules.

Rules that are optional, on the other hand, are wonderful candidates to go into a business layer of the application. For example,
consider a rule such as this: "For the first part of the month, no part can be sold at more than a 20% discount, without a
manager's approval".

Taken as a whole, this rule smacks of being rather messy, not very well controlled, and subject to frequent change. For example,
what happens when next week the maximum discount is 30%? Or when the definition of "first part of the month" changes from
15 days to 20 days? Most likely you won't want go through the difficulty of implementing these complex temporal business
rules in SQL Server code – the business layer is a great place to implement rules like this.

However, consider the rule a little more closely. There are elements of it that will probably never change. E.g.

 The maximum discount it is ever possible to offer
 The fact that the approver must be a manager

These aspects of the business rule very much ought to get enforced by the database and design. Even if the substance of the rule
is implemented in the business layer, you are still going to have a table in the database that records the size of the discount, the
date it was offered, the ID of the person who approved it, and so on. On the Discount column, you should have a CHECK
constraint that restricts the values allowed in this column to between 0.00 and 0.90 (or whatever the maximum is). Not only will
this implement your "maximum discount" rule, but will also guard against a user entering a 200% or a negative discount by
mistake. On the ManagerID column, you should place a foreign key constraint, which reference the Managers table and ensures
that the ID entered is that of a real manager (or, alternatively, a trigger that selects only EmployeeIds corresponding to
managers).

Now, at the very least we can be sure that the data meets the very basic rules that the data must follow, so we never have to code
something like this in order to check that the data is good:

SELECT CASE WHEN discount < 0 then 0 else WHEN discount > 1 then 1…

We can feel safe that data meets the basic criteria, every time.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Not using stored procedures to access data

Stored procedures are your friend. Use them whenever possible as a method to insulate the database layer from the users of the
data. Do they take a bit more effort? Sure, initially, but what good thing doesn't take a bit more time? Stored procedures make
database development much cleaner, and encourage collaborative development between your database and functional
programmers. A few of the other interesting reasons that stored procedures are important include the following.

Maintainability

Stored procedures provide a known interface to the data, and to me, this is probably the largest draw. When code that accesses
the database is compiled into a different layer, performance tweaks cannot be made without a functional programmer's
involvement. Stored procedures give the database professional the power to change characteristics of the database code without
additional resource involvement, making small changes, or large upgrades (for example changes to SQL syntax) easier to do.

Encapsulation

Stored procedures allow you to "encapsulate" any structural changes that you need to make to the database so that the knock on
effect on user interfaces is minimized. For example, say you originally modeled one phone number, but now want an unlimited
number of phone numbers. You could leave the single phone number in the procedure call, but store it in a different table as a
stopgap measure, or even permanently if you have a "primary" number of some sort that you always want to display. Then a
stored proc could be built to handle the other phone numbers. In this manner the impact to the user interfaces could be quite
small, while the code of stored procedures might change greatly.

Security

Stored procedures can provide specific and granular access to the system. For example, you may have 10 stored procedures that
all update table X in some way. If a user needs to be able to update a particular column in a table and you want to make sure
they never update any others, then you can simply grant to that user the permission to execute just the one procedure out of the
ten that allows them perform the required update.

Performance

There are a couple of reasons that I believe stored procedures enhance performance. First, if a newbie writes ratty code (like
using a cursor to go row by row through an entire ten million row table to find one value, instead of using a WHERE clause),
the procedure can be rewritten without impact to the system (other than giving back valuable resources.) The second reason is
plan reuse. Unless you are using dynamic SQL calls in your procedure, SQL Server can store a plan and not need to compile it
every time it is executed. It's true that in every version of SQL Server since 7.0 this has become less and less significant, as SQL
Server gets better at storing plans ad hoc SQL calls (see note below). However, stored procedures still make it easier for plan
reuse and performance tweaks. In the case where ad hoc SQL would actually be faster, this can be coded into the stored
procedure seamlessly.

In 2005, there is a database setting (PARAMETERIZATION FORCED) that, when enabled, will cause all queries to have
their plans saved. This does not cover more complicated situations that procedures would cover, but can be a big help. There is
also a feature known as plan guides, which allow you to override the plan for a known query type. Both of these features are
there to help out when stored procedures are not used, but stored procedures do the job with no tricks.

And this list could go on and on. There are drawbacks too, because nothing is ever perfect. It can take longer to code stored
procedures than it does to just use ad hoc calls. However, the amount of time to design your interface and implement it is well
worth it, when all is said and done.

Trying to code generic T-SQL objects

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

I touched on this subject earlier in the discussion of generic domain tables, but the problem is more prevalent than that. Every
new T-SQL programmer, when they first start coding stored procedures, starts to think "I wish I could just pass a table name as
a parameter to a procedure." It does sound quite attractive: one generic stored procedure that can perform its operations on any
table you choose. However, this should be avoided as it can be very detrimental to performance and will actually make life more
difficult in the long run.

T-SQL objects do not do "generic" easily, largely because lots of design considerations in SQL Server have clearly been made
to facilitate reuse of plans, not code. SQL Server works best when you minimize the unknowns so it can produce the best plan
possible. The more it has to generalize the plan, the less it can optimize that plan.

Note that I am not specifically talking about dynamic SQL procedures. Dynamic SQL is a great tool to use when you have
procedures that are not optimizable / manageable otherwise. A good example is a search procedure with many different choices.
A precompiled solution with multiple OR conditions might have to take a worst case scenario approach to the plan and yield
weak results, especially if parameter usage is sporadic.

However, the main point of this tip is that you should avoid coding very generic objects, such as ones that take a table name and
twenty column names/value pairs as a parameter and lets you update the values in the table. For example, you could write a
procedure that started out:

CREATE PROCEDURE updateAnyTable
@tableName sysname,
@columnName1 sysname,
@columnName1Value varchar(max)
@columnName2 sysname,
@columnName2Value varchar(max)
…

The idea would be to dynamically specify the name of a column and the value to pass to a SQL statement. This solution is no
better than simply using ad hoc calls with an UPDATE statement. Instead, when building stored procedures, you should build
specific, dedicated stored procedures for each task performed on a table (or multiple tables.) This gives you several benefits:

 Properly compiled stored procedures can have a single compiled plan attached to it and reused.
 Properly compiled stored procedures are more secure than ad-hoc SQL or even dynamic SQL procedures, reducing the

surface area for an injection attack greatly because the only parameters to queries are search arguments or output values.
 Testing and maintenance of compiled stored procedures is far easier to do since you generally have only to search

arguments, not that tables/columns/etc exist and handling the case where they do not

A nice technique is to build a code generation tool in your favorite programming language (even T-SQL) using SQL metadata to
build very specific stored procedures for every table in your system. Generate all of the boring, straightforward objects,
including all of the tedious code to perform error handling that is so essential, but painful to write more than once or twice.

In my Apress book, Pro SQL Server 2005 Database Design and Optimization, I provide several such "templates" (manly for
triggers, abut also stored procedures) that have all of the error handling built in, I would suggest you consider building your own
(possibly based on mine) to use when you need to manually build a trigger/procedure or whatever.

Lack of testing

When the dial in your car says that your engine is overheating, what is the first thing you blame? The engine. Why don't you
immediately assume that the dial is broken? Or something else minor? Two reasons:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

 The engine is the most important component of the car and it is common to blame the most important part of the system
first.

 It is all too often true.

As database professionals know, the first thing to get blamed when a business system is running slow is the database. Why?
First because it is the central piece of most any business system, and second because it also is all too often true.

We can play our part in dispelling this notion, by gaining deep knowledge of the system we have created and understanding its
limits through testing.

But let's face it; testing is the first thing to go in a project plan when time slips a bit. And what suffers the most from the lack of
testing? Functionality? Maybe a little, but users will notice and complain if the "Save" button doesn't actually work and they
cannot save changes to a row they spent 10 minutes editing. What really gets the shaft in this whole process is deep system
testing to make sure that the design you (presumably) worked so hard on at the beginning of the project is actually implemented
correctly.

But, you say, the users accepted the system as working, so isn't that good enough? The problem with this statement is that what
user acceptance "testing" usually amounts to is the users poking around, trying out the functionality that they understand and
giving you the thumbs up if their little bit of the system works. Is this reasonable testing? Not in any other industry would this
be vaguely acceptable. Do you want your automobile tested like this? "Well, we drove it slowly around the block once, one
sunny afternoon with no problems; it is good!" When that car subsequently "failed" on the first drive along a freeway, or during
the first drive through rain or snow, then the driver would have every right to be very upset.

Too many database systems get tested like that car, with just a bit of poking around to see if individual queries and modules
work. The first real test is in production, when users attempt to do real work. This is especially true when it is implemented for a
single client (even worse when it is a corporate project, with management pushing for completion more than quality).

Initially, major bugs come in thick and fast, especially performance related ones. If the first time you have tried a full production
set of users, background process, workflow processes, system maintenance routines, ETL, etc, is on your system launch day,
you are extremely likely to discover that you have not anticipated all of the locking issues that might be caused by users creating
data while others are reading it, or hardware issues cause by poorly set up hardware. It can take weeks to live down the cries of
"SQL Server can't handle it" even after you have done the proper tuning.

Once the major bugs are squashed, the fringe cases (which are pretty rare cases, like a user entering a negative amount for hours
worked) start to raise their ugly heads. What you end up with at this point is software that irregularly fails in what seem like
weird places (since large quantities of fringe bugs will show up in ways that aren't very obvious and are really hard to find.)

Now, it is far harder to diagnose and correct because now you have to deal with the fact that users are working with live data
and trying to get work done. Plus you probably have a manager or two sitting on your back saying things like "when will it be
done?" every 30 seconds, even though it can take days and weeks to discover the kinds of bugs that result in minor (yet
important) data aberrations. Had proper testing been done, it would never have taken weeks of testing to find these bugs,
because a proper test plan takes into consideration all possible types of failures, codes them into an automated test, and tr ies
them over and over. Good testing won't find all of the bugs, but it will get you to the point where most of the issues that
correspond to the original design are ironed out.

If everyone insisted on a strict testing plan as an integral and immutable part of the database development process, then maybe
someday the database won't be the first thing to be fingered when there is a system slowdown.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Summary

Database design and implementation is the cornerstone of any data centric project (read 99.9% of business applications) and
should be treated as such when you are developing. This article, while probably a bit preachy, is as much a reminder to me as it
is to anyone else who reads it. Some of the tips, like planning properly, using proper normalization, using a strong naming
standards and documenting your work– these are things that even the best DBAs and data architects have to fight to make
happen. In the heat of battle, when your manager's manager's manager is being berated for things taking too long to get started,
it is not easy to push back and remind them that they pay you now, or they pay you later. These tasks pay dividends that are very
difficult to quantify, because to quantify success you must fail first. And even when you succeed in one area, all too often other
minor failures crop up in other parts of the project so that some of your successes don't even get noticed.

The tips covered here are ones that I have picked up over the years that have turned me from being mediocre to a good data
architect/database programmer. None of them take extraordinary amounts of time (except perhaps design and planning) but they
all take more time upfront than doing it the "easy way". Let's face it, if the easy way were that easy in the long run, I for one
would abandon the harder way in a second. It is not until you see the end result that you realize that success comes from starting
off right as much as finishing right.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

6. Preparing ER diagram & DFD

An Entity-Relationship diagram is a visual representation of the structure of a database. An E-R diagram visually specifies all
entities, primary keys, foreign keys, artificial keys and secondary keys. In addition, a dashed line defines relationships and a dot
at the end of a dashed line indicates the "many" part of a one-to-many relationship.

In software engineering, an entity-relationship model (ERM) is an abstract and conceptual representation of data. Entity-
relationship modeling is a database modeling method, used to produce a type of conceptual schema or semantic data model of a
system, often a relational database, and its requirements in a top-down fashion. Diagrams created by this process are called
entity-relationship diagrams, ER diagrams, or ERDs.

There are many ER diagramming tools. Some free software ER diagramming tools that can interpret and generate ER models,
SQL and do database analysis are MySQL Workbench and DBDesigner (open-source). A freeware ER tool that can generate
database and application layer code (webservices) is the RISE Editor.

Some of the proprietary ER diagramming tools are ARIS, Avolution, dbForge Studio for MySQL, DeZign for Databases,
ER/Studio, Devgems Data Modeler, ERwin, MEGA International, OmniGraffle, Oracle Designer, PowerDesigner, Rational
Rose, Sparx Enterprise Architect, SQLyog, System Architect, Toad Data Modeler, SQL Maestro, Microsoft Visio, Visible
Analyst, and Visual Paradigm.

Some free software diagram tools just draw the shapes without having any knowledge of what they mean, nor do they generate
SQL. These include Kivio and Dia. DIA diagrams, however, can be translated with tedia2sql.

Open Paint. Click "All Programs," click "Accessories," and then click "Paint." Paint is the graphic software application that is
included with the Vista Operating System.

Open a New file. Click "File," then click "New."

Select a Rectangle symbol. Go to the Paint toolbox and click the "Rectangle symbol," then go to the canvas and with your
mouse draw the "Rectangle symbol."

Identify the Customer Entity. Inside the rectangle, type "CustomerNum," as the primary key of the Customer entity, then draw a
horizontal line. Inside the rectangle, type "LastName(SK)," skip a line then type "FirstName(SK);" the (SK) represents the
secondary keys.

Identify the Sales Entity. Inside the rectangle, type "SalesID," as the primary key

of the Sales, then draw a horizontal line. Inside the rectangle, type "SalesDate," skip a line then type "JewelryPiece," skip a line
then type "CustomerNum(FK);" the (FK) represents the foreign key.

Identify the relationship between the Customer and Sales Entities. Go to the Paint toolbox and click the "Line symbol," then go
to the canvas and draw dashes between the Customer Entity and the Sales Entity

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

DFD

A DFD contains four kinds of symbol:

1. Processes -- The only active elements. Processes cause something to happen. They have embedded descriptions, often
in verb-object form. (Sometimes informally called "bubbles" because of their shape in an early version of SA.)

2. Terminators -- Represent users or other systems, i.e. entities outside the boundary of the system being described.
3. Dataflows -- Composite data items (or objects) that pass either

o from any element to a process (input dataflow) or
o from a process to any element (output dataflow)

4. Data stores -- Holding places for dataflows; often implemented by databases.

Each symbol is labelled with a description in English or another natural language.

Some common-sense rules

Systems analysts apply this checklist to look for errors in their DFDs:

1. Every process must have at least one input dataflow (Violators are called "magic" processes, since they claim to do
something based on no input, not even a trigger.)

2. Every process must have at least one output dataflow (Violators are called "black hole" processes, since their inputs are
swallowed up for no reason.)

3. Every dataflow must connect two elements. One of them must be a process; the other can be a terminator, a data store or
another process.

4. Each dataflow diagram should contain no more than six or seven processes and no more than six or seven data stores,
and all the processes should be conceptually at the same level of detail. If a part of the system is too big or too
complicated to describe in an easily grasped diagram, break it down into two or three lower-level diagrams. (We
sometimes see hanging on an office wall a huge tour de force DFD that tries to describe an entire large system at a low
level of detail with several dozen processes and convoluted intersecting dataflow arrows. That's not something to be
proud of. It doesn't communicate to any audience.)

5. For every process, one of the following must eventually be true:
a. The description label is so simple and unambiguous that every reader will understand it in exactly the same

way.
b. It is expanded or decomposed into a separate lower-level dataflow diagram that preserves exactly the same net

inputs and outputs, but shows internal detail, such as data stores and internal processes.
c. It is rigorously described by a separate process specification (business rule, decision rule, function definition,

algorithm, etc.).

The starting point: Context (level-0) diagram

The systems analyst begins by preparing the top-level DFD. This "context diagram" shows the entire system as a single process.
Interactions with users and other external entities are shown as dataflows.

The context diagram, although often almost trivially simple, serves two essential purposes:

 It clarifies to the user audience the analyst's understanding of the scope of the proposed system, the kinds of users the
system will have, and the data coming out from and going into the system. A surprising number of misunderstandings
are exposed at this early stage.

 It motivates and establishes a framework for the more complicated next level (below).

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

The system diagram (level-1 DFD)

After everyone agrees that the context diagram is correct and complete, the systems analyst examines the first-level breakdown
of major functions. Most systems can be decomposed into between two and seven major areas.

The result is called the "system diagram". It gives a clear overview of the system and serves as a base for further decomposition.

The end

The dataflow diagrams are complete when:

 Every process on every DFD complies with rule number 5 above.
 Every dataflow shown on every DFD is defined in the data dictionary.

There's more to come, but the remaining components of the system specification (or detailed user requirements documentation)
have little or no effect on the functionality of the proposed system. Note that the information contained in these documents is
essential not only as a foundation for building a custom application but also as a basis for evaluating and choosing a packaged
application software product.

DATA FLOW DIAGRAMS

Systems Analysis
•Focus is the logical view of the system, not the physical
•“What” the system is to accomplish, not how

•Tools:
–data flow diagrams
–data dictionary
–process specification
–entity-relationship diagrams
Data Flow Diagram:

"a network representation of a system. The system may be automated, manual, or mixed. The DFD portrays the system in
terms of its component pieces, with all interfaces among the components indicated."

- Tom DeMarco
hence DFDs:

focus on the movement of data between external entities and processes, and between processes and data stores

Example Data Flow Diagram

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Data Flow Diagrams are:
•Used to perform structured analysis to determine logical requirements
•A graphical tool, useful for communicating with users, managers, and other IS personnel
•Useful for analyzing existing as well as proposed systems
•A relatively simple technique to learn and use

Why Conduct Process Modeling?

•Understand components of current logical or physical system for purpose of rebuilding in a different physical
form/technology, possibly with some changed functionality

•Find inefficiencies in current system

•Re-engineer current system

Sources/Sinks
(external entities)
•Any class of people, an organization, or another system which exists outside the system you are studying.
•Form the boundaries of the system.
•The system and external entities exchange data in the form of data flows.
•Must be named, titles preferred to names of individuals - use a noun
Data Flows

•data in motion
•marks movement of data through the system - a pipeline to carry data
•connects the processes, external entities and data stores
•Unidirectional
•originate OR end at a process (or both)
•name as specifically as possible - reflect the composition of the data - a noun
•do not show control flow! Control flow is easy to identify- a signal with only one byte - (on/off).

data store

process

external
entity

data flow

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

•HINT: if you can't name it: either it's control flow, doesn't exist or you need to get more information!

Processes
•transform incoming data flows into outgoing data flows
•represent with a bubble or rounded square
•name with a strong VERB/OBJECT combination; examples:

create_exception_report
validate_input_characters
calculate_discount

Data Stores
•data at rest
•represents holding areas for collection of data, processes add or retrieve data from these stores
•name using a noun (do not use ‘file’)
•only processes are connected to data stores
•show net flow of data between data store and process. For instance, when access a DBMS, show only the result flow, not the
request
Data Flow Diagram Don’ts

1. BLACK HOLES
2. MIRACLES
3. Let it get too COMPLEX: 7 ± 2 processes
4. Leave things UNLABELED

(corollary: labels should have meaning)
5. Data stores that are “SOURCES” or

“SINKS”
6. Data flows that are UNASSOCIATED with

a PROCESS
7. Expect your diagram to be “perfect” the

first time!

Data Flow Diagram Don’ts

proc
ess
stuff

1. ‘Black Hole’

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Data Flow Diagram Don’ts

Data Flow Diagram Don’ts

proc
ess
stuff

2. ‘It’s a Miracle’

A.2

A.1

ds-1

data

4. Leave Things Unlabeled
Corollary: Labels Should Have Meaning

data store 5. Miracle data
source

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Data Flow Diagram Don’ts

Diagramming A System
•multiple DFDs are required to represent a system

•DFDs are created at increasing levels of detail
Different Types of DFDs

•Context diagram

•Level-0 diagram (system diagram)

•Level-n diagram

•Primitive diagram
Context Diagram

•defines the scope of the system by identifying the system boundary
•contains:

–one process (which represents the entire system)
–all sources/sinks (external entities)
–data flows linking the process to the sources and sinks (external entities)
Example Context Diagram

data store
5. Black hole data
source

6. Data Flows Unassociated With a Process

entity to
entitydata store

to entity -
or reverse

data store
to data
store

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Constructing a Context Diagram
•identify and list sources/sinks (external entities)

•identify and list inputs to and outputs from sources/sinks (external entities)

•create context diagram
Level-0 Diagram

•describes the overall processing of the system
•show one process for each major processing step or functional requirement
•data flows from the context appear on system diagram also (level balancing)
•can show a single data store to represent all data in aggregate at this level
•can draw duplicate sources, sinks and data stores to increase legibility

Drawing a Level-0 Diagram
•list the major data stores

•list major business steps

•draw a segment for each business step

•assemble into single DFD

•re-organize until satisfied

•number processes
Functional Decomposition

•similar to a series of more detailed maps
•iterative process of breaking the description of a system into finer and finer detail to create a set of charts in which one
process on a given chart is explained in greater detail on another chart
•referred to as exploding, partitioning, or leveling
•must use your judgment to decide what goes on each level
•show error and exception handling on lower levels (if at all)

Lower Level Diagrams
•explode the processes shown on the level-0 diagram
•each process is represented by its own DFD
•balance data

–data flows on upper level appear on lower level, or
–data flows on upper level are broken into component pieces with components shown on lower level

•each lower level shows greater and greater detail
•follow numbering convention

Balancing DFDs
•conserve data from level to level - inputs and outputs on the higher level must appears somewhere on the lower level

Advanced Rules
•Composite data flow on one level can be split into its component data flows on the next level - but new data cannot be
added and all data in the composite must be included in the sub-flows
•The inputs to a process must be sufficient to produce the outputs.
•Lowest level DFDs may add new data flows to represent exception handling, i.e., error messages

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

•May repeat data stores or sources/sink to avoid crossing lines
Additional Guidelines

•the inputs to a process are different from the outputs of that process
•objects in a set of DFDs have unique names
•do not change data flow names on lower levels unless you are decomposing a data flow into component pieces.
•never explode a single process into another single process. If you cannot partition the process, then the lower level
DFD is not needed.
•expect to iterate, put down the DFD and go back to it a few times to create something satisfactory.

Other Questions about Lower level diagrams
1. How deep? (how many levels?)

–if the process has only one input or one output, probably cannot partition further;
–can you describe the process in English in about 1/2 page?

2. How broad? (how many processes on a level?)
–7 ± two is a reasonable heuristic
–may temporarily place much of the system on a single diagram then re-draw into separate levels

Quality Guidelines
•Completeness

–all components included & in project dictionary
•Consistency

–between levels: balancing, leveling
•Timing considerations

–assume system never starts and never stops
•Iterative nature

–revisions are common
•Drawing primitives (lowest level)

–when to stop?

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

7 Finding the data fields to be used in the database

1. Plan
2. Executing the Plan
3. First way to enable input of new records via query based form
4. Second way to enable input of new records via query based form
5. If it won't work...
6. A Big Warning
7. Moving on....
8. Postscript
9. Lastly
10. Editorial Philosophy

The Plan_______________

Part of the art of creating good databases lies in choosing what fields will appear in what tables. The tables are
the bedrock of any database. There are serious rules about what should and should not be in them... try to find
discussions of data normalization to help you start learning about those rules.

The rules support a couple of ideas:

 Don't enter anything twice in the database.
 Keep things simple.
 Avoid entering things you don't need to enter.

In connection with that last point, consider the following database application, and try to imagine the many,
many similar situations.

Imagine that you are keeping track of some stock market investments. (Yes, I know that what follows would not
serve an investor's real needs. It is just to illustrate a point.)

In the database we are going to have a record for each holding. If Fred had...

 100 shares of IBM
 50 shares of Google, and
 10 shares of Exxom

....then he'd have 3 records in his database. Each record would have the following fields: Company name,
Number of shares owned, Value of a single share. (That last field would be a pain... if Fred wanted an up-to-date
idea of his shares' total value, he'd have to go into the database and change the values in each of the "PerShare"
fields.)

You might think it would be nice to have a "Value of the holding" field. I.e., if IBM were worth $80 per share,
Fred's 100 shares would be worth $8000, and that "8000" could be stored in the table. This would be a Bad
Idea: In a sense you would breaking the "Don't enter something twice" rule (the "Value of Holding" field would,
essentially, duplicate a combination of the "Shares" and "PerShare" fields), and it would break the "Don't enter
things you don't need to" rule.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

But that doesn't mean that Fred can't make the computer work out for him that the IBM holdings are worth
$8000! How he gets that information, the right way, is the subject of this tutorial!

Before we proceed: A detail. Investors will want to know the value of their shares on specific dates. The per
share value of a share varies from day to day. The database, as described here, will either need all the prices re-
entered for whatever day is of interest, or a more complex database ("easily" created) will be needed. To keep
things simple, which is all we need for the skills under consideration, just think of this database of a way to
know the cost of different investments, and imagine that the PerShare figure records what was paid for the shares
on the day they were purchased. (And yes, I do realize that if this database were to be used in the real world, the
date the shares were purchased would also be in the table.)

And a bit of bad news before we proceed: As described in the main part of this tutorial, you can have a form to
view information from a database, complete with some calculated fields (i.e. the "Value of holding"
information). However, you will have, for now, to use a separate form if you want to make changes to any table
or tables underlying the form with calculated fields. And, more bad news, you will probably have to click
buttons to make the "info display" form update itself after any changes on the "data entry" form. Sorry! I'm
learning all the time, and may "crack" this one sometime... but for now, here's "a way", be it ever so crude...

Executing the plan_______________

Some earlier tutorials give you more support than this one does. If you find it difficult to complete the tasks
specified below, you might want to work though some of the earlier tutorials first.

Create a table called "Main". Do it however you wish, with the wizard, or in design mode. Be sure to set the first
field as the primary key, with the "Autovalue" property set to "Yes".

Define the fields with the following field types, names, lengths, etc, as shown:

ID (Primary key, Integer, AutoValue)
Shares (Integer)
PerShare (Number, length 16, decimal places: 2)(This for price)
Company (Text [varchar], length:5)

Put some data in the table. Two records will suffice.

Close the table.

Now that you have the table, there are two ways you can provide yourself with a way to edit what is in it. For
simple things, you may need nothing more than a simple form. But if you want a calculated field displayed, then
this morning (July 2009, and again March 2010) I can only do that with a form based on a query. (I could have
sworn I had a form working with a calculated field, without a query in 2009... but I can't do it now.) The
calculated field will show the value of the shares.

Create a query. I used the wizard.

Include ALL of the fields. (You may not need to, but for now: include them, just in case.)

Do not set a sort order. (You probably could, but I'm trying to keep this simple.)

Do not set any search conditions.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Step 4: Accept the default "Detailed" type query. This will allow you to skip a few steps.

Next step: In at least some pre-version 3.1 variants of DataBase, at the next step, the default aliases include
"Main." in front of "ID", "Shares", etc. If you are using an old version, and seeing this, edit the "Main." off of the
aliases. (E.g., make the alias for "Main.Shares" just "Shares", etc.). If you are using DataBase version 3.1, you
won't need to do this, and the step where you will be able to see the aliases will be step 7. I suspect it was step 7
for a long time... but there was what I think was a typo in this tutorial, and the tutorial said the "Aliases" step was
step 5. (If you can confirm that it was once step 5, I'd be interested. Or if you are still using DataBase 2.4, please
check what it's "Aliases" step is for me? (And then upgrade yourself!)

Call the query "QueryWithCalc"... even though it doesn't have a calculated field yet!

Before you click "Finish" to leave step 8, select "Modify query" for what happens next.

The main design window for the query should open. Across the bottom is a table, with four populated columns.
Click in the "Field" cell, the top one, of the fifth column, the first empty one. Enter....

Shares*PerShare

... being careful to use the same capitalization as you used in naming those fields... it does matter. Do not be
alarmed if DataBase puts some quotation marks around the names. If you have a field name with spaces in the
name, enclose the name in quote marks, e.g.

"Per Share"

Next, fill in Value of Shares for the alias of the fourth column. (It doesn't have to be bold, I just wanted to avoid
using quote marks to delimit the alias, as you shouldn't use them with your entry.)

Put a tick in the "visible" box, if it isn't ticked already.

Finally, save the query definition and run it. You should see sensible results, and you can alter the contents of the
database.... if all is well. (Don't fool with the "ID" field's contents.) (The time I tried making a query without the
ID field, I could see sensible results... but not change anything.)

I hope you wouldn't expect to be able to directly change the "Value of Holding" entry? Think about it. You can
try.. no harm will come of doing so.

N.B. If you find that you can change the number of shares in a record, or change the cost per share field, then
when you do it, the "Holding value" will not change immediately. It will change when you...

 Go to a different record (changing fields is not enough), or...
 Click on the "Save Current Record" icon, or...
 Close the query.

So! We have a query that fetches the number of shares, and the value per share from the table, and then works
out for us the value of the holding. In a sense, we have achieved our goal... but it would be better to press on, and
complete additional steps....

Now use the wizard to create a new form.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

In step 1, select our newly created query "QueryWithCalc", and ask for all of its fields to be included in the
form.

Step 2: Don't set up a sub-form, just click "Next".

Step 5: I used a "Data Sheet" arrangement; I don't doubt others would work, too.

In step 6, set data entry to "display all", without "change" restrictions.

Step 7: Any style will do.

Step 8: Use "FormWithCalc" for the form's name, or "FormBasedOnQueryWithCalc", and tell the wizard that
you want to work with the form after it is created.

Click "Finish", to complete the wizard, and you should find you have a good interface to the table, with the
calculated field telling you the value of each holding.

Ta da? Yes... if you are only trying to inspect data in the table, and learn the values of different holdings, i.e. the
answer to "number of share multiplied by value per share."

At this point, this morning (9Mar10, DataBase 3.1.0, WinXP) I am able to change data in the underlying table
via the query based form! As long as, for now, I only change data in existing records.... but see below.

I have wrestled with this sort of thing again and again, getting different answers every time! I have not (yet!)
tested altering data in tables from forms displaying the results of a query pulling data from more than one table.
That may be A Different Story.)

If at this point you try to add a new record, i.e. a new row of data, you will probably get "Error writing data to
database... Input required... 'Value of Shares'...". But! We can fix this! There are two ways. In either case, start
by closing the form.

First way to enable input of new records via query based form

This is a little more "cumbersome" that the second, but it appeals to my belief that the more checking you have
the better. The second solution turns off more than you need to.

Open the form for editing. Right click on the column heading "Value of Shares" (the calculated field).

Click on the "Column..." option. A dialog headed "Properties: Formatted Field" should open. Select the "Data"
tab. Set "Input required" to "No".

That should do it! Next I'll give you an alternative solution in case for some reason you don't like that. (Or in
case it won't work for you. If it won't, and you are using DataBase 3.1.0 or later, please contact me, citing
"fdb1calcf1", and I will look at this again.)

Second way to enable input of new records via query based form

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

The form should be closed. In the DataBase main project manager window, select "Forms" in the left hand
panel, a then right click on "FormWCalc". Click on the "Database" entry at the bottom of the pop up menu. Click
on "Advanced Settings". Remove the tick in front of "Form data input checks for required fields".

Save the edited form. Open it for normal use... you should now be able to enter data in the table through the form
which is based on the query. If you can't, and you are using DataBase 3.1.0 or later, please contact me, citing
"fdb1calcf1", and I will look at this again.)

If you worry (as I think you should) about the ramifications of this turning off of checks, I can at least reassure
you that some checks remain in place. For instance, I tried to enter "xx" into a field that was of type "integer".
The "xx" was converted to a zero.

If it won't work...

There is a "crude" answer you can use when you can't get data to pass back to your tables from a form: use
multiple forms.... one (query based) with whatever you need to see, and another, simpler, form (or forms) for
changing data in the table(s).

A Big Warning

Don't fall to the temptation of working directly with a query in hopes of changing what is in a table. When you
change entries in the result of a query, it will appear to work, but you are only changing what you see on the
screen, not what is in the underlying table.

Moving on....

I hope you have a sensible result, after working through what is above. Apologies if the answer is still flawed at
this time... I've spent hours on this over the years. But do "complain" if need be!

Postscript_______________

Ha! Progress? Preliminary experiments suggest that the above techniques won't work if your query draws data
from more than one underlying table. Sigh. But a least a candidate for why the thing "works" sometimes, and not
others. So how DO we do it in multi-table situations?

An enquiry at the excellent oooFurum.org gave rise to this information from Villeroy, who has supplied many
excellent answers for the community over the years. Note that he supports my idea that you need to include the
primary key in the form or query, even if you don't display it. But note the additional point he makes: You DO
need to display the primary key if its "autovalue" property isn't set to "yes". Also, alas, note that he says you
can't use the techniques above on a query drawing information from more than one table.... unless, as they say,
you know otherwise??

Your form is writable if it is bound to some record set
from a single table and if the table's primary key is included.

This means that the form is bound to the entire table and
the table is editable OR the form is bound to some row set like

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

SELECT FROM "SIngle_Table" WHERE ... ORDER BY...

This row set is editable just like the table if and only if the
field list includes the primary key of the single table.

If the PK is an auto-value you don't have to display the PK
by means of a form control. Visible or not, It is part of the
form's row set.

Subforms follow the same rules. A pair of subform and
parent form reflects a one-to-many relation and makes
this relation editable. The editable parent selects editable
records in the subform.

As I said above, I've wrestled with this for some time. The following may be useful of interesting if you find that
what's above doesn't Just Work.

In a discussion at the Open Office forum, two comments were made, which may be of interest:

 Forms don't calculate anything, but they can be used to display results calculated in queries.
 You could add a subform to the form, add textbox to subform and as datasource use query which
calculates the value.

The first suggests that what as of 9Mar10 I think works never has. But I've been through periods of not being
able to make it work!

The second suggests up an interesting alternate path to a solution. I believe that answer is even suited to forms
that display more than one record at a time. I wonder if it would require a full blown query, or whether the sub-
form could be asked more directly just to display the result of "Shares"*"PerShare". (I didn't have much luck
when I tried to do this without a query... but I live in hope that it CAN be done, at least for a form displaying just
one record. (There are ways if you want to get into using macros.)(Adding a sub-form IS covered in another of
my pages, but that page talks about a great deal else! (Adding the subform isn't hard... when you know how... but
what you need to do in order to add a subform may not seem "obvious"... it wasn't to me, anyway!))

Another forum.org discussion which may be useful is a form that can BOTH be used to enter new data, AND
which can display a calculated result from fields. Also uses a macro.

Hmmm... "stranger, stranger and harder...."

In exploring a question from a reader, 3 March 10, I've stumbled into something that may or may not be true,
may or may not be useful....

My current best guess... needs work... is....

If you just want to look at some data, e.g. the investment data used as the example at the top of the page, AND
have a calculated field, then The Way To Go is to set up a query to "harvest" the data, and calculate what will be
in the calculated field... as set out in the main part of what starts at the top of this page.

** B U T **: If you want to ADD OR EDIT RECORDS via the same form, then things get a little tiresome.
However, it MAY (P.S. I now (9 March 2010) think that the following is unnecessarily complicated, that
the simple answer in the main part of this page WORKS.) be possible to proceed as follows. What follows is

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

NOT extensively tested, and the text needs work, but may get you where you want to go, if you want to be a
pioneer! Set up a form. Put a datagrid on it, based directly on the underlying table. Continuing with the example
I started with, on that you would DISPLAY the three "obvious" fields: Shares, PerShare, Company. I think you'd
want the ID field available... it may be anyway.... but not showing. Set up a query to return ID and "Shares *
PerShare"

Add a subform to the main form, have it display the "Shares*PerShare" part of the query.

I THINK you can get that subform lined up on the screen with the main form, creating something that almost
looks like one datagrid with 4 columns. The human won't know (or care) that the first 3 come from one control,
and the last from a separate control... but that MAY get you around the problem of creating a form which can
display calculated fields AND be used to edit the underlying table. (If any reader KNOWS this idea is a non-
starter, or better yet, tries it and gets it to WORK!!, I'd be delighted to hear from said reader!)

Lastly_______________

It makes little sense to show the record ID on the form displaying the table's data and the calculated values of the
share holdings. It, in this example, is just an "internal" thing, of interest only to DataBase. I think that the ID
field must remain in the query if you have a query based on more than one table (which may or may not be able
to pass data back to the underlying tables, but you are allowed to do the following. (At the time of writing, I
haven't tested these techniques with queries pulling data from multiple tables. Apologies if since writing this,
I've gone on to the more advanced case, found it working, and forgotten to remove this warning.)

Open the form (the one based on the query) for editing.

Right-click on the "ID" column heading. Click on "Hide columns". Save your form.

The form should still work, but not display the ID column, which is a necessary column, for the computer, but
one of little interest to a user of the database.

Editorial Philosophy

I dislike 'fancy' websites with more concern for a flashy appearance than for good content. For a pretty picture, I
can go to an art gallery. Of course, an attractive site WITH content deserves praise... as long as that pretty face
doesn't cost download time. In any case....

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

8. Selecting fields for keys

A primary key is a field in the table that Access can use to identify each field uniquely. For instance, you may have several John
Smiths in your database, so how can you tell them apart? Access suggests that you create a field, perhaps a code number, for
each record, with no two records having the same value in this field. If you mark this field as the primary key, then Access will
make sure no two entries are ever the same.

A good example of a primary key field is one set up as an AutoNumber type. This will automatically fill in a code number for
each record, starting at 1 for the first.

Primary key - Primary key means main key

def:- A primary key is one which uniquely identifies a row

of a table. this key does not allow null values and also

does not allow duplicate values. for ex,

empno empname salary

1 firoz 35000

2 basha 34000

3 chintoo 40000

it will not the values as follows:

1 firoz 35000

1 basha 34000

chintoo 35000

Unique key - single and main key

A unique is one which uniquely identifies a row of a table, but there is a Difference like it will not allow duplicate values and it
will any number of allow null values(In oracle).

it allows only a single null value(In sql server 2000)

Both will function in a similar way but a slight difference

will be there. So, decalaring it as a primary key is the

best one.

foreign key - a foreign key is one which will refer to a

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

primary key of another table

for ex,

emp_table dept_table

empno empname salary deptno deptno deptname

In the above relation, deptno is there in emp_table which

is a primary key of dept_table. that means, deptno is

refering the dept_table.

primary key Definition: The primary key of a relational table uniquely identifies each record in the table. It can either be a
normal attribute that is guaranteed to be unique (such as Social Security Number in a table with no more than one record per
person) or it can be generated by the DBMS (such as a globally unique identifier, or GUID, in Microsoft SQL Server). Primary
keys may consist of a single attribute or multiple attributes in combination.

For more information on keys, read the article Database Keys. For more on selecting appropriate primary keys for a table, read
Choosing a Primary Key.

Candidate key Definition: A candidate key is a combination of attributes that can be uniquely used to identify a database
record without any extraneous data. Each table may have one or more candidate keys. One of these candidate keys is selected as
the table primary key.

Super key Definition: A superkey is a combination of attributes that can be uniquely used to identify a database record. A table
might have many superkeys. Candidate keys are a special subset of superkeys that do not have any extraneous information in
them.

In relational database design, a unique key can uniquely identify each row in a table, and is closely related to the Superkey
concept. A unique key comprises a single column or a set of columns. No two distinct rows in a table can have the same value
(or combination of values) in those columns if NULL values are not used. Depending on its design, a table may have arbitrarily
many unique keys but at most one primary key.

Unique keys do not enforce the NOT NULL constraint in practice. Because NULL is not an actual value (it represents the lack
of a value), when two rows are compared, and both rows have NULL in a column, the column values are not considered to be
equal. Thus, in order for a unique key to uniquely identify each row in a table, NULL values must not be used, however a
column defined as unique key column allows only one null value, which in turn can uniquely identify that row/tuple.

A unique key must uniquely identify all possible rows that exist in a table and not only the currently existing rows. Examples of
unique keys are Social Security numbers (associated with a specific person[1][2]) or ISBNs (associated with a specific book).
Telephone books and dictionaries cannot use names, words, or Dewey Decimal system numbers as candidate keys because they
do not uniquely identify telephone numbers or words.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

A primary key is a special case of unique keys. The major difference is that for unique keys the implicit NOT NULL constraint
is not automatically enforced, while for primary keys it is enforced. Thus, the values in unique key columns may or may not be
NULL. Another difference is that primary keys must be defined using another syntax. Thus Primary Key column allows no row
having NULL while Unique Key column allows only one row having null value.

The relational model, as expressed through relational calculus and relational algebra, does not distinguish between primary keys
and other kinds of keys. Primary keys were added to the SQL standard mainly as a convenience to the application programmer.

Unique keys as well as primary keys can be referenced by foreign keys.

Examples:

Imagine we have a STUDENTS table that contains a record for each student at a university. The student's unique student ID
number would be a good choice for a primary key in the STUDENTS table. The student's first and last name would not be a
good choice, as there is always the chance that more than one student might have the same name.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

9. Normalizing the database including analysis of functional dependencies

Illogically or inconsistently stored data can cause a number of problems. In a relational database, a logical
and efficient design is just as critical. A poorly designed database may provide erroneous information,
may be difficult to use, or may even fail to work properly.

Most of these problems are the result of two bad design features called: redundant data and anomalies.
Redundant data is unnecessary reoccurring data (repeating groups of data). Anomalies are any occurrence
that weakens the integrity of your data due to irregular or inconsistent storage (delete, insert and update
irregularity, that generates the inconsistent data).

Basically, normalisation is the process of efficiently organising data in a database. There are two main
objectives of the normalization process: eliminate redundant data (storing the same data in more than one
table) and ensure data dependencies make sense (only storing related data in a table). Both of these are
valuable goals as they reduce the amount of space a database consumes and ensure that data is logically
stored.

The process of designing a relational database includes making sure that a table contains only data
directly related to the primary key, that each data field contains only one item of data, and that redundant
(duplicated and unnecessary) data is eliminated. The task of a database designer is to structure the data in
a way that eliminates unnecessary duplication(s) and provides a rapid search path to all necessary
information. This process of specifying and defining tables, keys, columns, and relationships in order to
create an efficient database is called normalization.

Normalisation is part of successful database design. Without normalisation, database systems can be
inaccurate, slow, and inefficient and they might not produce the data you expect.

When normalising a database you should achieve four goals:

1. Arranging data into logical groups such that each group describes a small part of the whole
2. Minimizing the amount of duplicated data stored in a database
3. Building a database in which you can access and manipulate the data quickly and efficiently

without compromising the integrity of the data storage
4. Organising the data such that, when you modify it, you make the changes in only one place

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

10.Front End & Back End Concept

Front end and back end are generalized terms that refer to the initial and the end stages of a process. The front end is
responsible for collecting input in various forms from the user and processing it to conform to a specification the back end can
use. The front end is an interface between the user and the back end.

Front end may refer to:

 The front of a vehicle body
 Front-end load, a charge in investing
 Front End Loader, a band
 Front-end loader, construction equipment
 Front-end loading, in project management
 RF front end, in electronics

The support components of a computer system. It typically refers to the database management system (DBMS), which is the
storehouse for the data.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

11.Overview of Script Language, Java Script, Java, VB Script, VB.Net,

A high-level programming language that is interpreted by another program at runtime rather than compiled by the computer’s
processor as other programming languages (such as C and C++) are. Scripting languages, which can be embedded within
HTML, commonly are used to add functionality to a Web page, such as different menu styles or graphic displays or to serve
dynamic advertisements. These types of languages are client-side scripting languages, affecting the data that the end user sees in
a browser window. Other scripting languages are server-side scripting languages that manipulate the data, usually in a database,
on the server.

Scripting languages came about largely because of the development of the Internet as a communications tool. JavaScript, ASP,
JSP, PHP, Perl, Tcl and Python are examples of scripting languages.

JavaScript is an implementation of the ECMAScript language standard and is typically used to enable programmatic access to
computational objects within a host environment. It can be characterized as a prototype-based object-oriented scripting language
that is dynamic, weakly typed and has first-class functions. It is also considered a functional programming language[6] like
Scheme and OCaml because it has closures and supports higher-order functions.

JavaScript is primarily used in the form of client-side JavaScript, implemented as part of a web browser in order to provide
enhanced user interfaces and dynamic websites. However, its use in applications outside web pages is also significant.

JavaScript and the Java programming language both use syntaxes influenced by that of C syntax, and JavaScript copies many
Java names and naming conventions; but the two languages are otherwise unrelated and have very different semantics. The key
design principles within JavaScript are taken from the Self and Scheme programming languages.

The primary use of JavaScript is to write functions that are embedded in or included from HTML pages and that interact with
the Document Object Model (DOM) of the page

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

JavaScript

Filename
extension

.js

Internet
media
type

application/javascript, text/javascript

Uniform
Type
Identifier

com.netscape.javascript-source

Type of
format

Scripting language

JavaScript and Java

Common misconception is that JavaScript is similar or closely related to Java. It is true that both have a C-like syntax, the C
language being their most immediate common ancestor language. They are both object-oriented, typically sandboxed (when
used inside a browser), and are widely used in client-side Web applications. In addition, JavaScript was designed with Java's
syntax and standard library in mind. In particular, all Java keywords are reserved in JavaScript, JavaScript's standard library
follows Java's naming conventions, and JavaScript's Math and Date objects are based on classes from Java 1.0.

But the similarities end there. Java has static typing; JavaScript's typing is dynamic (meaning a variable can hold an object of
any type and cannot be restricted). Java is loaded from compiled bytecode; JavaScript is loaded as human-readable source code.
Java's objects are class-based; JavaScript's are prototype-based. JavaScript also has many functional features based on the Self
language.

Java

Java is a programming language and more. It originated from Sun Microsystem's Oak project and Sun still develop, maintain
and supply it. Although it's not open source, nor delivered under the GPL license, much is available as a no-charge download
from Sun's various web sites. At its first release, Java primarily was used as a language for writing applications to
be embedded in browsers (known as applets), but it has grown into many other areas. These days, applets are very much a
minority use of Java, although still an important one. Other uses include web server-side programming (using "servlets" or "Java
Server Pages") and large-scale, enterprise-wide applications using resource servers, "Enterprise Beans" and more.

2.1 The fundamental elements of Java
Java is an object oriented language, and all code you write is organised into classes. If you structure the way a class is defined
and called according to certain rules, then that class may be usable as a program, or as an applet, or as a servlet. The code you

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

actually write ("source code") is English-like text, and you save it into a regular text file, just as you do with other programming
languages.

Source Code
Let's see an example of the source code of a Java program:
// Tiniest of programs to check compile / interpret tools
public class Hello {
public static void main(String[] args) {
System.out.println("A program to exercise the Java tools");
}
}
We've saved this example into a file called Hello.java. Note that the file name should be the same as the class name declared in
the file followed by ".java". This rule can be broken with some environments and compilers, but it's a good rule to follow.
Java is case sensitive. Note that we have started our class name with a capital, followed by lower case letters – another
suggested convention.

Class files
Some languages1 are interpreted and run directly from the source code, but Java isn't one of those. It's a language that's designed
to run quickly, and interpreting the whole thing "public", etc., every time it's called is inefficient, so we compile the Java
into a binary format. Let's use the "javac" program, supplied by Sun as part of their free downloads, to do the conversion:
bash-2.04$ ls
Hello.java
bash-2.04$ javac Hello.java
bash-2.04$ ls
Hello.class Hello.java

bash-2.04$

If things are OK, javac doesn't produce any message. But if your source code isn't in the correct syntax or refers to something
that doesn't exist, you'll probably get an error message at compile time, such as:
bash-2.04$ javac Oops.java
Oops.java:5: cannot resolve symbol
symbol : class string
location: class Oops
public static void main(string[] args) {
^
1 error
bash-2.04$
Edit the source file, correct your error, save the file and compile again. You may have to go round this cycle a number of times
until you get rid of all your errors. By the way, the mistake here was that we used a lower case "s" not a capital "S" for the
word "String". Once you compile successfully, the class file is in a published binary format, but it's very rare for most
programmers to have to get involved at that level. Suffice it to say at this stage that the class file is compact and is independent
of host computer architecture. Unlike most compilers, javac does not produce a snippet of executable code tuned for the
particular processor architecture on which it is run. You might like to see what the format looks like. Here's a binary dump:
0000000 ? ? ? \0 \0 \0 . \0 035 \n \0 006 \0 017 \t
0000020 \0 020 \0 021 \b \0 022 \n \0 023 \0 024 \a \0 025 \a
0000040 \0 026 001 \0 006 < i n i t > 001 \0 003 ()
0000060 V 001 \0 004 C o d e 001 \0 017 L i n e N
0000100 u m b e r T a b l e 001 \0 004 m a i
0000120 n 001 \0 026 ([L j a v a / l a n g
0000140 / S t r i n g ;) V 001 \0 \n S o u
0000160 r c e F i l e 001 \0 \n H e l l o .

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

0000200 j a v a \f \0 \a \0 \b \a \0 027 \f \0 030 \0
0000220 031 001 \0 $ A p r o g r a m t o
0000240 e x e r c i s e t h e J a
0000260 v a t o o l s \a \0 032 \f \0 033 \0 034
0000300 001 \0 005 H e l l o 001 \0 020 j a v a /
0000320 l a n g / O b j e c t 001 \0 020 j a
0000340 v a / l a n g / S y s t e m 001 \0
0000360 003 o u t 001 \0 025 L j a v a / i o /
0000400 P r i n t S t r e a m ; 001 \0 023 j
0000420 a v a / i o / P r i n t S t r e
0000440 a m 001 \0 \a p r i n t l n 001 \0 025 (
0000460 L j a v a / l a n g / S t r i n
0000500 g ;) V \0 ! \0 005 \0 006 \0 \0 \0 \0 \0 002
0000520 \0 001 \0 \a \0 \b \0 001 \0 \t \0 \0 \0 035 \0 001
0000540 \0 001 \0 \0 \0 005 * Â· \0 001 Â± \0 \0 \0 001 \0
0000560 \n \0 \0 \0 006 \0 001 \0 \0 \0 003 \0 \t \0 \v \0
0000600 \f \0 001 \0 \t \0 \0 \0 % \0 002 \0 001 \0 \0 \0
0000620 \t ? \0 002 022 003 Â¶ \0 004 Â± \0 \0 \0 001 \0 \n
0000640 \0 \0 \0 \n \0 002 \0 \0 \0 006 \0 \b \0 \a \0 001
0000660 \0 \r \0 \0 \0 002 \0 016

0000670

The Java Runtime Environment
How do we use a binary class that won't run on your computer? We run it though another program known as a Java Virtual
Machine (JVM) which interprets each of the elements of the class file and performs the actions stipulated. There are going to be
many things that you want to do in your Java that others want to do as well, things as simple as outputting text. So along with
the JVM, Sun provide a large library of extra classes which give you the facilities you need without having to write them
yourself. There are so many extra classes that they're arranged into "packages" to make them more manageable, and the
combination of the Java Virtual Machine and these standard packages is known as the Java Runtime Environment or JRE.
Let's run the example program that we compiled earlier in the "java" JRE, which lets us run an appropriate class as a stand-alone
program:
bash-2.04$ java Hello
A program to exercise the Java tools

bash-2.04$

The Java World
Well House Consultants’ courses specialise in the teaching of programming languages and their application, so you'll be going
on in subsequent sections to cover the details of what to put into the source files and (unless this is a compressed course) how to
think through the design of your application and source code so that it's well structured, easy to use, easy to maintain, and easy
to update in the future as your requirement(s) develop. At first, a lot of this may seem very theoretic, so here we'll give you a
brief glance further into the Java world that you're headed for.

Java development environments and tools
As your Java source code grows in size, you'll find that it's quite a task to keep track of all the various classes and other
components involved. Development environments such as JDeveloper, JBuilder and Forte provide you with facilities to make
this management much easier, and with shortcuts that let you enter and edit code far more efficiently than you could with a
standard editor. We find that it's best to teach you the fundamentals of the Java language before we expose you to these tools.
Other wise, you're likely to find yourself spending a great deal of time trying to understand some of the suggested code and
options that the tool offers but which we haven't yet covered. To give you a flavour of the look and feel of a Java Development

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Environment, here are some screen shots from Oracle's Jdev. It's easier to learn than some of the environments we've seen, but
you still need to understand the questions being askedand the code before you can make good use of it
package wellho;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.PrintWriter;
import java.io.IOException;
public class demolet extends HttpServlet implements SingleThreadModel
{
private static final String CONTENT_TYPE = "text/html; charset=windows-1252";
public void init(ServletConfig config) throws ServletException
{
super.init(config);
}
/**
* Process the HTTP doGet request.
*/
public void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException
{
String var0show = "";
try
{
var0show = request.getParameter("showthis");
}
catch(Exception e)
{
e.printStackTrace();
}
response.setContentType(CONTENT_TYPE);
PrintWriter out = response.getWriter();
out.println("<html>");
out.println("<head><title>demolet</title></head>");
out.println("<body>");
out.println("<p>The servlet has received a GET. This is the reply.</p>");
out.println("</body></html>");
out.close();
}
/**
* Process the HTTP doPost request.
*/
public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException
{
String var0show = "";
try
{
var0show = request.getParameter("showthis");
}
catch(Exception e)
{
e.printStackTrace();
}

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

response.setContentType(CONTENT_TYPE);
PrintWriter out = response.getWriter();
out.println("<html>");
out.println("<head><title>demolet</title></head>");
out.println("<body>");
out.println("<p>The servlet has received a POST. This is the reply.</p>");
out.println("</body></html>");
out.close();
}

}

Sun's distribution includes a number of tools in addition to java and javac, including:

jar a tool for creating and manipulating java archive files (jars) javadoc generates API documentation from source files

javap generates a human-readable description of the API of a class file jdb a text-based debugger Java is ideally suited for
larger projects. Such projects may involve considerable management of development and runtime files, such as sources, classes,
libraries etc., where many of the files are derived from others and need to be updated when any of the files on which they
depend are changed. Apache Ant is a Java-based build tool. In theory, it is somewhat like make, but without make's wrinkles.
It's open source and becoming very popular. See http://ant.apache.org/ for further details.

Java Runtime Environments
Stand-alone programs probably aren't what you'll be writing in the longer term, even though they're excellent for learning the
fundamentals of Java. Later on you'll be slotting your classes into other Java runtime environments, some of which are open
source and others are commercial products. Server side, there are a number of environment interfaces you may use. These
include:

Servlets Executable programs with a web interface

JSPs Embedding server executable content within a web page

RMI and EJBs Providing object servers

JREs that support these interfaces include Apache Tomcat, BEA WebLogic JRockit and IBM's WebSphere application server.
Client side, most users want to access information via their browser these days and plugins that support Java are available for
most common browsers. Java is built in to certain browsers too, but do beware that it's often in old (or even ancient) versions.
AppletViewer, a part of Sun's distribution, is a JRE with the same interface that a browser provides but without the caching or
overhead of a browser, and is useful for development and testing. And it turns out that the JRE that you use for stand-alone
programs can do much more. You can have what looks like a stand-alone program at "the top" but have it act as a client or
server (or both!). You can have it provide a graphic user interface (GUI) in much the same way that an applet would, and much
more.

Java distributions
For one programmer, Java might be the tool he uses to program a toaster. Another might be using it to provide the core financial
accounting services for a major bank. Is it possible for both of these requirements to be met by the same downloaded language?
Yes...and no.
Java is described as a "simple" language and indeed at it's centre it is. The syntax is not overcomplex, the facilities of the
language itself are relatively few, which make it into something of a lean and mean core facility. The real power comes in the
standard packages that are available, and that's where the requirements of our domestic appliance programmer will vary from
the requirements of our banker.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

The Java 2 Standard Edition (J2SE) provides the essential compiler, tools, runtimes, and APIs for writing, deploying, and
running applets and applications in the Java programming language. All developers will need to download a copy of J2SE, or
its equivalent.

The Java 2 Enterprise Edition (J2EE) technology and its component-based model

simplifies enterprise development and deployment. The J2EE platform manages the infrastructure and supports the Web
services to enable development of secure, robust and inter-operable business applications. The download has essential extra
classes and environments to use in addition to the J2SE, which you will also need. The Java 2 Micro Edition (J2ME) specifically
addresses the consumer space, which covers the range of extremely tiny commodities, such as smart cards or a pager, up to the
set-top box. This download provides a highly optimised runtime environment. Again, to develop code, you'll also need J2SE.
All of the above can be downloaded from http://java.sun.com Also available is a Java Runtime environment (J2RE) which will
be required by users rather than developers. It includes the JVM and the classes that make up the JRE, but not tools such as the
compiler. Different licensing rules will apply.

Java standard packages
Much of the power of a Java application is vested not in the language itself, but in all the standard classes provided and optional
classes available. There are so many classes that they've been organised into bundles (called "packages") for easier management.
The first release of Java included eight packages. These days it depends on just what edition you're talking about, but you'll
probably find you have somewhere more than 100 packages in your JRE. Standard package names start "java." or "javax.". For
example, there's java.lang to provide basic language facilities, java.net to provide network access, javax.swing to provide the
Swing GUI and javax.servlet to provide Servlet support. You'll come across many more standard packages as you learn Java;
however, as a rule of thumb, if the package name starts "java" or "javax", it's standard, but if it starts with something else
like "com", it isn't.

Java versions
Java started off as Java release 1.0, and progressed through to Java 1.5. Sun were very conservative in moving the release
numbers forward, so much so that the "1." Just became a part of the name. In summer 2004, Java 1.5 was re-branded Java 5.
Java 1.2 was a major step, with a tripling of the number of packages provided. At that point Sun rebranded the new version the
"Java 2 Platform". Although Java is designed to be processor- and operating-system independent, you need to be careful as you
develop code that you do so for a runtime environment that will be available to your user. See how the number of standard
packages and classes has increased:

Classes packages
Java 1.0 212 8
Java 1.1 504 23
Java 2 1.2 1520 59
Java 2 1.3 1842 76
Java 2 1.4 2991 135
Java 2 5.0 more more

As well as the extra packages, there have been some language changes, such as an assert statement added to the language at
release 1.4. Note that there is a very large installed base of browsers running Java 1.1, so you may still want to use it for writing
simple applets. If that's the case, you'll need to obtain a copy of the JDK (Java Development Kit) for that release. The JDK
became the SDK (Software Development Kit), now Java 2 SDK Standard edition, Version 1.5or 5.0

VB Script

VBScript (Visual Basic Scripting Edition) is a scripting language developed by Microsoft for Windows operating systems.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

A VBScript code must be executed within a host environment. It allows you to interact with the host environment to perform

some programming tasks.

A host environment will usually:

 Provide you a specific way to enter your VBScript source code.

 Provide you some basic objects defined in the VBScript core specification.

 Provide you some specific objects to let your code to interact with the host application.

 Provide you additional objects to let your code to access certain operating system resources.

Examples of VBScript host environments

 Internet Explorer (IE) - Allows you to include VBScript code in HTML documents to be executed while IE is rendering

HTML documents on the screen. This is also called client side scripting.

 Internet Information Services (IIS) - Allows you to include VBScript code in HTML documents to be executed while

IIS is fetching HTML documents on the Web server to deliver to client machines. This is also called server side

scripting.

 Windows Script Host (WSH) - Allows you to include VBScript code in script files to be executed directly on the

Windows operating system.

VBScript version history:

1996 VBScript 1.0
1997 VBScript 2.0 - Renamed to 5.0 later
2002 VBScript 5.6
2007 VBScript 5.7

VBScript is actually is a limited variation of Microsoft's Visual Basic programming language. Therefore VBScript shares the

same language syntax as Visual Basic.

Visual Basic can be used to develop stand alone Windows applications. Visual Basic can also be used to write macro codes for

other Windows applications like Microsoft Access.

This section provides tutorial example on how to embed a VBScript code in a HTML document to be executed by Internet

Explorer on the client machine.

Internet Explorer (IE) is a Microsoft application that can be used a Web browser to view Web pages. IE also supports a

VBScript host environment that allows you to embed VBScript codes into source codes of Web pages - HTML documents.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

VBScript codes embeded in HTML documents will be executed while IE is rendering HTML documents on the browser

window. This is also called client side scripting, becauses script codes are executed on the client machine instead of the server

machine.

To add VBScript codes into your HTML documents, you need to use the "script" tag with the "language=vbscript" attribute.

Inside the "script" tag, you can place any number of VB statements. Here is the syntax of adding VBScript codes in HTML

documents:

... (HTML tags)
<script language=vbscript>

... (VB statements)
</script>

... (HTML tags)

Now let's try to write our first VBScript code in a HTML document.

1. Open the Notepad to enter the following HTML document:

<html>
<body>

<script language="vbscript">
document.write("Hello world! - VBScript in IE")

</script>
</body>
</html>

2. Save the HTML document as hello_vb.html.

3. View the HTML document with IE. You should see the following message in the IE window:

Hello world! - VBScript in IE

Congratulations. You have successfully written a VBScript code for the host environment supported in IE!

What happened here was:

 We have added a "script" tag in our HTML document, hello_vb.html.

 We included a simple VBScript code inside the "script" tag.

 The VBScript code calls the "document.write" function, which is a function provided by the IE host environment to

insert a text string into the HTML document.

 We ran IE to view hello_vb.html and got exactly what we expected.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Internet Information Services (IIS) is a Microsoft product that offers and manages the Internet services, like the Web (HTTP)

server, and the email (SMTP) server.

IIS also supports a VBScript host environment that allows you to embed VBScript codes into source codes of Web pages -

HTML documents. VBScript codes embeded in HTML documents will be executed while IIS is fetching HTML documents on

the Web server to deliver to the client machine. This is also called server side scripting, becauses script codes are executed on

the server machine instead of the client machine.

One way to add VBScript codes into your HTML documents for IIS to execute is to use the ASP (Active Server Pages)

technology. If you have IIS installed on your Windows system, you can use the following steps to run a simple VBScript code

in IIS.

1. Go to Control Panel, then Administrative Tools, then Internet Services Manager, and right mouse click on Default Web Site,

then select properties command.

2. Click on Home Directory tab on the properties dialog box, then click the Configuration button.

3. Click on App Mappings tab on the configuration dialog box, then check to see the following line in the mapping area to make

sure that ASP is supported by IIS:

Extension Executable Path Verbs

.asp c:\winnt\system32\inetsrv\asp.dll GET,HEAD,POST,TRACE

4. Create the following hello.asp file:

<%@ language="vbscript"%>
<html><body>

<%
response.write("Hello world! - VBScript in IIS")

%>
</body></html>

5. Copy hello.asp to \inetpub\wwwroot, which is the directory where IIS takes HTML documents.

6. Run Internet Explorer (IE) with this url: http://localhost/hello.asp.

7. You should see "Hello world! - VBScript in IIS" on the IE window.

Congratulations. You have successfully written a VBScript code for the host environment supported in IIS!

What happened here was:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

 We checked the IIS setting to ensure that ASP is supported.

 We created a simple ASP page - a HTML document with a simple VBScript code.

 The VBScript code calls the "response.write" function, which is a function provided by the IIS host environment to

insert a text string into the HTML document.

 We ran IE to view the resulting HTML document generated by IIS and got exactly what we expected.

Windows Script Host (WSH) is a Windows administration tool that provides host environments for several scripting languages

including VBScript.

VBScript codes included in script files will be executed by WSH directly on the Windows operating system.

If you are running a Windows XP system, you can try these steps to run a simple VBScript code with Windows Script Host:

1. Create a script file called hello.vbs:

WScript.StdOut.WriteLine "Hello World! - VBScript in WSH"

2. Run hello.vbs with the "cscript" command in a command window:

C:\herong>cscript hello.vbs
Microsoft (R) Windows Script Host Version 5.6

Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

Hello World! - VBScript in WSH

Congratulations. You have successfully written a VBScript code for the host environment provided by WSH!

What happened here was:

 We created a simple VBScript code file.

 The VBScript code calls the "WScript.StdOut.WriteLine" function, which is a function provided by the WSH host

environment to print a text string to the standard output channel - the command window in this case.

Using Visual Basic with Microsoft Access

Microsoft Access is a Microsoft application that can be used to store and manage data in database tables. Microsoft Access also

supports a macro module that allows you to write macro code with Visual Basic (VB) language.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

If you have Microsoft Access installed on your Windows system, you can follow the steps below to create a simple application

in Visual Basic language within Microsoft Access.

1. Run Microsoft Access, and create a blank Access Database called vb_tutorial.mdb.

2. Click Insert > Module from the menu. The Microsoft Visual Basic window shows up.

3. Enter the following code into the empty code module:

Sub Main()
MsgBox ("Hello world! - Visual Basic in Access")

End Sub

4. Click File > Save from the menu. Enter "Hello" as the module name and save it.

5. Click Run > Run Sub/UserForm from the menu. The macro selection dialog box shows up.

6. Select "Main" macro, and click "Run". A dialog box shows up with the following message:

Hello world! - Visual Basic in Access

Congratulations. You have successfully written a Visual Basic macro in Microsoft Access!

What happened here was:

 We have added a VB macro called "Hello" to our Access database, vb_tutorial.mdb.

 We have added a VB procedure called "Main" in the VB macro. Access calls this procedure as a macro.

 The "Main" procedure calls the "MsgBox" function, which is a VB built-in function that displays Windows dialog box

with the specified text message.

 We ran the "Main" procedure and got exactly what we expected.

Visual Basic .NET (VB 7)

The original Visual Basic .NET was released alongside Visual C# and ASP.NET in 2002. Significant changes broke backward
compatibility with older versions and caused a rift within the developer community

Visual Basic .NET 2003 (VB 7.1)

Visual Basic .NET 2003 was released with version 1.1 of the .NET Framework. New features included support for the .NET
Compact Framework and a better VB upgrade wizard. Improvements were also made to the performance and reliability of the
.NET IDE (particularly the background compiler) and runtime. In addition, Visual Basic .NET 2003 was available in the
Visual Studio .NET 2003 Academic Edition (VS03AE). VS03AE is distributed to a certain number of scholars from each
country without cost.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Visual Basic 2005 (VB 8.0)

Visual Basic 2005 is the name used to refer to the update to Visual Basic .NET, Microsoft having decided to drop the .NET
portion of the title.

For this release, Microsoft added many features, including:

 Edit and Continue
 Design-time expression evaluation.
 The My pseudo-namespace (overview, details), which provides:

 easy access to certain areas of the .NET Framework that otherwise require significant code to access
 dynamically-generated classes (notably My.Forms)

 Improvements to the VB-to-VB.NET converter
 The Using keyword, simplifying the use of objects that require the Dispose pattern to free resources
 Just My Code, which when debugging hides (steps over) boilerplate code written by the Visual Studio .NET IDE and system

library code
 Data Source binding, easing database client/server development

The above functions (particularly My) are intended to reinforce Visual Basic .NET's focus as a rapid application development
platform and further differentiate it from C#.

Visual Basic 2005 introduced features meant to fill in the gaps between itself and other "more powerful" .NET languages,
adding:

 .NET 2.0 languages features such as:
 generics
 Partial classes, a method of defining some parts of a class in one file and then adding more definitions

later; particularly useful for integrating user code with auto-generated code
 Nullable Types

 XML comments that can be processed by tools like NDoc to produce "automatic" documentation
 Operator overloading
 Support for unsigned integer data types commonly used in other languages

'IsNot' operator patented

One other feature of Visual Basic 2005 is the IsNot operator that makes 'If X IsNot Y' equivalent to 'If Not X Is Y', which
gained notoriety when it was found to be the subject of a Microsoft patent application.

Visual Basic 2005 Express

Part of the Visual Studio product range, Microsoft created a set of free development environments for hobbyists and novices,
the Visual Studio 2005 Express series. One edition in the series is Visual Basic 2005 Express Edition, which was succeeded
by Visual Basic 2008 Express Edition in the 2008 edition of Visual Studio Express.

The Express Editions are targeted specifically for people learning a language. They have a streamlined version of the user
interface, and lack more advanced features of the standard versions. On the other hand, Visual Basic 2005 Express Edition
does contain the Visual Basic 6.0 converter, so it is a way to evaluate feasibility of conversion from older versions of Visual
Basic.

Visual Basic 2008 (VB 9.0)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Visual Basic 9.0 was released together with the Microsoft .NET Framework 3.5 on November 19, 2007.

For this release, Microsoft added many features, including:

 A true conditional operator, "If(boolean, value, value)", to replace the "IIf" function.
 Anonymous types
 Support for LINQ
 Lambda expressions
 XML Literals
 Type Inference
 Extension methods

Visual Basic 2010 (VB 10.0)

In April 2010, Microsoft released Visual Basic 2010. Microsoft had planned to use the Dynamic Language Runtime (DLR)
for that release but shifted to a co-evolution strategy between Visual Basic and sister language C# to bring both languages into
closer parity with one another. Visual Basic's innate ability to interact dynamically with CLR and COM objects has been
enhanced to work with dynamic languages built on the DLR such as IronPython and IronRuby. The Visual Basic compiler
was improved to infer line continuation in a set of common contexts, in many cases removing the need for the " _" line
continuation character. Also, existing support of inline Functions was complemented with support for inline Subs as well as
multi-line versions of both Sub and Function lambdas.

Relation to older versions of Visual Basic (VB6 and previous)

Whether Visual Basic .NET should be considered as just another version of Visual Basic or a completely different language is
a topic of debate. This is not obvious, as once the methods that have been moved around and that can be automatically
converted are accounted for, the basic syntax of the language has not seen many "breaking" changes, just additions to support
new features like structured exception handling and short-circuited expressions. Two important data type changes occurred
with the move to VB.NET. Compared to VB6, the Integer data type has been doubled in length from 16 bits to 32 bits, and the
Long data type has been doubled in length from 32 bits to 64 bits. This is true for all versions of VB.NET. A 16-bit integer in
all versions of VB.NET is now known as a Short. Similarly, the Windows Forms GUI editor is very similar in style and
function to the Visual Basic form editor.

The version numbers used for the new Visual Basic (7, 7.1, 8, 9, ...) clearly imply that it is viewed by Microsoft as still
essentially the same product as the old Visual Basic.

The things that have changed significantly are the semantics—from those of an object-based programming language running
on a deterministic, reference-counted engine based on COM to a fully object-oriented language backed by the .NET
Framework, which consists of a combination of the Common Language Runtime (a virtual machine using generational
garbage collection and a just-in-time compilation engine) and a far larger class library. The increased breadth of the latter is
also a problem that VB developers have to deal with when coming to the language, although this is somewhat addressed by
the My feature in Visual Studio 2005.

The changes have altered many underlying assumptions about the "right" thing to do with respect to performance and
maintainability. Some functions and libraries no longer exist; others are available, but not as efficient as the "native" .NET
alternatives. Even if they compile, most converted VB6 applications will require some level of refactoring to take full
advantage of the new language. Documentation is available to cover changes in the syntax, debugging applications,
deployment and terminology.

Comparative samples

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

The following simple example demonstrates similarity in syntax between VB and VB.NET. Both examples pop up a message
box saying "Hello, World" with an OK button.

Private Sub Command1_Click()
MsgBox "Hello, World"

End Sub

A VB.NET example, MsgBox or the MessageBox class can be used:

Public Class Form1
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button1.Click
Msgbox("Hello, World")

End Sub
End Class

Public Class Form1
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button1.Click
MessageBox.Show("Hello, World")

End Sub
End Class

 Both Visual Basic 6 and Visual Basic .NET will automatically generate the Sub and End Sub statements when the
corresponding button is clicked in design view. Visual Basic .NET will also generate the necessary Class and End Class
statements. The developer need only add the statement to display the "Hello, World" message box.

 Note that all procedure calls must be made with parentheses in VB.NET, whereas in VB6 there were different
conventions for functions (parentheses required) and subs (no parentheses allowed, unless called using the keyword
Call).

 Also note that the names Command1 and Button1 are not obligatory. However, these are default names for a command
button in VB6 and VB.NET respectively.

 In VB.NET, the Handles keyword is used to make the sub Button1_Click a handler for the Click event of the object
Button1. In VB6, event handler subs must have a specific name consisting of the object's name ("Command1"), an
underscore ("_"), and the event's name ("Click", hence "Command1_Click").

 There is a function called MsgBox in the Microsoft.VisualBasic namespace which can be used similarly to the
corresponding function in VB6. There is a controversy about which function to use as a best practice (not only restricted
to showing message boxes but also regarding other features of the Microsoft.VisualBasic namespace). Some
programmers prefer to do things "the .NET way", since the Framework classes have more features and are less
language-specific. Others argue that using language-specific features makes code more readable (for example, using int
(C#) or Integer (VB.NET) instead of System.Int32).

 In VB 2008, the inclusion of ByVal sender as Object, ByVal e as EventArgs has become optional.

The following example demonstrates a difference between VB6 and VB.NET. Both examples close the active window.

Classic VB Example:

Sub cmdClose_Click()
Unload Me

End Sub

A VB.NET example:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Sub btnClose_Click(ByVal sender As Object, ByVal e As EventArgs) Handles btnClose.Click
Me.Close()

End Sub

Note the 'cmd' prefix being replaced with the 'btn' prefix, conforming to the new convention previously mentioned.

Visual Basic 6 did not provide common operator shortcuts. The following are equivalent:

VB6 Example:

Sub Timer1_Timer()
Me.Height = Me.Height - 1

End Sub

VB.NET example:

Sub Timer1_Tick(ByVal sender As Object, ByVal e As EventArgs) Handles Timer1.Tick
Me.Height -= 1

End Sub
Criticism

Long-time Visual Basic users have complained about Visual Basic .NET because initial versions dropped a large number of
language constructs and user interface features that were available in VB6 (which is no longer sold by Microsoft), and
changed the semantics of those that remained; for example, in VB.NET parameters are (by default) passed by value, not by
reference. Detractors refer pejoratively to VB.NET as Visual Fred or DOTNOT. On March 8, 2005, a petition was set up in
response to Microsoft's refusal to extend its mainstream support for VB6.

VB.NET's supporters state that the new language is in most respects more powerful than the original, incorporating modern
object oriented programming paradigms in a more natural, coherent and complete manner than was possible with earlier
versions. Opponents tend to respond that although VB6 has flaws in its object model, the cost in terms of redevelopment effort
is too high for any benefits that might be gained by converting to VB.NET.[citation needed]

It is simpler to decompile languages that target Common Intermediate Language (CIL), including VB.NET, compared to
languages that compile to machine code. Tools such as .NET Reflector can provide a close approximation to the original code
due to the large amount of metadata provided in CIL.[citation needed]

Microsoft supplies an automated VB6-to-VB.NET converter with Visual Studio .NET, which has improved over time, but it
cannot convert all code, and almost all non-trivial programs will need some manual effort to compile. Most will need a
significant level of code refactoring to work optimally. Visual Basic programs that are mainly algorithmic in nature can be
migrated with few difficulties; those that rely heavily on such features as database support, graphics, unmanaged operations or
on implementation details are more troublesome.[citation needed]

In addition, the required runtime libraries for VB6 programs are provided with Windows 98 SE and above, while VB.NET
programs require the installation of the significantly larger .NET Framework. The framework is included with Windows 7,
Windows Vista, Windows XP Media Center Edition, Windows XP Tablet PC Edition, Windows Server 2008 and Windows
Server 2003. For other supported operating systems such as Windows 2000 or Windows XP (Home or Professional Editions),
it must be separately installed.

Microsoft's response to developer dissatisfaction has focused around making it easier to move new development and shift
existing codebases from VB6 to VB.NET. Their latest offering is the VBRun website, which offers code samples and articles
for:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

 Using VB.NET to complete tasks that were common in VB6, like creating a print preview
 Integrating VB6 and VB.NET solutions (dubbed VB Fusion)

Cross-platform and open-source development

The creation of open-source tools for VB.NET development have been slow compared to C#, although the Mono development
platform provides an implementation of VB.NET-specific libraries and a VB.NET 8.0 compatible compiler written in
VB.NET, as well as standard framework libraries such as Windows Forms GUI library.

SharpDevelop and MonoDevelop are open-source alternative IDEs.

Examples

The following is a very simple VB.NET program, a version of the classic "Hello world" example created as a console
application:

Module Module1

Sub Main()
Console.WriteLine("Hello, world!")

End Sub

End Module

The effect is to write the text Hello, world! to the command line. Each line serves a specific purpose, as follows:

Module Module1

This is a module definition, a division of code similar to a class, although modules can contain classes. Modules serve as
containers of code that can be referenced from other parts of a program
It is common practice for a module and the code file, which contains it, to have the same name; however, this is not required,
as a single code file may contain more than one module and/or class definition.

Sub Main()

This is the entry point where the program begins execution. Sub is an abbreviation of "subroutine."

Console.WriteLine("Hello, world!")

This line performs the actual task of writing the output. Console is a system object, representing a command-line interface and
granting programmatic access to the operating system's standard streams. The program calls the Console method WriteLine,
which causes the string passed to it to be displayed on the console. Another common method is using MsgBox (a Message
Box).

Message Boxes are used to display information, error or questions. A Message Box contains a title, text and a button. Multiple
types of Messages Boxes are available, which differ in the sound it is making and the picture. The buttons also change
according to the type of Message Box used.

MessageBox.Show("Hello, World", "Title", MessageBoxButtons.YesNo, MessageBoxIcon.Question)

MsgBox("Hello World!", MsgBoxStyle.Question, "Title")

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

There are several different options available for the MessageBox.Show function. The Buttons and Icons available are:

Buttons
AbortRetryIgnore

OK
OKCancel

RetryCancel
YesNo

YesNoCancel

Icon Name Icon Image
Asterisk

Error
Exclamation

Hand
Information

Question
Stop

Warning

The buttons have a different value. The Message Box can be saved into an Integer and then an if-statement can be used to do
certain things depending on which button the user clicked. Example:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click
Dim result As Integer = MessageBox.Show("Do you want to ...?", "Title", MessageBoxButtons.YesNo,

MessageBoxIcon.Asterisk)
If result = 6 Then

'yes was clicked
Else

'no was clicked
End If

End Sub

The Integer is created by Dim result As Integer. result is the name of the Integer and can be freely chosen. The Message Box
contains two buttons MessageBoxButtons.YesNo(Yes and No) the value of Yes is 6 and of No is 7. The following If-
statement checks the value of the Integer result if it is equal to 6 then the first function will be called otherwise the function
else is used.
The following table shows the value of each button.

Button Value
OK 1

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Cancel 2
Abort 3
Retry 4
Ignore 5

Yes 6
No 7

Another way to use the Message Boxes with multiple answer choices shows the following example:

If MsgBox("The process will be started", MsgBoxStyle.OkCancel, "Title") = DialogResult.OK Then
'ok was clicked

Else
'cancel was clicked

End If

Using a Message Box without a variable is also possible by creating the Message Box in the If-statement. The MessageBox
button OK correspondes to the DialogResult.OK code. Thus the program runs a function depending on what Button the User
clicked.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

12.MYSQL, Visual Foxpro

A Database Management System (DBMS) is a set of computer programs that controls the creation,
maintenance, and the use of a database. It allows organizations to place control of database development in the
hands of database administrators (DBAs) and other specialists. A DBMS is a system software package that helps
the use of integrated collection of data records and files known as databases. It allows different user application
programs to easily access the same database. DBMSs may use any of a variety of database models, such as the
network model or relational model. In large systems, a DBMS allows users and other software to store and
retrieve data in a structured way. Instead of having to write computer programs to extract information, user can
ask simple questions in a query language. Thus, many DBMS packages provide Fourth-generation programming
language (4GLs) and other application development features. It helps to specify the logical organization for a
database and access and use the information within a database. It provides facilities for controlling data access,
enforcing data integrity, managing concurrency, and restoring the database from backups. A DBMS also provides
the ability to logically present database information to users.

Visual FoxPro is a data-centric object-oriented and procedural programming language produced by Microsoft. It
is derived from FoxPro (originally known as FoxBASE) which was developed by Fox Software beginning in
1984. Fox Technologies merged with Microsoft in 1992, after which the software acquired further features and
the prefix "Visual". The last version of FoxPro (2.6) worked under Mac OS, DOS, Windows, and Unix: Visual
FoxPro 3.0, the first "Visual" version, dropped the platform support to only Mac and Windows, and later versions
were Windows-only. The current version of Visual FoxPro is COM-based and Microsoft has stated that they do
not intend to create a Microsoft .NET version.

FoxPro originated as a member of the class of languages commonly referred to as "xBase" languages, which have
syntax based on the dBase programming language. Other members of the xBase language family include Clipper
and Recital. (A history of the early years of xBase can be found in the dBase entry.)

Visual FoxPro, commonly abbreviated as VFP, is tightly integrated with its own relational database engine, which
extends FoxPro's xBase capabilities to support SQL query and data manipulation. Unlike most database
management systems, Visual FoxPro is a full-featured, dynamic programming language that does not require the
use of an additional general-purpose programming environment. It can be used to write not just traditional "fat
client" applications, but also middleware and web applications.

What Is SQL? SQL (Structured Query Language) is a comptuer language that allows users to interact with Relational
Database Management Systems (RDBMS) to define data type and structure, and to insert, update or delete data instances.

Usually, an RDBMS system will offer a user interface (UI) to allow you to issue SQL statements to directly operate on the
RDBMS system:

User <--> UI <--SQL--> RDBMS <--> Data storage

A typical RDBMS system does also offer Application Programming Interface (API) to allow application programs to use SQL
statements to interact with the RDBMS system:

User <--> Application <--SQL--> RDBMS <--> Data storage

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

SQL is a non-precedural language. Each SQL statement is an individual execution unit, independent of other statements.
There is no conditional statements, jumping statements or looping statements to group multiple statements together into a
complext execution unit. There is no way to define a procedure of statements, and no procedure call statements.

In the previous section, we learned how to start and shutdown MySQL server. Now let's see how we can use MySQL client
interface to create a table and run queries. First start the MySQL server in one command window, then run the start the
MySQL client interface in another command window, and run the following MySQL client commands:

\mysql\bin\mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 4.0.18-max-debug

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> show databases;
+----------+
| Database |
+----------+
| mysql |
| test |
+----------+
2 rows in set (0.06 sec)

mysql> use test;
Database changed
mysql> show tables;
Empty set (0.00 sec)

mysql> create table hello (message varchar(80));
Query OK, 0 rows affected (0.58 sec)

mysql> insert into hello (message) values ('Hello world!');
Query OK, 1 row affected (0.38 sec)

mysql> select * from hello;
+--------------+
| message |
+--------------+
| Hello world! |
+--------------+
1 row in set (0.04 sec)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

mysql> drop table hello;
Query OK, 0 rows affected (0.34 sec)

mysql> quit;
Bye

A stored procedure can have local variables.

To define a local variable, you can use the DECLARE statement:

DECLARE variable data_type [DEFAULT value];

To assign a new value to a variable, you can use the SET statement:

SET variable = expression;

The SELECT statement can also be used to assign values to variables:

SELECT expression, expression, ... INTO variable, variable, ...
[FROM clause];

Once a variable is defined, it can be used in any expressions in any statements

To selectively executing a group of statements, you can use the IF statement:

IF condition THEN
statement_list

ELSE IF condition THEN
statement_list

ELSE IF condition THEN
statement_list

......
ELSE

statement_list
END IF

To repeatedly executing a group of statements without any conditions, you can use the LOOP statement:

LOOP
statement_list

END LOOP

To repeatedly executing a group of statements with an ending condition, you can use the REPEAT statement:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

REPEAT
statement_list

UNTIL condition
END REPEAT

To repeatedly executing a group of statements with an ending condition, you can use the WHILE statement:

WHILE condition
statement_list

END WHILE

Below is a sample code that uses a while loop to insert multiple rows into a table:

-- ProcedureLoop.sql
-- Copyright (c) 2004 by Dr. Herong Yang
--
DROP DATABASE IF EXISTS HyTest;
CREATE DATABASE HyTest;
USE HyTest;
--
DROP PROCEDURE IF EXISTS InitTable;
DELIMITER '/';
CREATE PROCEDURE InitTable(IN N INTEGER)
BEGIN

DECLARE I INTEGER;
SET I = 0;
WHILE I < N DO

INSERT INTO MyTable VALUES (I, RAND()*N);
SET I = I + 1;

END WHILE;
END/
DELIMITER ';'/
--
DROP TABLE IF EXISTS MyTable;
CREATE TABLE MyTable (ID INTEGER, Value INTEGER);
CALL InitTable(100);
--
SELECT 'My table:' AS '---';
SELECT * FROM MyTable WHERE ID < 10;

Output:

My table:
ID Value

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

0 3
1 63
2 8
3 52
4 35
5 18
6 86
7 75
8 18
9 63

Using DDL to Create Tables and Indexes

 DLL (Data Definition Language) contains CREATE, ALTER and DROP statements.

 CREATE TABLE statements are used to create tables.

 CREATE INDEX statements are used to create indexes.

 ALTER TABLE statements are used to alter table structures.

The create table statement allows you to create a new table in the database. It has a number of syntax formats:

1. To create a permanent table:

CREATE TABLE tbl_name (column_list);

where "column_list" defines the columns of the table with the following syntax:

col_name col_type col_options,
col_name col_type col_options,
...
col_name col_type col_options

2. To create a temporary table:

CREATE TEMPORARY TABLE tbl_name (column_list);

3. To create a permanent table if it doesn't exist:

CREATE TABLE tbl_name IF NOT EXISTS (column_list);

4. To create a permanent table with data types and data generated from a select statement:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

CREATE TABLE tbl_name select_statement;

To show the columns of an existing table, you can use the show columns statement:

SHOW COLUMNS FROM tbl_name;

To delete an existing table, you can use the drop table statement:

DROP TABLE tbl_name;

Here is an example SQL code, CreateTable.sql, showing you how to create a table by selecting data from existing tables:

CreateTable.sql
CREATE TABLE IF NOT EXISTS User (Login VARCHAR(8), Password CHAR(8));
INSERT INTO User VALUES ('herong','8IS3KOXW');
INSERT INTO User VALUES ('mike','PZ0JG');
SELECT 'User table:';
SHOW COLUMNS FROM User;
SELECT * FROM User;
--
CREATE TABLE IF NOT EXISTS UserCopy SELECT * FROM User;
SELECT 'UserCopy table:';
SHOW COLUMNS FROM UserCopy;
SELECT * FROM UserCopy;
--
CREATE TABLE IF NOT EXISTS UserDump

SELECT CONCAT(Login,':') AS Login, CHAR_LENGTH(Password) AS Count
FROM User;

SELECT 'UserCopy table:';
SHOW COLUMNS FROM UserDump;
SELECT * FROM UserDump;
--
DROP TABLE User;
DROP TABLE UserCopy;
DROP TABLE UserDump

If you run the code, you will get:

User table:
User table:
Field Type Null Key Default Extra
Login varchar(8) YES NULL
Password varchar(8) YES NULL
Login Password

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

herong 8IS3KOXW
mike PZ0JG
UserCopy table:
UserCopy table:
Field Type Null Key Default Extra
Login varchar(8) YES
Password varchar(8) YES
Login Password
herong 8IS3KOXW
mike PZ0JG
UserDump table:
UserDump table:
Field Type Null Key Default Extra
Login char(9) YES
Count int(10) YES
Login Count
herong: 8
mike: 5

A couple of interesting notes on the output:

 The show columns statement reports that MySQL sets all columns to be variable length, if one column is variable

length.

 The output of the UserCopy table shows that the create table statement with select sub-statement works perfectly.

 The output of the UserDump table shows that the columns types are based the data types of the output of the select sub-

statement, if it used in the create table statement

An insert statement allows you to insert new rows of data into an existing table. It has a number of syntax formats:

1. To insert a single row of all columns with values resulting from the specified expressions:

INSERT INTO tbl_name VALUES (expression, expression, ...);

When executed, all expressions will be evaluated, and the resulting values will form the new row, which will be inserted into
the specified table. Of course, the number of expressions must be equal to the number of columns in table.

2. To insert a single row with some columns having specified values, and others having default values:

INSERT INTO tbl_name (column, column, ...) VALUES (expression,
expression, ...);

Notes:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

 Obviously, duplicated columns are not allowed in the column list.

 The number of expressions must be equal to the number of specified columns.

 Default values will be provided for those columns that are not specified in the column list.

3. To insert one or more rows of all columns with a select sub-statement:

INSERT INTO tbl_name select_statement;

When executed, the output rows of the select sub-statement will be inserted into the specified table. Of course, the number of
select expressions in the select statement must be equal to the number of columns of the specified table.

4. To insert one or more rows with some column having values from the specified select sub-statement, and other columns
having default values:

INSERT INTO tbl_name (column, column, ...) select_statement;

Notes:

 Obviously, duplicated columns are not allowed in the column list.

 The number of select expressions must be equal to the number of specified columns.

 Default values will be provided for those columns that are not specified in the column list.

Here is an example SQL code, InsertRows.sql, showing you how to insert rows into an existing table:

-- InsertRows.sql
-- Copyright (c) 1999 by Dr. Herong Yang
--
DROP TABLE IF EXISTS User;
CREATE TABLE User (Login VARCHAR(8), Password CHAR(8));
INSERT INTO User VALUES ('herong','8IS3KOXW');
INSERT INTO User (Login) VALUES ('mike');
INSERT INTO User SELECT Login, Password FROM User;
INSERT INTO User (Password) SELECT CONCAT('__',Login) FROM User;
SELECT 'User table:' AS '---';
SELECT * FROM User;

If you run the code, you will get:

User table:
Login Password
herong 8IS3KOXW

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

mike NULL
herong 8IS3KOXW
mike NULL
NULL __herong
NULL __mike
NULL __herong
NULL __mike

A delete statement allows you to delete existing rows from an existing table. The syntax of a delete statement is:

DELETE FROM tbl_name [WHERE clause]

If executed, all rows that satisfy the condition in the where clause will be deleted. If no "where clause" specified, all rows will
be deleted.

Here is an example SQL code, DeleteRows.sql, showing you how to delete rows from an existing table:

-- DeleteRows.sql
-- Copyright (c) 1999 by Dr. Herong Yang
--
DROP TABLE IF EXISTS User;
CREATE TABLE User (Login VARCHAR(8), Password CHAR(8));
INSERT INTO User VALUES ('herong','8IS3KOX');
INSERT INTO User (Login) VALUES ('mike');
DELETE FROM User WHERE Login = 'herong';
SELECT 'User table:' AS '---';
SELECT * FROM User;

If you run the code, you will get:

User table:
Login Password
mike NULL

 SELECT statements returns data in rows and fields from base tables.

 The FROM clause defines the base table, filter, aggregation and sorting order.

 The WHERE clause defines filter conditions.

 The GROUP BY clause defines aggregation rules.

 The ORDER BY clause defines sorting orders.

 The JOIN operation defines how two tables can be combined into a single base table.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

A select statement is also called a query statement. It is normally used to retrieve rows of data selected from specified tables.
The generic syntax of a select statement is:

SELECT select_expression_list [FROM clause]

where "expression_list" defines a list of select expressions, and "FROM clause" defines a select table with rows and columns
of values. Column names of the select table can be used as variables in select expressions to represent column values in each
row.

When a select statement is executed, a nested loop logic will be performed to generate rows of output data:

Loop on each row of the select table, do:
Loop on each select expression, do:

Evaluate this expression with possible column values in current
row of the select table.

End of loop
Return the results of all select expressions as a row of output data

End of loop

Note:

 The number of columns of an output row equals to the number of select expressions.

 The number of rows of the output data equals to the number of rows of the select table.

 If the select table has no rows, no data will be returned.

 The select table is optional. If it is not specified, only one row of data will be returned.

Sample select statements without FROM clause:

SELECT 'Hello world!';
SELECT 'Apple', 'Orange';
SELECT CHAR_LENGTH('Hello world!');
SELECT 1, 4, 9, 16, 25;
SELECT PI();
SELECT CURRENT_DATE(), CURRENT_TIME();

A join table is the output table of a join operation on two tables. There are several types of join operations:

1. Cross Join - Takes each row in the left table, and joins onto all rows in the right table. The number of columns of the output
table is the number of columns of the left table plus the number of columns of the right table. The number of rows of the
output table is the number of rows of the left table times the number of rows of the right table. A cross join operation is also
called Cartesian product operation. There are two ways to write a cross join table:

table_l, table_r
table_l CROSS JOIN table_r

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

The cross join operation logic can be expressed as:

Loop on each row in the left table (L)
Loop on each row in the right table (R)

Generate an output row with all columns of the current row of L
and all columns of the current row of R

End of loop
End of loop

2. Inner Join - Takes the output table of the cross join operation, and filter out rows that do not satisfy the specified join
condition, which should be an equality comparison of one column in the left table and one column in the right table. The
syntax form of an inner join table is:

table_l INNER JOIN table_r ON table_l.column_l=table_r.column_r

The inner join operation logic can be expressed as:

Loop on each row in the left table (L)
Loop on each row in the right table (R)

If the value of column_l equals to the value of column_r
Generate an output row with all columns of the current row

of L and all columns of the current row of R
Break the loop on R

End if
End of loop

End of loop

3. Left Outer Join - Takes the output table of the inner join operation, and adds one row for each row in the left table that has
no matching rows in the right table. This new output row will contain the row from the left table and null values to occupy the
output columns corresponding to the right table. The syntax form of a left outer join table is:

table_l LEFT OUTER JOIN table_r ON table_l.column_l=table_r.column_r

The left outer join operation logic can be expressed as:

Loop on each row in the left table (L)
Set match_found = FALSE
Loop on each row in the right table (R)

If the value of column_l equals to the value of column_r
Generate an output row with all columns of the current row

of L and all columns of the current row of R
Set match_found = TRUE

End if
End of loop
If match_found is FALSE

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Generate an output row with all columns of the current row of L
and null values for columns corresponding to columns of R

End if
End of loop

4. Right Outer Join - Takes the output table of the inner join operation, and adds one row for each row in the right table that
has no matching rows in the left table. This new output row will contain the row from the right table and null values to occupy
the output columns corresponding to the left table. The syntax form of a right outer join table is:

table_l RIGHT OUTER JOIN table_r ON table_l.column_l=table_r.column_r

The right outer join operation logic can be expressed as:

Loop on each row in the right table (R)
Set match_found = FALSE
Loop on each row in the left table (L)

If the value of column_l equals to the value of column_r
Generate an output row with all columns of the current row

of L and all columns of the current row of R
Set match_found = TRUE

End if
End of loop
If match_found is FALSE

Generate an output row with all columns of the current row of R
and null values for columns corresponding to columns of L

End if
End of loop

To validate the join table logics mentioned in the previous section, I wrote the following SQL code, JointTable.sql:

-- JoinTable.sql
-- Copyright (c) 1999 by Dr. Herong Yang
--
-- Creating user table
DROP TABLE IF EXISTS User;
CREATE TABLE User (ID INT, Login CHAR(8), Dept_ID INT);
INSERT INTO User VALUES (1,'herong',1);
INSERT INTO User VALUES (2,'mike',2);
INSERT INTO User VALUES (3,'bill',3);
INSERT INTO User VALUES (4,'mary',3);
INSERT INTO User VALUES (5,'lisa',5);
-- Creating dept table
DROP TABLE IF EXISTS Dept;
CREATE TABLE IF NOT EXISTS Dept (ID INT, Name CHAR(16));

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO Dept VALUES (1,'Math');
INSERT INTO Dept VALUES (3,'Chem');
INSERT INTO Dept VALUES (4,'Law');
INSERT INTO Dept VALUES (5,'English');
INSERT INTO Dept VALUES (5,'Latin');
-- Generating join tables
SELECT 'Running cross join' AS '---';
SELECT * FROM User CROSS JOIN Dept;
SELECT 'Running inner join' AS '---';
SELECT * FROM User INNER JOIN Dept ON User.Dept_ID=Dept.ID;
SELECT 'Running left outer join' AS '---';
SELECT * FROM User LEFT OUTER JOIN Dept ON User.Dept_ID=Dept.ID;
SELECT 'Running right outer join' AS '---';
SELECT * FROM User RIGHT OUTER JOIN Dept ON User.Dept_ID=Dept.ID;

Note that:

 "*" can be used as selection expression. It will be evaluated to a list of values from all columns in the select table.

 A select expression will have system default column name in the output table. You can change the default column name

by using "AS new_name" option.

 When referring to a column in a table, you can use the fully quantified column name: table_name.column_name.

Output of JoinTabl.sql:

Running cross join
ID Login Dept_ID ID Name
1 herong 1 1 Math
2 mike 2 1 Math
3 bill 3 1 Math
4 mary 3 1 Math
5 lisa 5 1 Math
1 herong 1 3 Chem
2 mike 2 3 Chem
3 bill 3 3 Chem
4 mary 3 3 Chem
5 lisa 5 3 Chem
1 herong 1 4 Law
2 mike 2 4 Law
3 bill 3 4 Law
4 mary 3 4 Law

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

5 lisa 5 4 Law
1 herong 1 5 English
2 mike 2 5 English
3 bill 3 5 English
4 mary 3 5 English
5 lisa 5 5 English
1 herong 1 5 Latin
2 mike 2 5 Latin
3 bill 3 5 Latin
4 mary 3 5 Latin
5 lisa 5 5 Latin

Running inner join
ID Login Dept_ID ID Name
1 herong 1 1 Math
3 bill 3 3 Chem
4 mary 3 3 Chem
5 lisa 5 5 English
5 lisa 5 5 Latin

Running left outer join
ID Login Dept_ID ID Name
1 herong 1 1 Math
2 mike 2 NULL NULL
3 bill 3 3 Chem
4 mary 3 3 Chem
5 lisa 5 5 English
5 lisa 5 5 Latin

Running right outer join
ID Login Dept_ID ID Name
1 herong 1 1 Math
3 bill 3 3 Chem
4 mary 3 3 Chem
NULL NULL NULL 4 Law
5 lisa 5 5 English
5 lisa 5 5 Latin

Notes on the output:

 Surprisingly, the cross join was performed with the outer loop on the right table columns. This is different than my

expectation.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

 Inner join, left outer join, and right outer join were performed as expected.

As I mentioned earlier, the WHERE clause modifies the base table by filtering out rows of data that do not satisfy the
specified conditions. Here is its syntax:

WHERE where_condition

where "where_condition" is a predicate operation that will result a true or false condition.

WHERE clause samples:

WHERE Salary <= 45000.00
WHERE Salary > 45000.00 AND Salary <= 65000.00
WHERE Dept IN ('Math','Chem')
WHERE (Dept = 'Math' OR Dept = 'Chem') AND Salary <= 45000.00
WHERE User.Dept_ID = Dept.ID

"GROUP BY clause" modifies the base table by grouping original rows into group rows based on identical combined values
of the specified group columns. In other words, each resulting row represents a group of original rows that has a unique
combination of the values in the specified group columns. Original columns are reduced to the specified group columns only.
Group rows can also be filtered out by a specified condition. "GROUP BY clause" syntax is:

GROUP BY group_columns [HAVING having_condition]

where "group_columns" is a list of columns in the original base table, and "having_condition" is a predicate operation that
will result a true or false condition.

Rule 1: Two types of data can be used in select expressions: 1. group columns; 2. a group function of any original columns.
Group functions are:

 COUNT(column): Number of original records in the group represented by this resulting record. Actually, the COUNT()

will produce the same number regardless of the specified field.

 SUM(column): The sum of all values of the specified column in the group represented by this resulting row.

 MIN(column): The minimum value of the specified column in the group represented by this resulting row.

 MAX(column): The maximum value of the specified column in the group represented by this resulting row.

 AVG(column): The average value of the specified column in the group represented by this resulting row.

For examples, the following is nice salary statistics report per department:

SELECT Department, COUNT(Name) AS NumberOfEmployees,
MIN(Salary) AS MinimumSalary, MAX(Salary) AS MaximumSalary,
AVG(Salary) as AverageSalary

FROM Employee WHERE Status='Active' GROUP BY Department

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Rule 2: If multiple group columns are used, rows are grouped into a single rows based the identical combined values of the
group columns, not individual identical values. For example, the following statement reports age statistics per department and
per sex:

SELECT Department, Sex, COUNT(Name) AS NumberOfEmployees,
MIN(Salary) AS MinimumSalary, MAX(Salary) AS MaximumSalary,
AVG(Salary) as AverageSalary

FROM Employee WHERE Status='Active' GROUP BY Department, Sex

If there are 10 individual departments, you will get 20 records, assuming that every department has both sexes.

Rule 3: If a having condition is specified, it will be used to filter out the resulting group rows that do not satisfy this condition.
Since the having condition is applied on the grouped rows, it can only use group columns and group functions. For example,
the following statement report salary statistics only for those departments that have more than 10 active employees:

SELECT Department, COUNT(Name) AS NumberOfEmployees,
MIN(Salary) AS MinimumSalary, MAX(Salary) AS MaximumSalary,
AVG(Salary) as AverageSalary

FROM Employee WHERE Status='Active'
GROUP BY Department HAVING COUNT(Name)>10

The following is bad example, "Sex='Male'" can only be used in the WHERE clause, not in the HAVING clause:

SELECT Department, COUNT(Name) AS NumberOfEmployees,
MIN(Salary) AS MinimumSalary, MAX(Salary) AS MaximumSalary,
AVG(Salary) as AverageSalary

FROM Employee WHERE Status='Active'
GROUP BY Department HAVING sex='Male’

"ORDER BY clause" modifies the base table by sorting rows according the specified order. "ORDER BY clause" syntax is:

ORDER BY order_exp, order_exp, ...

where "order_exp" specify a single order expression. If multiple order expressions are specified, the order expression on the
left has higher precedence than the one on the right. This means the order expression on the right will only be used to sort
rows that are having the same for the order expression on the left.

If ORDER BY clause is used with GROUP BY clause, it must contain only group columns or group functions. For example,
the following statement shows us which department has the oldest average age:

SELECT department, COUNT(name) AS numberOfEmployees,
min(age) AS minimumAge, max(age) AS maximumAge,
AVG(age) as averageAge

FROM employee WHERE status='Active' GROUP BY department
ORDER BY AVG(age) DESC

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Using DML to Insert, Update and Delete Records

 DML (Data Manipulation Language) contains INSERT, UPDATE and DELETE statements.

 INSERT INTO statements are used to insert records into tables.

 UPDATE statements are used to update records stored in tables.

 DELETE FROM statements are used to delete records from tables.

13. PROJECTS

13.1 Student information system for your college.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Design the Form for Entry Level

Design form for reports & filtrtation

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Write down the appropriate code for Student information system like below ex.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

13.3 A video/ library management system for a shop.

INTRODUCTION
This report will provide a detailed account of the processes our group used to design and implement a database
that can be used to manage a library system. Each subsection of the report corresponds to an important feature of
database design.

REQUIREMENT ANALYSIS
A library database needs to store information pertaining to its users (or customers), its workers, the physical
locations of its branches, and the media stored in those locations. We have decided to limit the media to two
types: books and videos. The library must keep track of the status of each media item: its location, status,
descriptive attributes, and cost for losses and late returns. Books will be identified by their ISBN, and movies by
their title and year. In order to allow multiple copies of the same book or video, each media item will have a
unique ID number. Customers will provide their name, address, phone number, and date of birth when signing up
for a library card. They will then be assigned a unique user name and ID number, plus a temporary password that
will have to be changed. Checkout operations will require a library card, as will requests to put media on hold.
Each library card will have its own fines, but active fines on any of a customer's cards will prevent the customer
from using the library's services. The library will have branches in various physical locations. Branches will be
identified by name, and each branch will have an address and a phone number associated with it. Additionally, a
library branch will store media and have employees. Employees will work at a specific branch of the library. They
receive a paycheck, but they can also have library cards; therefore, the same information that is collected about
customers should be collected about employees.

Functions for customers:
● Log in
● Search for media based on one or more of the following criteria:

○ type (book, video, or both)
○ title
○ author or director
○ year

● Access their own account information:
○ Card number(s)
○ Fines
○ Media currently checked out
○ Media on hold

● Put media on hold
● Pay fines for lost or late items
● Update personal information:

○ Phone numbers
○ Addresses
○ Passwords

Functions for librarians are the same as the functions for customers
plus the following:
● Add customers
● Add library cards and assign them to customers
● Check out media
● Manage and transfer media that is currently on hold

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

● Handle returns
● Modify customers' fines
● Add media to the database
● Remove media from the database
● Receive payments from customers and update the customers'

fines
● View all customer information except passwords

ER DESIGN
It is clear that the physical objects from the previous section – the customers, employees, cards, media, and library
branches – correspond to entities in the Entity-Relationship model, and the operations to be done on those entities
– holds, checkouts, and so on – correspond to relationships. However, a good design will minimize redundancy
and attempt to store all the required information in as small a space as possible. After some consideration, we
have decided on the following design:

Notice that the information about books and videos has been separated from the Media entity. This allows the
database to store multiple copies of the same item without redundancy. The Status entity has also been separated
from Media in order to save space. The Hold relationship stores the entry's place in line (denoted by "queue"); it
can be used to create a waiting list of interested customers. The Librarian entity is functionally an extension to
Customer, so each Librarian also has a customer associated with it. The librarians will have access to the same

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

features as customers, but they will also perform administrative functions, such as checking media in and out and
updating customers' fines.

RELATIONAL DATABASE DESIGN
After coming up with an Entity-Relationship model to describe the library system, we took advantage of the
special relationships found in our design, and were able to condense the information to 13 tables. This new design
is a database that combines some entities and relationships into common tables.

Table 1: Relational Database Schema

Status code desctiption

Media media_id code

Book ISBN title author year dewey price

BookMedia media_id ISBN

Customer ID name addr DOB phone userna
me

password

Card num fines ID
Checkout media_id num since until
Location name addr phone
Hold media_id num name until queue
Stored_In media_id name
Librarian eid ID Pay name since
Video title year director rating price
VideoMedia media_id title year

Note: the arrows in the diagram represent foreign key constraints.

NORMALIZATION
As stated earlier, the tables in this database are in the Third Normal Form (3 NF.) In order to decompose the
relationships into this form, we had to split Status table from the Media table. Each Media object has a status
code, and each status code has an associated description.
It would be redundant to store both codes and descriptions in the Media object, so we created a dedicated Status
table with the code as the primary key. The other tables were designed with optimization in mind. The Card
entity, for instance, was separated from the Customer entity to avoid a functional dependency (since the "num"
attribute of the Card entity determines the "fines" attribute.)

PHYSICAL DATABASE DESIGN

The next step was to create the physical database and input some
sample data. In order to turn the relational design into a database, we
ran the following script in UNCC's Oracle database:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

CREATE TABLE Status (code INTEGER, description CHAR(30), PRIMARY KEY (code));
CREATE TABLE Media(media_id INTEGER, code INTEGER, PRIMARY KEY (media_id),
FOREIGN KEY (code) REFERENCES Status);
CREATE TABLE Book(ISBNCHAR(14), title CHAR(128), author CHAR(64),
year INTEGER, dewey INTEGER, price REAL, PRIMARY KEY (ISBN));
CREATE TABLE BookMedia(media_id INTEGER, ISBN CHAR(14), PRIMARY KEY (media_id),
FOREIGN KEY (media_id) REFERENCES Media,
FOREIGN KEY (ISBN) REFERENCES Book);
CREATE TABLE Customer(ID INTEGER, name CHAR(64), addr CHAR(256), DOB CHAR(10),
phone CHAR(30), username CHAR(16), password CHAR(32), PRIMARY KEY (ID),
UNIQUE (username));
CREATE TABLE Card(num INTEGER, fines REAL, ID INTEGER, PRIMARY KEY (num),
FOREIGN KEY (ID) REFERENCES Customer);
CREATE TABLE Checkout(media_id INTEGER, num INTEGER, since CHAR(10),
until CHAR(10), PRIMARY KEY (media_id),
FOREIGN KEY (media_id) REFERENCES Media,
FOREIGN KEY (num) REFERENCES Card);
CREATE TABLE Location(name CHAR(64), addr CHAR(256), phone CHAR(30),
PRIMARY KEY (name));
CREATE TABLE Hold(media_id INTEGER, num INTEGER, name CHAR(64), until CHAR(10),
queue INTEGER, PRIMARY KEY (media_id, num),
FOREIGN KEY (name) REFERENCES Location,
FOREIGN KEY (num) REFERENCES Card,
FOREIGN KEY (media_id) REFERENCES Media);
CREATE TABLE Stored_In(media_id INTEGER, name char(64), PRIMARY KEY (media_id),
FOREIGN KEY (media_id) REFERENCES Media ON DELETE CASCADE,
FOREIGN KEY (name) REFERENCES Location);
CREATE TABLE Librarian(eid INTEGER, ID INTEGER NOT NULL, Pay REAL,
Loc_name CHAR(64) NOT NULL, PRIMARY KEY (eid),
FOREIGN KEY (ID) REFERENCES Customer ON DELETE CASCADE,
FOREIGN KEY (Loc_name) REFERENCES Location(name));
CREATE TABLE Video(title CHAR(128), year INTEGER, director CHAR(64),
rating REAL, price REAL, PRIMARY KEY (title, year));
CREATE TABLE VideoMedia(media_id INTEGER, title CHAR(128), year INTEGER,
PRIMARY KEY (media_id), FOREIGN KEY (media_id) REFERENCES Media,
FOREIGN KEY (title, year) REFERENCES Video);

The next script populated the database with sample data:
INSERT INTO Customer(ID, name, addr, DOB, phone, username, password) VALUES
(60201, 'Jason L. Gray', '2087 Timberbrook Lane, Gypsum, CO 81637',
'09/09/1958', '970-273-9237', 'jlgray', 'password1');
INSERT INTO Customer(ID, name, addr, DOB, phone, username, password) VALUES
(89682, 'Mary L. Prieto', '1465 Marion Drive, Tampa, FL 33602',
'11/20/1961', '813-487-4873', 'mlprieto', 'password2');
INSERT INTO Customer(ID, name, addr, DOB, phone, username, password) VALUES
(64937, 'Roger Hurst', '974 Bingamon Branch Rd, Bensenville, IL 60106',
'08/22/1973', '847-221-4986', 'rhurst', 'password3');
INSERT INTO Customer(ID, name, addr, DOB, phone, username, password) VALUES
(31430, 'Warren V. Woodson', '3022 Lords Way, Parsons, TN 38363',
'03/07/1945', '731-845-0077', 'wvwoodson', 'password4');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO Customer(ID, name, addr, DOB, phone, username, password) VALUES
(79916, 'Steven Jensen', '93 Sunny Glen Ln, Garfield Heights, OH 44125',
'12/14/1968', '216-789-6442', 'sjensen', 'password5');
INSERT INTO Customer(ID, name, addr, DOB, phone, username, password) VALUES
(93265, 'David Bain', '4356 Pooh Bear Lane, Travelers Rest, SC 29690',
'08/10/1947', '864-610-9558', 'dbain', 'password6');
INSERT INTO Customer(ID, name, addr, DOB, phone, username, password) VALUES
(58359, 'Ruth P. Alber', '3842 Willow Oaks Lane, Lafayette, LA 70507',
'02/18/1976', '337-316-3161', 'rpalber', 'password7');
INSERT INTO Customer(ID, name, addr, DOB, phone, username, password) VALUES
(88564, 'Sally J. Schilling', '1894 Wines Lane, Houston, TX 77002',
'07/02/1954', '832-366-9035', 'sjschilling', 'password8');
INSERT INTO Customer(ID, name, addr, DOB, phone, username, password) VALUES
(57054, 'John M. Byler', '279 Raver Croft Drive, La Follette, TN 37766',
'11/27/1954', '423-592-8630', 'jmbyler', 'password9');
INSERT INTO Customer(ID, name, addr, DOB, phone, username, password) VALUES
(49312, 'Kevin Spruell', '1124 Broadcast Drive, Beltsville, VA 20705',
'03/04/1984', '703-953-1216', 'kspruell', 'password10');
INSERT INTO Card(num, fines, ID) VALUES (5767052, 0.0, 60201);
INSERT INTO Card(num, fines, ID) VALUES (5532681, 0.0, 60201);
INSERT INTO Card(num, fines, ID) VALUES (2197620, 10.0, 89682);
INSERT INTO Card(num, fines, ID) VALUES (9780749, 0.0, 64937);
INSERT INTO Card(num, fines, ID) VALUES (1521412, 0.0, 31430);
INSERT INTO Card(num, fines, ID) VALUES (3920486, 0.0, 79916);
INSERT INTO Card(num, fines, ID) VALUES (2323953, 0.0, 93265);
INSERT INTO Card(num, fines, ID) VALUES (4387969, 0.0, 58359);
INSERT INTO Card(num, fines, ID) VALUES (4444172, 0.0, 88564);
INSERT INTO Card(num, fines, ID) VALUES (2645634, 0.0, 57054);
INSERT INTO Card(num, fines, ID) VALUES (3688632, 0.0, 49312);
INSERT INTO Location(name, addr, phone) VALUES ('Texas Branch',
'4832 Deercove Drive, Dallas, TX 75208', '214-948-7102');
INSERT INTO Location(name, addr, phone) VALUES ('Illinois Branch',
'2888 Oak Avenue, Des Plaines, IL 60016', '847-953-8130');
INSERT INTO Location(name, addr, phone) VALUES ('Louisiana Branch',
'2063 Washburn Street, Baton Rouge, LA 70802', '225-346-0068');
INSERT INTO Status(code, description) VALUES (1, 'Available');
INSERT INTO Status(code, description) VALUES (2, 'In Transit');
INSERT INTO Status(code, description) VALUES (3, 'Checked Out');
INSERT INTO Status(code, description) VALUES (4, 'On Hold');
INSERT INTO Media(media_id, code) VALUES (8733, 1);
INSERT INTO Media(media_id, code) VALUES (9982, 1);
INSERT INTO Media(media_id, code) VALUES (3725, 1);
INSERT INTO Media(media_id, code) VALUES (2150, 1);
INSERT INTO Media(media_id, code) VALUES (4188, 1);
INSERT INTO Media(media_id, code) VALUES (5271, 2);
INSERT INTO Media(media_id, code) VALUES (2220, 3);
INSERT INTO Media(media_id, code) VALUES (7757, 1);
INSERT INTO Media(media_id, code) VALUES (4589, 1);
INSERT INTO Media(media_id, code) VALUES (5748, 1);
INSERT INTO Media(media_id, code) VALUES (1734, 1);
INSERT INTO Media(media_id, code) VALUES (5725, 1);
INSERT INTO Media(media_id, code) VALUES (1716, 4);

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO Media(media_id, code) VALUES (8388, 1);
INSERT INTO Media(media_id, code) VALUES (8714, 1);
INSERT INTO Book(ISBN, title, author, year, dewey, price) VALUES
('978-0743289412', 'Lisey''s Story', 'Stephen King',
2006, 813, 10.0);
INSERT INTO Book(ISBN, title, author, year, dewey, price) VALUES
('978-1596912366', 'Restless: A Novel', 'William Boyd',
2006, 813, 10.0);
INSERT INTO Book(ISBN, title, author, year, dewey, price) VALUES
('978-0312351588', 'Beachglass', 'Wendy Blackburn',
2006, 813, 10.0);
INSERT INTO Book(ISBN, title, author, year, dewey, price) VALUES
('978-0156031561', 'The Places In Between', 'Rory Stewart',
2006, 910, 10.0);
INSERT INTO Book(ISBN, title, author, year, dewey, price) VALUES
('978-0060583002', 'The Last Season', 'Eric Blehm',
2006, 902, 10.0);
INSERT INTO Book(ISBN, title, author, year, dewey, price) VALUES
('978-0316740401', 'Case Histories: A Novel', 'Kate Atkinson',
2006, 813, 10.0);
INSERT INTO Book(ISBN, title, author, year, dewey, price) VALUES
('978-0316013949', 'Step on a Crack', 'James Patterson, et al.',
2007, 813, 10.0);
INSERT INTO Book(ISBN, title, author, year, dewey, price) VALUES
('978-0374105235', 'Long Way Gone: Memoirs of a Boy Soldier',
'Ishmael Beah', 2007, 916, 10.0);
INSERT INTO Book(ISBN, title, author, year, dewey, price) VALUES
('978-0385340229', 'Sisters', 'Danielle Steel', 2006, 813, 10.0);
INSERT INTO BookMedia(media_id, ISBN) VALUES (8733, '978-0743289412');
INSERT INTO BookMedia(media_id, ISBN) VALUES (9982, '978-1596912366');
INSERT INTO BookMedia(media_id, ISBN) VALUES (3725, '978-1596912366');
INSERT INTO BookMedia(media_id, ISBN) VALUES (2150, '978-0312351588');
INSERT INTO BookMedia(media_id, ISBN) VALUES (4188, '978-0156031561');
INSERT INTO BookMedia(media_id, ISBN) VALUES (5271, '978-0060583002');
INSERT INTO BookMedia(media_id, ISBN) VALUES (2220, '978-0316740401');
INSERT INTO BookMedia(media_id, ISBN) VALUES (7757, '978-0316013949');
INSERT INTO BookMedia(media_id, ISBN) VALUES (4589, '978-0374105235');
INSERT INTO BookMedia(media_id, ISBN) VALUES (5748, '978-0385340229');
INSERT INTO Checkout(media_id, num, since, until) VALUES
(2220, 9780749, '02/15/2007', '03/15/2007');
INSERT INTO Video(title, year, director, rating, price) VALUES
('Terminator 2: Judgment Day', 1991, 'James Cameron', 8.3, 20.0);
INSERT INTO Video(title, year, director, rating, price) VALUES
('Raiders of the Lost Ark', 1981, 'Steven Spielberg', 8.7, 20.0);
INSERT INTO Video(title, year, director, rating, price) VALUES
('Aliens', 1986, 'James Cameron', 8.3, 20.0);
INSERT INTO Video(title, year, director, rating, price) VALUES
('Die Hard', 1988, 'John McTiernan', 8.0, 20.0);
INSERT INTO VideoMedia(media_id, title, year) VALUES
(1734, 'Terminator 2: Judgment Day', 1991);
INSERT INTO VideoMedia(media_id, title, year) VALUES
(5725, 'Raiders of the Lost Ark', 1981);

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO VideoMedia(media_id, title, year) VALUES
(1716, 'Aliens', 1986);
INSERT INTO VideoMedia(media_id, title, year) VALUES
(8388, 'Aliens', 1986);
INSERT INTO VideoMedia(media_id, title, year) VALUES
(8714, 'Die Hard', 1988);
INSERT INTO Hold(media_id, num, name, until, queue) VALUES
(1716, 4444172, 'Texas Branch', '02/20/2008', 1);
INSERT INTO Librarian(eid, ID, pay, Loc_name) Values
(2591051, 88564, 30000.00, 'Texas Branch');
INSERT INTO Librarian(eid, ID, pay, Loc_name) Values
(6190164, 64937, 30000.00, 'Illinois Branch');
INSERT INTO Librarian(eid, ID, pay, Loc_name) Values
(1810386, 58359, 30000.00, 'Louisiana Branch');
INSERT INTO Stored_In(media_id, name) VALUES(8733, 'Texas Branch');
INSERT INTO Stored_In(media_id, name) VALUES(9982, 'Texas Branch');
INSERT INTO Stored_In(media_id, name) VALUES(1716, 'Texas Branch');
INSERT INTO Stored_In(media_id, name) VALUES(1734, 'Texas Branch');
INSERT INTO Stored_In(media_id, name) VALUES(4589, 'Texas Branch');
INSERT INTO Stored_In(media_id, name) VALUES(4188, 'Illinois Branch');
INSERT INTO Stored_In(media_id, name) VALUES(5271, 'Illinois Branch');
INSERT INTO Stored_In(media_id, name) VALUES(3725, 'Illinois Branch');
INSERT INTO Stored_In(media_id, name) VALUES(8388, 'Illinois Branch');
INSERT INTO Stored_In(media_id, name) VALUES(5748, 'Illinois Branch');
INSERT INTO Stored_In(media_id, name) VALUES(2150, 'Louisiana Branch');
INSERT INTO Stored_In(media_id, name) VALUES(8714, 'Louisiana Branch');
INSERT INTO Stored_In(media_id, name) VALUES(7757, 'Louisiana Branch');
INSERT INTO Stored_In(media_id, name) VALUES(5725, 'Louisiana Branch');

The database was created and filled with 10 Customers, 11 Cards, 3 Locations and 3 Employees, and 15 media
items. A Hold relationship and a Checkout relationship were also created.

GUI DESIGN
The first step in designing the GUI was to choose a means of accessing the database. After evaluating various
options, we settled on using the JDBC API. The availability of JavaServer Pages on UNCC's servers was an
important factor, as it allowed us to develop our application using a three-tier architecture. By using JDBC we
could separate the application logic from the DBMS as well as from clients. In addition to simplifying operations
on the database, this architecture makes extending the functionality of our system easier. When adding a new
feature or improving an existing one, we will not need to change the database; it will only be necessary to modify
the Java portion of the code. Before beginning Java development, however, we needed to define a set of queries
that our application would use to communicate with the Oracle database. The queries are presented below. Note
that the terms labeled <user input> are to be filled in by the application after it receives input from the user and
validates it. Note also that complex procedures that require several steps and modify more than one table – such
as operations to check out media or put media on hold – will combine several queries into a single transaction,
eliminating the possibility of corrupting the database. Finally, some searches (i.e. searches for Book or Video
entries) may have a variable number of search parameters, determined at run-time. For example, users will have
the option to search for a book by title only, by author only, by year only, by all three fields, or by any
combination of two fields. For simplicity's sake, the search queries listed below contain all possible search
parameters, but not their possible combinations.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

/* *\
Functions available to customers
* */
/* User login and authentication */
SELECT C.ID, C.name, C.addr, C.DOB, C.phone, C.username,
nvl((SELECT 'Librarian'
FROM Librarian L
WHERE L.ID = C.ID), 'Customer') AS role
FROM Customer C
WHERE C.username = <user input> AND C.password = <user input>;
/* Book search for customers */
SELECT B.ISBN, B.title, B.author, B.year,
(SELECT COUNT(*)
FROM BookMedia BM
WHERE BM.ISBN = B.ISBN AND BM.code = 1) AS num_available
FROM Book B
WHERE B.title LIKE '%<user input>%' AND B.author LIKE '%<user input>%' AND
B.year <= <user input> AND B.year >= <user input>;
/* Find all copies of a book (used for placing holds or viewing detailed
information). */
SELECT BM.media_id, S.description,
nvl((SELECT SI.name
FROM Stored_In SI
WHERE SI.media_id = BM.media_id), 'none') AS name
FROM BookMedia BM, Media M, Status S
WHERE BM.ISBN = <user input> AND M.media_id = BM.media_id AND S.code = M.code;
/* Video search for customers */
SELECT V.title, V.year, V.director, V.rating
(SELECT COUNT(*)
FROM VideoMedia VM
WHERE VM.ID = V.ID AND VM.code = 1) AS num_available
FROM Video V
WHERE V.title LIKE '%<user input>%' AND V.year <= <user input> AND V.year <= <user input>
AND V.director LIKE '%<user input>%' AND V.rating >= <user input>;
/* Find all copies of a video (used for placing holds or viewing detailed
information). */
SELECT VM.media_id, S.description,
nvl((SELECT SI.name
FROM Stored_In SI
WHERE SI.media_id = VM.media_id), 'none') AS name
FROM VideoMedia VM, Media M, Status S
WHERE VM.title = <user input> AND VM.year = <user input> AND
M.media_id = VM.media_id AND S.code = M.code;
/* Find the status of a given media item */
SELECT S.description
FROM Status S, Media M
WHERE S.code = M.code AND M.media_id = <user input>;
/* Create a new Hold */
INSERT INTO Hold(media_id, num, name, until, queue) VALUES
(<user input>, <user input>, <user input>, <user input>,
nvl((SELECT MAX(H.queue)
FROM Hold H

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

WHERE H.media_id = <user input>), 0) + 1);
/* Cancel Hold, Step 1: Remove the entry from hold */
DELETE FROM Hold
WHERE media_id = <user input> AND num = <user input>
/* Cancel Hold, Step 2: Update queue for this item */
UPDATE Hold
SET queue = queue-1
WHERE media_id = <user input> AND queue > <user input>;
/* Functions needed to view information about a customer */
/* View the customer's card(s) */
SELECT CR.num, CR.fines
FROM Card CR
WHERE CR.ID = <user input>;
/* View media checked out on a given card */
SELECT B.title, B.author, B.year, BM.media_id, CO.since, CO.until
FROM Checkout CO, BookMedia BM, Book B
WHERE CO.num = <user input> AND CO.media_id = BM.media_id AND B.ISBN = BM.ISBN
UNION
SELECT V.title, V.director, V.year, VM.media_id, CO.since, CO.until
FROM Checkout CO, VideoMedia VM, Book B
WHERE CO.num = <user input> AND CO.media_id = VM.media_id AND
VM.title = V.title AND VM.year = V.year;
/* View media currently on hold for a given card */
SELECT B.title, B.author, B.year, BM.media_id, H.until, H.queue, SI.name
FROM Hold H, BookMedia BM, Book B, Stored_In SI
WHERE H.num = <user input> AND H.media_id = BM.media_id AND B.ISBN = BM.ISBN
AND SI.media_id = H.media_id
UNION
SELECT V.title, V.director, V.year, VM.media_id, H.until, H.queue, SI.name
FROM Hold H, VideoMedia VM, Book B, Stored_In SI
WHERE H.num = <user input> AND H.media_id = VM.media_id AND
VM.title = V.title AND VM.year = V.year AND SI.media_id = H.media_id;
/* View the total amount of fines the customer has to pay */
SELECT SUM(CR.fines)
FROM Card CR
WHERE CR.ID = <user input>;
/* *\
Functions reserved for librarians
* */
/* Add new customer */
INSERT INTO Customer(ID, name, addr, DOB, phone, username, password) VALUES
(<user input>, <user input>, <user input>, <user input>, <user input>,
<user input>, <user input>,);
/* Find a customer */
SELECT C.ID, C.name, C.addr, C.DOB, C.phone, C.username,
nvl((SELECT 'Librarian'
FROM Librarian L
WHERE L.ID = C.ID), 'Customer') AS role
FROM Customer C
WHERE C.username = <user input> AND C.name LIKE '%<user input>%';
/* Add new card and assign it to a customer */
INSERT INTO Card(num, fines, ID) VALUES (<user input>, 0, <user input>);

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

/* Create an entry in Checkout */
INSERT INTO Checkout(media_id, num, since, until) VALUES
(<user input>, <user input>, <user input>, <user input>);

/* Remove the entry for Stored_In */
DELETE FROM Stored_In
WHERE media_id = <user input>;
/* Change the status code of the media */
UPDATE Media
SET code = <user input>
WHERE media_id = <user input>;
/* Remove the entry from Checkout */
DELETE FROM Checkout
WHERE media_id = <user input>;
/* Create the entry in Stored_In */
INSERT INTO Stored_In(media_id, name) VALUES (<user input>, <user input>);
/* Find the next Hold entry for a given media */
SELECT H.num, H.name, H.until
FROM Hold H
WHERE H.queue = 1 AND H.media_id = <user input>;
/* Change the Stored_In entry to the target library branch */
UPDATE Stored_In
SET name = <user input>
WHERE media_id = <user input>;
/* Find the customer that should be notified about book arrival */
SELECT C.name, C.phone, CR.num
FROM Customer C, Card CR, Hold H
WHERE H.queue = 1 AND H.name = <user input> AND H.media_id = <user input> AND
CR.num = H.num AND C.ID = CR.ID;
/* Add a new entry into the Book table */
INSERT INTO Book(ISBN, title, author, year, dewey, price) VALUES
(<user input>, <user input>, <user input>, <user input>, <user input>,
<user input>);
/* Add a new entry into the Video table */
INSERT INTO Video(title, year, director, rating, price) VALUES
(<user input>, <user input>, <user input>, <user input>, <user input>);
/* Add a new Media object */
INSERT INTO Media(media_id, code) VALUES (<user input>, 1);
/* Add a new BookMedia object */
INSERT INTO BookMedia(media_id, ISBN) VALUES (<user input>, <user input>);
/* Add a new VideoMedia object */
INSERT INTO VideoMedia(media_id, title, year) VALUES
(<user input>, <user input>, <user input>);
/* Remove an entry from the BookMedia table */
DELETE FROM BookMedia
WHERE media_id = <user input>;
/* Remove an entry from the VideoMedia table */
DELETE FROM VideoMedia
WHERE media_id = <user input>;
/* Remove an entry from the Media table */
DELETE FROM Media
WHERE media_id = <user input>;
/* Remove an entry from the Book table */

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

DELETE FROM Book
WHERE ISBN = <user input>;
/* Remove an entry from the Video table */
DELETE FROM Video
WHERE title = <user input> AND year = <user input>;
/* Update the customer's fines */
UPDATE Card
SET fines = <user input>
WHERE num = <user input>

After learning about the optimizers used by commercial database management systems, we reviewed the above
queries for efficiency. They turned out to be simple and efficient enough not to require further optimization. With
the query design and optimization finished, we turned our attention to the GUI itself. Our design is laid out in a
fairly traditional manner – a navigation bar on the top, a navigation box on the left side of the screen, and a
content box on the right. Upon first entering the website, the user is presented with a log-in prompt. When the
user attempts to log in, the system compares entered credentials with those stored in the database and presents the
user with a menu. The menus change based on the user's role: customers have basic functions to search for media,
view their account options, fines, and so on, while librarians get an extended menu with administration-related
links. It should be noted that there is no special log in for librarians; instead, the system accesses the database to
find out whether the user is a librarian and builds the menu dynamically.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

13.4 Inventory management system for your college.

Why use Visual Basic
Visual programming is programming for the user it aims at providing the
user with an interface that is intuitive and easy to use in developing such as
interface the programmer employee user friendly features such as window menu,
buttons and list boxes.
A visual programming environment provides all features that are required
to develop graphical user interface as ready to use components. The programmer
does not have to write code to create and display commonly required user-friendly
features each time around.
When the programmer needs a specific user interface feature such as a
button, he selects the appropriate, ready to use component provided by the visual
programming environment these component can be moved, resized and renamed as
required.

ADVANTAGE OF VISUAL PROGRAMMING
Visual programming enables visual development of graphical user
interfaces, easy to use and easy to learn.
One of the principal advantages is that the programmer need not write code
to display the required component.
The visual programming environment display a list of available
component, the programmer pick up the required component from the list.
The component can be moved resized and even deleted if so required.
There is no restriction in the number of controls that can be placed
Moreover since the programmer is creating the user interface usually he can align,
move or size the components as required without having resort to writing code.

PROCESSING
There are many items in a departmental store, which are sold to customer and
purchased from supplier. An order is placed by the customer-required details, which are
listed below:
�Item name
�Quantity
�Delivery time
The order processing executes, look up the stock of each item is available or not
then order fulfilled by the management of departmental store. The system periodically
checks the stock of each item if it is found below the reorder level then purchase order
placed to the supplier for that item, if the supplier is not able to supply whole order then
rest of quantity supplied by the another supplier.
After fulfilled the formalities, bill generated by the system and sent to the
customer. Item details maintained by the management this whole process is being done
manually. My work area is to automate the above process or to generate a more efficient
system

ADVANTAGE OF DATABASE
There is several advantage of storing data in database.
1. All data stored at one location when a database is used, all tables are stored
in a single file thus, and we need not deal with separate first button use the single database
file. Though all the data is stored in a single file, distinction one main faired because of the
use of the tables. Each tables is stored as separate entity in the file.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

2. It is possible to define relationship between tables as will be seen once
defined these relationship between tables are also stored in the database.
3. It is possible to define validation at the field as well table level this ensure
accuracy of data being stored.
4. We also used query, report, sorting etc.

DISADVANTAGES OF OLD SYSTEM
As we know the manual processing is quite tedious, time consuming, less accurate in comparison to computerized
processing. Obviously the present system is not is exception consultant encountering all the above problems.
1. Time consuming.
2. It is very tedious.
3. All information is not placed separately.
4. Lot of paper work.
5. Slow data processing.
6. Not user-friendly environment.
7. It is difficult to found records due file

management system.

ADVANTAGES OF NEW SYSTEM
In new computerized system I tried to give these facilities.
1. Manually system changes into computerized system.
2. Friendly user interface.
3. Time saving.
4. Save paper work.
5. Connecting to database so we use different type of queries, data

report.
6. Give facility of different type of inquiry.
7. Formatted data.
8. Data’s are easily approachable.

REQUIREMENTS OF PROJECT REPORT
Hardware Requirement:

Processor: - Intel Pentium III 833MHz
RAM: - 128 SD-RAM.
Hard Disk: -20 GB or above.
Monitor: - 14” VGA.
Mouse.
Printer: - For print report or Bill.
Floppy Disk Drive: - 1.44MB.

Software Requirement:
Operating system: - Windows 98/2002/NT.
Front End: - Visual Basic 6.0.

(Professional Edition.)
Back end: - MS. Access.

(Some additional feature of VB like, Dtagrind, Data- Report)

TABLES
There are three tables.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

ITEM DETAIL TABLE
It contains information about item like item name, minimum quantity in stock, maximum
quantity, and reorder status etc.

A. Item code: - It represents the code to identify an item. It helps to search the item
in the stock according to requirement.

B. Item name: - This field shows the name of item.

C. Minimum quantity in stock: - This field helps to know the min-qty in stock.

D. Max quantity: - This field shows max quantity in stock.

E. Reorder status: - This field shows reorder status when quantity goes below to
minimum quantity in stock.

Purchase order table
This table contains the information about the purchase order like vender code, order code,
supplier name, supplier address, order date, item code, item name, quantity, deliver time
etc.

Vender code: - This field determine the code of vender.

Order code :-It determines the code of the order that has been ordered by the customer.

Supplier address: - This field helps to know the address of the supplier.

Order date: - This field shows the date of the order.

Item code: - It determines the code of the item.

Item name: - It contains the name of the item.

Quantity: - It specifies the quantity of the order.

Delivery time: - It shows the time of the deliver.

Selling bill table
This table contains information about order that are given by the customer, customer
name, customer’s address, unit price, amount and total amount etc.

Customer name: - This field determines the name of the customer.

Customer address: - It determines the address of the customer.

Unit price: - It shows the price per item.

Amount: - it determines the amount per item.

Total Amount: - This field shows the total amount of the item that has been purchase by

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

the customer.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

14. LAB MANUALS

Lab manual concept is to define how Student design the program on a particular Objective

Hear we design a basic concept

Collage Name

Lab Manual
2010-2011

Subject : DBMS LAB Branch : CS/IT

Year / Sem : Marks : 100

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Taken By
Mr…………………

Basic Requirement

1. Hardware Requirement

Hard disk80 GB
RAM 512 MB
Processor P4 and above

2. Software Requirement

Data base

MS-Access OR MYSQL (Backend)

Language

Visual Basic 6.0 (Front end)

Operating System

Windows XP/ 2003 Server/ Vista/2000

Project

Project Name :

Objective :

Requirement Analysis :

ER Diagram :

Data Flow Diagram :

Database :

Database Management System :

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Normalization :

Front End :

Back End :

Connectivity Steps :

Steps for Creating a Project :

MDI :

Description of the Project :

DFD of Project :

19 Question – Answers

1. What is database?
A database is a logically coherent collection of data with some inherent meaning,
representing some aspect of real world and which is designed, built and populated with data
for a specific purpose.

2. What is DBMS?
It is a collection of programs that enables user to create and maintain a database. In other
words it is general-purpose software that provides the users with the processes of defining,
constructing and manipulating the database for various applications.

3. What is a Database system?
The database and DBMS software together is called as Database system.

4. Advantages of DBMS?
 Redundancy is controlled.
 Unauthorised access is restricted.
 Providing multiple user interfaces.
 Enforcing integrity constraints.
 Providing backup and recovery.

5. Disadvantage in File Processing System?
 Data redundancy & inconsistency.
 Difficult in accessing data.
 Data isolation.
 Data integrity.
 Concurrent access is not possible.
 Security Problems.

6. Describe the three levels of data abstraction?
The are three levels of abstraction:
 Physical level: The lowest level of abstraction describes how data are stored.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

 Logical level: The next higher level of abstraction, describes what data are stored in database and what
relationship among those data.

 View level: The highest level of abstraction describes only part of entire database.

7. Define the "integrity rules"
There are two Integrity rules.
1. Entity Integrity: States that “Primary key cannot have NULL value”
2. Referential Integrity: States that “Foreign Key can be either a NULL value or should be

Primary Key value of other relation.

8. What is extension and intension?
Extension - It is the number of tuples present in a table at any instance. This is time dependent.
Intension - It is a constant value that gives the name, structure of table and the constraints laid on it.

9. What is System R? What are its two major subsystems?
System R was designed and developed over a period of 1974-79 at IBM San Jose Research
Center. It is a prototype and its purpose was to demonstrate that it is possible to build a
Relational System that can be used in a real life environment to solve real life problems, with
performance at least comparable to that of existing system.
Its two subsystems are

Research Storage
System Relational Data System.

10. How is the data structure of System R different from the relational structure?
Unlike Relational systems in System R
 Domains are not supported
 Enforcement of candidate key uniqueness is optional
 Enforcement of entity integrity is optional
 Referential integrity is not enforced

11. What is Data Independence?
Data independence means that “the application is independent of the storage structure and
access strategy of data”. In other words, The ability to modify the schema definition in one
level should not affect the schema definition in the next higher level.
Two types of Data Independence:

Physical Data Independence: Modification in physical level should not affect the logical
level.
Logical Data Independence: Modification in logical level should affect the view level.

NOTE: Logical Data Independence is more difficult to achieve

12. What is a view? How it is related to data independence?
A view may be thought of as a virtual table, that is, a table that does not really exist in its
own right but is instead derived from one or more underlying base table. In other words,
there is no stored file that direct represents the view instead a definition of view is stored in
data dictionary.
Growth and restructuring of base tables is not reflected in views. Thus the view can insulate
users from the effects of restructuring and growth in the database. Hence accounts for logical
data independence.

13. What is Data Model?

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

A collection of conceptual tools for describing data, data relationships data semantics and
constraints.

14. What is E-R model?
This data model is based on real world that consists of basic objects called entities and of
relationship among these objects. Entities are described in a database by a set of attributes.

15. What is Object Oriented model?
This model is based on collection of objects. An object contains values stored in instance
variables with in the object. An object also contains bodies of code that operate on the object.
These bodies of code are called methods. Objects that contain same types of values and the
same methods are grouped together into classes.

16. What is an Entity?
It is a 'thing' in the real world with an independent existence.

17. What is an Entity type?
It is a collection (set) of entities that have same attributes.

18. What is an Entity set?
It is a collection of all entities of particular entity type in the database.

19. What is an Extension of entity type?
The collections of entities of a particular entity type are grouped together into an entity set.

20. What is Weak Entity set?
An entity set may not have sufficient attributes to form a primary key, and its primary key
compromises of its partial key and primary key of its parent entity, then it is said to be Weak
Entity set.

21. What is an attribute?
It is a particular property, which describes the entity.

22. What is a Relation Schema and a Relation?
A relation Schema denoted by R(A1, A2, …, An) is made up of the relation name R and the
list of attributes Ai that it contains. A relation is defined as a set of tuples. Let r be the relation
which contains set tuples (t1, t2, t3, ..., tn). Each tuple is an ordered list of n-values t=(v1,v2,
..., vn).

23. What is degree of a Relation?
It is the number of attribute of its relation schema.

24. What is Relationship?
It is an association among two or more entities.

25. What is Relationship set?
The collection (or set) of similar relationships.

26. What is Relationship type?
Relationship type defines a set of associations or a relationship set among a given set of entity types.

27. What is degree of Relationship type?

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

It is the number of entity type participating.

28. What is DDL (Data Definition Language)?
A data base schema is specifies by a set of definitions expressed by a special language called
DDL.

29. What is VDL (View Definition Language)?
It specifies user views and their mappings to the conceptual schema.

30. What is SDL (Storage Definition Language)?
This language is to specify the internal schema. This language may specify the mapping
between two schemas.

31. What is Data Storage - Definition Language?
The storage structures and access methods used by database system are specified by a set of
definition in a special type of DDL called data storage-definition language.

32. What is DML (Data Manipulation Language)?
This language that enable user to access or manipulate data as organised by appropriate data
model.
 Procedural DML or Low level: DML requires a user to specify what data are needed and

how to get those data.
 Non-Procedural DML or High level: DML requires a user to specify what data are needed

without specifying how to get those data.

33. What is DML Compiler?
It translates DML statements in a query language into low-level instruction that the query
evaluation engine can understand.

34. What is Query evaluation engine?
It executes low-level instruction generated by compiler.

35. What is DDL Interpreter?
It interprets DDL statements and record them in tables containing metadata.

36. What is Record-at-a-time?
The Low level or Procedural DML can specify and retrieve each record from a set of records.
This retrieve of a record is said to be Record-at-a-time.

37. What is Set-at-a-time or Set-oriented?
The High level or Non-procedural DML can specify and retrieve many records in a single
DML statement. This retrieve of a record is said to be Set-at-a-time or Set-oriented.

38. What is Relational Algebra?
It is procedural query language. It consists of a set of operations that take one or two relations
as input and produce a new relation.

39. What is Relational Calculus?
It is an applied predicate calculus specifically tailored for relational databases proposed by
E.F. Codd. E.g. of languages based on it are DSL ALPHA, QUEL.

40. How does Tuple-oriented relational calculus differ from domain-oriented relational calculus
The tuple-oriented calculus uses a tuple variables i.e., variable whose only permitted values

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

are tuples of that relation. E.g. QUEL
The domain-oriented calculus has domain variables i.e., variables that range over the
underlying domains instead of over relation. E.g. ILL, DEDUCE.

41. What is normalization?
It is a process of analysing the given relation schemas based on their Functional
Dependencies (FDs) and primary key to achieve the properties
 Minimizing redundancy
 Minimizing insertion, deletion and update anomalies.

42. What is Functional Dependency?
A Functional dependency is denoted by X Y between two sets of attributes X and Y that are
subsets of R specifies a constraint on the possible tuple that can form a relation state r of R.
The constraint is for any two tuples t1 and t2 in r if t1[X] = t2[X] then they have t1[Y] =
t2[Y]. This means the value of X component of a tuple uniquely determines the value of
component Y.

43. When is a functional dependency F said to be minimal?
 Every dependency in F has a single attribute for its right hand side.
 We cannot replace any dependency X A in F with a dependency Y A where Y is a proper subset of X and still

have a set of dependency that is equivalent to F.
 We cannot remove any dependency from F and still have set of dependency that is equivalent to F.

44. What is Multivalued dependency?
Multivalued dependency denoted by X Y specified on relation schema R, where X and Y are
both subsets of R, specifies the following constraint on any relation r of R: if two tuples t1
and t2 exist in r such that t1[X] = t2[X] then t3 and t4 should also exist in r with the
following properties
t3[x] = t4[X] = t1[X] = t2[X]
t3[Y] = t1[Y] and t4[Y] = t2[Y]
t3[Z] = t2[Z] and t4[Z] = t1[Z]
where [Z = (R-(X U Y))]

45. What is Lossless join property?
It guarantees that the spurious tuple generation does not occur with respect to relation
schemas after decomposition.

46. What is 1 NF (Normal Form)?
The domain of attribute must include only atomic (simple, indivisible) values.

47. What is Fully Functional dependency?
It is based on concept of full functional dependency. A functional dependency X Y is full
functional dependency if removal of any attribute A from X means that the dependency does
not hold any more.

48. What is 2NF?
A relation schema R is in 2NF if it is in 1NF and every non-prime attribute A in R is fully
functionally dependent on primary key.

49. What is 3NF?
A relation schema R is in 3NF if it is in 2NF and for every FD X A either of the following is
true

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

 X is a Super-key of R.
 A is a prime attribute of R.

In other words, if every non prime attribute is non-transitively dependent on primary key.

50. What is BCNF (Boyce-Codd Normal Form)?
A relation schema R is in BCNF if it is in 3NF and satisfies an additional constraint that for
every FD X A, X must be a candidate key.

51. What is 4NF?
A relation schema R is said to be in 4NF if for every Multivalued dependency X Y that holds
over R, one of following is true
 X is subset or equal to (or) XY = R.
 X is a super key.

52. What is 5NF?
A Relation schema R is said to be 5NF if for every join dependency {R1, R2, ..., Rn} that
holds R, one the following is true
 Ri = R for some i.
 The join dependency is implied by the set of FD, over R in which the left side is key of R.

53. What is Domain-Key Normal Form?
A relation is said to be in DKNF if all constraints and dependencies that should hold on the
the constraint can be enforced by simply enforcing the domain constraint and key constraint
on the relation.

54. What are partial, alternate,, artificial, compound and natural key?
Partial Key:
It is a set of attributes that can uniquely identify weak entities and that are related to same
owner entity. It is sometime called as Discriminator.
Alternate Key:
All Candidate Keys excluding the Primary Key are known as Alternate Keys.
Artificial Key:
If no obvious key, either stand alone or compound is available, then the last resort is to
simply create a key, by assigning a unique number to each record or occurrence. Then this is
known as developing an artificial key.
Compound Key:
If no single data element uniquely identifies occurrences within a construct, then combining
multiple elements to create a unique identifier for the construct is known as creating a
compound key.
Natural Key:
When one of the data elements stored within a construct is utilized as the primary key, then it
is called the natural key.

55. What is indexing and what are the different kinds of indexing?
Indexing is a technique for determining how quickly specific data can be found.
Types:
 Binary search style indexing
 B-Tree indexing
 Inverted list indexing
 Memory resident table
 Table indexing

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

56. What is system catalog or catalog relation? How is better known as?
A RDBMS maintains a description of all the data that it contains, information about every
relation and index that it contains. This information is stored in a collection of relations
maintained by the system called metadata. It is also called data dictionary.

57. What is meant by query optimization?
The phase that identifies an efficient execution plan for evaluating a query that has the least
estimated cost is referred to as query optimization.

58. What is join dependency and inclusion dependency?
Join Dependency:
A Join dependency is generalization of Multivalued dependency.A JD {R1, R2, ..., Rn} is
said to hold over a relation R if R1, R2, R3, ..., Rn is a lossless-join decomposition of R .
There is no set of sound and complete inference rules for JD.
Inclusion Dependency:
An Inclusion Dependency is a statement of the form that some columns of a relation are
contained in other columns. A foreign key constraint is an example of inclusion dependency.

59. What is durability in DBMS?
Once the DBMS informs the user that a transaction has successfully completed, its effects
should persist even if the system crashes before all its changes are reflected on disk. This
property is called durability.

60. What do you mean by atomicity and aggregation?
Atomicity:
Either all actions are carried out or none are. Users should not have to worry about the effect
of incomplete transactions. DBMS ensures this by undoing the actions of incomplete
transactions.
Aggregation:
A concept which is used to model a relationship between a collection of entities and
relationships. It is used when we need to express a relationship among relationships.

61. What is a Phantom Deadlock?
In distributed deadlock detection, the delay in propagating local information might cause the
deadlock detection algorithms to identify deadlocks that do not really exist. Such situations
are called phantom deadlocks and they lead to unnecessary aborts.

62. What is a checkpoint and When does it occur?
A Checkpoint is like a snapshot of the DBMS state. By taking checkpoints, the DBMS can
reduce the amount of work to be done during restart in the event of subsequent crashes.

63. What are the different phases of transaction?
Different phases are
 Analysis phase
 Redo Phase
 Undo phase

64. What do you mean by flat file database?
It is a database in which there are no programs or user access languages. It has no cross-file
capabilities but is user-friendly and provides user-interface management.

65. What is "transparent DBMS"?

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

It is one, which keeps its Physical Structure hidden from user.
66. Brief theory of Network, Hierarchical schemas and their properties

Network schema uses a graph data structure to organize records example for such a database
management system is CTCG while a hierarchical schema uses a tree data structure example
for such a system is IMS.

67. What is a query?
A query with respect to DBMS relates to user commands that are used to interact with a data
base. The query language can be classified into data definition language and data
manipulation language.

68. What do you mean by Correlated subquery?
Subqueries, or nested queries, are used to bring back a set of rows to be used by the parent
query. Depending on how the subquery is written, it can be executed once for the parent
query or it can be executed once for each row returned by the parent query. If the subquery is
executed for each row of the parent, this is called a correlated subquery.
A correlated subquery can be easily identified if it contains any references to the parent
subquery columns in its WHERE clause. Columns from the subquery cannot be referenced
anywhere else in the parent query. The following example demonstrates a non-correlated
subquery.
E.g. Select * From CUST Where '10/03/1990' IN (Select ODATE From ORDER Where
CUST.CNUM = ORDER.CNUM)

69. What are the primitive operations common to all record management systems?
Addition, deletion and modification.

70. Name the buffer in which all the commands that are typed in are stored
‘Edit’ Buffer

71. What are the unary operations in Relational Algebra?
PROJECTION and SELECTION.

72. Are the resulting relations of PRODUCT and JOIN operation the same?
No.
PRODUCT: Concatenation of every row in one relation with every row in another.
JOIN: Concatenation of rows from one relation and related rows from another.

73. What is RDBMS KERNEL?
Two important pieces of RDBMS architecture are the kernel, which is the software, and the
data dictionary, which consists of the system-level data structures used by the kernel to
manage the database
You might think of an RDBMS as an operating system (or set of subsystems), designed
specifically for controlling data access; its primary functions are storing, retrieving, and
securing data. An RDBMS maintains its own list of authorized users and their associated
privileges; manages memory caches and paging; controls locking for concurrent resource
usage; dispatches and schedules user requests; and manages space usage within its tablespace
structures.

74. Name the sub-systems of a RDBMS
I/O, Security, Language Processing, Process Control, Storage Management, Logging and
Recovery, Distribution Control, Transaction Control, Memory Management, Lock
Management

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

75. Which part of the RDBMS takes care of the data dictionary? How
Data dictionary is a set of tables and database objects that is stored in a special area of the
database and maintained exclusively by the kernel.

76. What is the job of the information stored in data-dictionary?
The information in the data dictionary validates the existence of the objects, provides access
to them, and maps the actual physical storage location.

77. Not only RDBMS takes care of locating data it also
determines an optimal access path to store or retrieve the data
76. How do you communicate with an RDBMS?
You communicate with an RDBMS using Structured Query Language (SQL)

78. Define SQL and state the differences between SQL and other conventional programming Languages
SQL is a nonprocedural language that is designed specifically for data access operations on
normalized relational database structures. The primary difference between SQL and other
conventional programming languages is that SQL statements specify what data operations
should be performed rather than how to perform them.

79. Name the three major set of files on disk that compose a database in Oracle
There are three major sets of files on disk that compose a database. All the files are binary.
These are
 Database files
 Control files
 Redo logs

The most important of these are the database files where the actual data resides. The control
files and the redo logs support the functioning of the architecture itself.
All three sets of files must be present, open, and available to Oracle for any data on the
database to be useable. Without these files, you cannot access the database, and the database
administrator might have to recover some or all of the database using a backup, if there is one.

80. What is an Oracle Instance?
The Oracle system processes, also known as Oracle background processes, provide functions
for the user processes—functions that would otherwise be done by the user processes
themselves
Oracle database-wide system memory is known as the SGA, the system global area or shared
global area. The data and control structures in the SGA are shareable, and all the Oracle
background processes and user processes can use them.
The combination of the SGA and the Oracle background processes is known as an Oracle
Instance

81. What are the four Oracle system processes that must always be up and running for the database to be
useable
The four Oracle system processes that must always be up and running for the database to be
useable include DBWR (Database Writer), LGWR (Log Writer), SMON (System Monitor),
and PMON (Process Monitor).

82. What are database files, control files and log files. How many of these files should a database have
at least? Why?
Database Files
The database files hold the actual data and are typically the largest in size. Depending on

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

their sizes, the tables (and other objects) for all the user accounts can go in one database file
—but that's not an ideal situation because it does not make the database structure very
flexible for controlling access to storage for different users, putting the database on different
disk drives, or backing up and restoring just part of the database.
You must have at least one database file but usually, more than one files are used. In terms of
accessing and using the data in the tables and other objects, the number (or location) of the
files is immaterial.
The database files are fixed in size and never grow bigger than the size at which they were
created Control Files
The control files and redo logs support the rest of the architecture. Any database must have at
least one control file, although you typically have more than one to guard against loss. The
control file records the name of the database, the date and time it was created, the location of
the database and redo logs, and the synchronization information to ensure that all three sets
of files are always in step. Every time you add a new database or redo log file to the
database, the information is recorded in the control files.
Redo Logs
Any database must have at least two redo logs. These are the journals for the database; the
redo logs record all changes to the user objects or system objects. If any type of failure
occurs, the changes recorded in the redo logs can be used to bring the database to a consistent
state without losing any committed transactions. In the case of non-data loss failure, Oracle
can apply the information in the redo logs automatically without intervention from the DBA.
The redo log files are fixed in size and never grow dynamically from the size at which they
were created.

83. What is ROWID?
The ROWID is a unique database-wide physical address for every row on every table. Once
assigned (when the row is first inserted into the database), it never changes until the row is
deleted or the table is dropped.
The ROWID consists of the following three components, the combination of which uniquely
identifies the physical storage location of the row.
 Oracle database file number, which contains the block with the rows
 Oracle block address, which contains the row
 The row within the block (because each block can hold many rows)

The ROWID is used internally in indexes as a quick means of retrieving rows with a
particular key value. Application developers also use it in SQL statements as a quick way to
access a row once they know the ROWID

84. What is Oracle Block? Can two Oracle Blocks have the same address?
Oracle "formats" the database files into a number of Oracle blocks when they are first created
—making it easier for the RDBMS software to manage the files and easier to read data into
the memory areas.
The block size should be a multiple of the operating system block size. Regardless of the
block size, the entire block is not available for holding data; Oracle takes up some space to
manage the contents of the block. This block header has a minimum size, but it can grow.
These Oracle blocks are the smallest unit of storage. Increasing the Oracle block size can
improve performance, but it should be done only when the database is first created.
Each Oracle block is numbered sequentially for each database file starting at 1. Two blocks
can have the same block address if they are in different database files.

85. What is database Trigger?
A database trigger is a PL/SQL block that can defined to automatically execute for insert,
update, and delete statements against a table. The trigger can e defined to execute once for

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

the entire statement or once for every row that is inserted, updated, or deleted. For any one
table, there are twelve events for which you can define database triggers. A database trigger
can call database procedures that are also written in PL/SQL.

86. Name two utilities that Oracle provides, which are use for backup and recovery.
Along with the RDBMS software, Oracle provides two utilities that you can use to back up
and restore the database. These utilities are Export and Import.
The Export utility dumps the definitions and data for the specified part of the database to an
operating system binary file. The Import utility reads the file produced by an export,
recreates the definitions of objects, and inserts the data
If Export and Import are used as a means of backing up and recovering the database, all the
changes made to the database cannot be recovered since the export was performed. The best
you can do is recover the database to the time when the export was last performed.

87. What are stored-procedures? And what are the advantages of using them.
Stored procedures are database objects that perform a user defined operation. A stored
procedure can have a set of compound SQL statements. A stored procedure executes the SQL
commands and returns the result to the client. Stored procedures are used to reduce network
traffic.

88. How are exceptions handled in PL/SQL? Give some of the internal exceptions' name
PL/SQL exception handling is a mechanism for dealing with run-time errors encountered
during procedure execution. Use of this mechanism enables execution to continue if the error
is not severe enough to cause procedure termination.
The exception handler must be defined within a subprogram specification. Errors cause the
program to raise an exception with a transfer of control to the exception-handler block. After
the exception handler executes, control returns to the block in which the handler was defined.
If there are no more executable statements in the block, control returns to the caller.
User-Defined Exceptions
PL/SQL enables the user to define exception handlers in the declarations area of subprogram
specifications. User accomplishes this by naming an exception as in the following example:
ot_failure EXCEPTION;
In this case, the exception name is ot_failure. Code associated with this handler is written in
the EXCEPTION specification area as follows:
EXCEPTION
when OT_FAILURE then
out_status_code := g_out_status_code;
out_msg := g_out_msg;
The following is an example of a subprogram exception:
EXCEPTION
when NO_DATA_FOUND then
g_out_status_code := 'FAIL';
RAISE ot_failure;
Within this exception is the RAISE statement that transfers control back to the ot_failure
exception handler. This technique of raising the exception is used to invoke all user-defined
exceptions.
System-Defined Exceptions
Exceptions internal to PL/SQL are raised automatically upon error. NO_DATA_FOUND is a
system-defined exception. Table below gives a complete list of internal exceptions.
PL/SQL internal exceptions.
PL/SQL internal exceptions.
Exception Name Oracle Error

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

CURSOR_ALREADY_OPEN ORA-06511
DUP_VAL_ON_INDEX ORA-00001
INVALID_CURSOR ORA-01001
INVALID_NUMBER ORA-01722
LOGIN_DENIED ORA-01017
NO_DATA_FOUND ORA-01403
NOT_LOGGED_ON ORA-01012
PROGRAM_ERROR ORA-06501
STORAGE_ERROR ORA-06500
TIMEOUT_ON_RESOURCE ORA-00051
TOO_MANY_ROWS ORA-01422
TRANSACTION_BACKED_OUT ORA-00061
VALUE_ERROR ORA-06502
ZERO_DIVIDE ORA-01476
In addition to this list of exceptions, there is a catch-all exception named OTHERS that traps
all errors for which specific error handling has not been established.

89. Does PL/SQL support "overloading"? Explain
The concept of overloading in PL/SQL relates to the idea that you can define procedures and
functions with the same name. PL/SQL does not look only at the referenced name, however,
to resolve a procedure or function call. The count and data types of formal parameters are
also considered.
PL/SQL also attempts to resolve any procedure or function calls in locally defined packages
before looking at globally defined packages or internal functions. To further ensure calling
the proper procedure, you can use the dot notation. Prefacing a procedure or function name
with the package name fully qualifies any procedure or function reference.

90. Tables derived from the ERD
a) Are totally unnormalised
b) Are always in 1NF
c) Can be further denormalised
d) May have multi-valued attributes
(b) Are always in 1NF

91. Spurious tuples may occur due to
i. Bad normalization
ii. Theta joins
iii. Updating tables from join
a) i & ii b) ii & iii
c) i & iii d) ii & iii
(a) i & iii because theta joins are joins made on keys that are not primary keys.

92. A B C is a set of attributes. The functional dependency is as follows
AB -> B
AC -> C
C -> B

a) is in 1NF
b) is in 2NF
c) is in 3NF
d) is in BCNF
(a) is in 1NF since (AC)+ = { A, B, C} hence AC is the primary key. Since C B is a FD
given, where neither C is a Key nor B is a prime attribute, this it is not in 3NF. Further B is

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

not functionally dependent on key AC thus it is not in 2NF. Thus the given FDs is in 1NF.

93. In mapping of ERD to DFD
a) entities in ERD should correspond to an existing entity/store in DFD
b) entity in DFD is converted to attributes of an entity in ERD
c) relations in ERD has 1 to 1 correspondence to processes in DFD
d) relationships in ERD has 1 to 1 correspondence to flows in DFD
(a) entities in ERD should correspond to an existing entity/store in DFD

94. A dominant entity is the entity
a) on the N side in a 1 : N relationship
b) on the 1 side in a 1 : N relationship
c) on either side in a 1 : 1 relationship
d) nothing to do with 1 : 1 or 1 : N relationship
(b) on the 1 side in a 1 : N relationship

95. Select 'NORTH', CUSTOMER From CUST_DTLS Where REGION = 'N' Order By
CUSTOMER Union Select 'EAST', CUSTOMER From CUST_DTLS Where REGION
= 'E' Order By CUSTOMER
The above is

a) Not an error
b) Error - the string in single quotes 'NORTH' and 'SOUTH'
c) Error - the string should be in double quotes
d) Error - ORDER BY clause

(d) Error - the ORDER BY clause. Since ORDER BY clause cannot be used in UNIONS

96. What is Storage Manager?
It is a program module that provides the interface between the low-level data stored in
database, application programs and queries submitted to the system.

97. What is Buffer Manager?
It is a program module, which is responsible for fetching data from disk storage into main
memory and deciding what data to be cache in memory.

98. What is Transaction Manager?
It is a program module, which ensures that database, remains in a consistent state despite
system failures and concurrent transaction execution proceeds without conflicting.

99. What is File Manager?
It is a program module, which manages the allocation of space on disk storage and data
structure used to represent information stored on a disk.

100. What is Authorization and Integrity manager?
It is the program module, which tests for the satisfaction of integrity constraint and checks
the authority of user to access data.

101. What are stand-alone procedures?
Procedures that are not part of a package are known as stand-alone because they
independently defined. A good example of a stand-alone procedure is one written in a
SQL*Forms application. These types of procedures are not available for reference from other
Oracle tools. Another limitation of stand-alone procedures is that they are compiled at run
time, which slows execution.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

102. What are cursors give different types of cursors.
PL/SQL uses cursors for all database information accesses statements. The language supports
the use two types of cursors
 Implicit
 Explicit

103. What is cold backup and hot backup (in case of Oracle)?
 Cold Backup:

It is copying the three sets of files (database files, redo logs, and control file) when the
instance is shut down. This is a straight file copy, usually from the disk directly to tape. You
must shut down the instance to guarantee a consistent copy.
If a cold backup is performed, the only option available in the event of data file loss is
restoring all the files from the latest backup. All work performed on the database since the
last backup is lost.

 Hot Backup:
Some sites (such as worldwide airline reservations systems) cannot shut down the database
while making a backup copy of the files. The cold backup is not an available option.
So different means of backing up database must be used — the hot backup. Issue a SQL
command to indicate to Oracle, on a table space – by – table space basis, that the files of the
table space are to backed up. The users can continue to make full use of the files, including
making changes to the data. Once the user has indicated that he/she wants to back up the
table space files, he/she can use the operating system to copy those files to the desired backup
destination.
The database must be running in ARCHIVELOG mode for the hot backup option.
If a data loss failure does occur, the lost database files can be restored using the hot backup
and the online and offline redo logs created since the backup was done. The database is
restored to the most consistent state without any loss of committed transactions.

104. What are Armstrong rules? How do we say that they are complete and/or sound
The well-known inference rules for FDs
 Reflexive rule :

If Y is subset or equal to X then X Y.
 Augmentation rule:

If X Y then XZ YZ.
 Transitive rule:

If {X Y, Y Z} then X Z.
 Decomposition rule :

If X YZ then X Y.
 Union or Additive rule:

If {X Y, X Z} then X YZ.
 Pseudo Transitive rule :

If {X Y, WY Z} then WX Z.
Of these the first three are known as Amstrong Rules. They are sound because it is enough if
a set of FDs satisfy these three. They are called complete because using these three rules we
can generate the rest all inference rules.

105. How can you find the minimal key of relational schema?
Minimal key is one which can identify each tuple of the given relation schema uniquely. For
finding the minimal key it is required to find the closure that is the set of all attributes that are
dependent on any given set of attributes under the given set of functional dependency.
Algo. I Determining X+, closure for X, given set of FDs F

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

1. Set X+ = X
2. Set Old X+ = X+
3. For each FD Y Z in F and if Y belongs to X+ then add Z to X+
4. Repeat steps 2 and 3 until Old X+ = X+
Algo.II Determining minimal K for relation schema R, given set of FDs F
1. Set K to R that is make K a set of all attributes in R
2. For each attribute A in K

a. Compute (K – A)+ with respect to F
b. If (K – A)+ = R then set K = (K – A)+

106. What do you understand by dependency preservation?
Given a relation R and a set of FDs F, dependency preservation states that the closure of the
union of the projection of F on each decomposed relation Ri is equal to the closure of F. i.e.,
((PR1(F)) U … U (PRn(F)))+ = F+
if decomposition is not dependency preserving, then some dependency is lost in the
decomposition.

107. What is meant by Proactive, Retroactive and Simultaneous Update.
Proactive Update:
The updates that are applied to database before it becomes effective in real world .
Retroactive Update:
The updates that are applied to database after it becomes effective in real world .
Simulatneous Update:
The updates that are applied to database at the same time when it becomes effective in real
world .

108. What are the different types of JOIN operations?
Equi Join: This is the most common type of join which involves only equality comparisions.
The disadvantage in this type of join is that there

15. Examples

CREATE TABLESPACE SCT_Admin DATAFILE 'sct_admin.dat' SIZE 10M ONLINE;

INITIAL EXTENT SIZE 10k
NEXT EXTENT SIZE 50k MINEXTENTS 1 MAXEXTENTS 999 PCTINCREASE 10

CREATE TABLESPACE SCT_DATA
DATAFILE 'SCT_Data.dat'
SIZE 20M DEFAULT STORAGE(

INITIAL 10K NEXT 50K
MINEXTENTS 1
MAXEXTENTS 999
PCTINCREASE 10

)
ONLINE;

CREATE TABLESPACE "SCT_DATA"
LOGGING
DATAFILE 'D:\ORACLE\ORADATA\ SCT\SCT_DATA.ora'

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

SIZE 20M
AUTOEXTEND ON NEXT 50K
MAXSIZE UNLIMITED
DEFAULT STORAGE(

INITIAL 10K
NEXT 50K MINEXTENTS 1
MAXEXTENTS 999
PCTINCREASE 10)

CREATE USER "DBA_SCT"
PROFILE "DEFAULT"
IDENTIFIED BY "<password>"
DEFAULT TABLESPACE "SYSTEM"
TEMPORARY TABLESPACE "TEMP"
ACCOUNT UNLOCK;

GRANT "CONNECT" TO "DBA_SCT"
WITH ADMIN OPTION;

GRANT "DBA" TO "DBA_SCT"
WITH ADMIN OPTION;

***********CREATING TABLESPACE CAR_RENTAL******************
CREATE TABLESPACE BANK_SYS

DATAFILE 'Bank_Sys.dat' SIZE 50M
DEFAULT STORAGE(

INITIAL 10K Next 50K
MINEXTENTS 1 MAXEXTENTS 999
PCTINCREASE 10

)
ONLINE;

************CREATING USER DBA_SCT*****************
CREATE USER "DBA_BANKSYS"

PROFILE "DEFAULT"
IDENTIFIED BY "sct2306"
DEFAULT TABLESPACE "SYSTEM"
TEMPORARY TABLESPACE "TEMP"
ACCOUNT UNLOCK;

************GRANTING PERMISSIONS TO DBA_SCT**************
GRANT "DBA" TO "DBA_BANKSYS" WITH ADMIN OPTION;

************CREATING USER SHARANAM*****************
CREATE USER "SHARANAM"

PROFILE "DEFAULT"
IDENTIFIED BY "SHARANAM"
DEFAULT TABLESPACE "BANK_SYS"
TEMPORARY TABLESPACE "TEMP"
ACCOUNT UNLOCK;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

************GRANTING PERMISSIONS TO SHARANAM**************
GRANT CREATE TABLE TO "SHARANAM";
GRANT CREATE VIEW TO "SHARANAM";
GRANT INSERT ANY TABLE TO "SHARANAM";
GRANT SELECT ANY TABLE TO "SHARANAM";
GRANT UPDATE ANY TABLE TO "SHARANAM";
GRANT "CONNECT" TO "SHARANAM" WITH ADMIN OPTION;

************CREATING USER HANSEL*****************
CREATE USER "HANSEL"

PROFILE "DEFAULT"
IDENTIFIED BY "HANSEL"
DEFAULT TABLESPACE "BANK_SYS"
TEMPORARY TABLESPACE "TEMP"
ACCOUNT UNLOCK;

************GRANTING PERMISSIONS TO HANSEL**************
GRANT CREATE TABLE TO "HANSEL";
GRANT CREATE VIEW TO "HANSEL";
GRANT INSERT ANY TABLE TO "HANSEL";
GRANT SELECT ANY TABLE TO "HANSEL";
GRANT UPDATE ANY TABLE TO "HANSEL";
GRANT "CONNECT" TO "HANSEL" WITH ADMIN OPTION;

************CREATING USER IVAN*****************
CREATE USER "IVAN"

PROFILE "DEFAULT"
IDENTIFIED BY "IVAN"
DEFAULT TABLESPACE "BANK_SYS"
TEMPORARY TABLESPACE "TEMP"
ACCOUNT UNLOCK;

************GRANTING PERMISSIONS TO IVAN**************
GRANT CREATE TABLE TO "IVAN";
GRANT CREATE VIEW TO "IVAN";
GRANT INSERT ANY TABLE TO "IVAN";
GRANT SELECT ANY TABLE TO "IVAN";
GRANT UPDATE ANY TABLE TO "IVAN";
GRANT "CONNECT" TO "IVAN" WITH ADMIN OPTION;

Creating Tables:
CREATE TABLE "DBA_BANKSYS"."BRANCH_MSTR"(

"BRANCH_NO" VARCHAR2(10),
"NAME" VARCHAR2(25));

Inserting records
1) BRANCH_MSTR
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B1', 'Vile Parle (HO)');
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B2', 'Andheri');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B3', 'Churchgate');
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B4', 'Sion');
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B5', 'Borivali');
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B6', 'Matunga');

Viewing Record
1) Show all employee numbers, first name, middle name and last name who work in the bank.

SELECT EMP_NO, FNAME, MNAME, LNAME FROM EMP_MSTR;
2) Show all the details related to the Fixed Deposit Slab

SELECT * FROM FDSLAB_MSTR;

Filtering Table Data
1) Show the first name along with the last name of the employees of the bank

SELECT FNAME, LNAME FROM EMP_MSTR;
2) Show the records of the branch whose name is Vile Parle (HO)

SELECT * FROM BRANCH_MSTR WHERE NAME = 'Vile Parle (HO)';
3) Show the details of account number and the type of the account whose type is savings bank account

SELECT ACCT_NO, TYPE FROM ACCT_MSTR WHERE TYPE = ‘SB’;
4) Show different types of occupations of the customer of the bank by eliminating the repeated occupations

SELECT DISTINCT OCCUP FROM CUST_MSTR;
5) Show only the distinct values of the branch details

SELECT DISTINCT * FROM BRANCH_MSTR;
6) Show all the details of the branch according to its name

SELECT * FROM BRANCH_MSTR ORDER BY NAME;
7) SELECT * FROM BRANCH_MSTR ORDER BY NAME DESC;

Creating a Table from a Table
1) Make a target table named BRANCHES from the source table named BRANCH_MSTR and change the name of the branch
to BRANCH_NAME

CREATE TABLE BRANCHES
(BRANCH_NO, BRANCH_NAME)

AS SELECT BRANCH_NO, NAME FROM BRANCH_MSTR;

Inserting data into a table from another table
1) Insert data in the table BRANCHES from the table BRANCH_MSTR

INSERT INTO BRANCHES SELECT BRANCH_NO, NAME FROM BRANCH_MSTR;
2) Insert only those records where the branch name is that of head office

INSERT INTO BRANCHES SELECT BRANCH_NO, NAME FROM BRANCH_MSTR
WHERE NAME = 'Vile Parle (HO)';

Delete Operation
1) Make the BRANCHES table blank

DELETE FROM BRANCHES;
2) Remove only those records whose branch name is Matunga

DELETE FROM BRANCHES WHERE BRANCH_NAME = ‘Matunga’;

Updating the contents of a table
1) Update the address details by changing its city name to Bombay

UPDATE ADDR_DTLS SET City = 'Bombay';
2) Update the branch details by changing the Vile Parle (HO) to head office

UPDATE BRANCHES SET BRANCH_NAME = 'Head Office'
WHERE BRANCH_NAME = 'Vile Parle (HO)';

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Modifying the structure of table
1) Enter a new field called City in the table BRANCHES

ALTER TABLE BRANCHES ADD (CITY VARCHAR2(25));
2) Drop a column of city in the branches table

ALTER TABLE BRANCHES DROP COLUMN CITY;
3) Alter the branches table by modifying its city to hold maximum of 30 characters

ALTER TABLE BRANCHES MODIFY (CITY varchar2(30));

Renaming tables
1) Change the name of branches table to branch table

RENAME BRANCHES TO BRANCH;

Truncate Tables
1) Truncate the table branch

TRUNCATE TABLE BRANCH;

Destroy table
1) Remove the table branch along with its records

DROP TABLE BRANCH;

Examining objects created by a user
1) SELECT * FROM TAB;
2) Show the details of a table structure of table BRANCH_MSTR

DESCRIBE BRANCH_MSTR;

DROP TABLE TMP_FD_AMT;
DROP TABLE TRANS_DTLS;
DROP TABLE TRANS_MSTR;
DROP TABLE CNTC_DTLS;
DROP TABLE ADDR_DTLS;
DROP TABLE ACCT_FD_CUST_DTLS;
DROP TABLE NOMINEE_MSTR;
DROP TABLE FD_DTLS;
DROP TABLE FD_MSTR;
DROP TABLE FDSLAB_MSTR;
DROP TABLE ACCT_MSTR;
DROP TABLE SPRT_DOC;
DROP TABLE CUST_MSTR;
DROP TABLE EMP_MSTR;
DROP TABLE BRANCH_MSTR;

-- BRANCH_MSTR
CREATE TABLE "DBA_BANKSYS"."BRANCH_MSTR"(

"BRANCH_NO" VARCHAR2(10),
"NAME" VARCHAR2(25));

-- EMP_MSTR
CREATE TABLE "DBA_BANKSYS"."EMP_MSTR"(

"EMP_NO" VARCHAR2(10),
"BRANCH_NO" VARCHAR2(10),

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

"FNAME" VARCHAR2(25),
"MNAME" VARCHAR2(25),
"LNAME" VARCHAR2(25),
"DEPT" VARCHAR2(30),
"DESIG" VARCHAR2(30),
"MNGR_NO" VARCHAR2(10));

-- CUST_MSTR
CREATE TABLE "DBA_BANKSYS"."CUST_MSTR"(

"CUST_NO" VARCHAR2(10),
"FNAME" VARCHAR2(25),
"MNAME" VARCHAR2(25),
"LNAME" VARCHAR2(25),
"DOB_INC" DATE NOT NULL,
"OCCUP" VARCHAR2(25),
"PHOTOGRAPH" VARCHAR2(25),
"SIGNATURE" VARCHAR2(25),
"PANCOPY" VARCHAR2(1),
"FORM60" VARCHAR2(1));

-- SPRT_DOC
CREATE TABLE "DBA_BANKSYS"."SPRT_DOC"(

"ACCT_CODE" VARCHAR2(4),
"TYPE" VARCHAR2(40),
"DOCS" VARCHAR2(75));

-- ACCT_MSTR
CREATE TABLE "DBA_BANKSYS"."ACCT_MSTR"(

"ACCT_NO" VARCHAR2(10),
"SF_NO" VARCHAR2(10),
"LF_NO" VARCHAR2(10),
"BRANCH_NO" VARCHAR2(10),
"INTRO_CUST_NO" VARCHAR2(10),
"INTRO_ACCT_NO" VARCHAR2(10),
"INTRO_SIGN" VARCHAR2(1),
"TYPE" VARCHAR2(2),
"OPR_MODE" VARCHAR2(2),
"CUR_ACCT_TYPE" VARCHAR2(4),
"TITLE" VARCHAR2(30),
"CORP_CUST_NO" VARCHAR2(10),
"APLNDT" DATE,
"OPNDT" DATE,
"VERI_EMP_NO" VARCHAR2(10),
"VERI_SIGN" VARCHAR2(1),
"MANAGER_SIGN" VARCHAR2(1),
"CURBAL" NUMBER(8, 2) DEFAULT 0,
"STATUS" VARCHAR2(1) DEFAULT 'A');

-- FD_MSTR
CREATE TABLE "DBA_BANKSYS"."FD_MSTR"(

"FD_SER_NO" VARCHAR2(10),
"SF_NO" VARCHAR2(10),

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

"BRANCH_NO" VARCHAR2(10),
"INTRO_CUST_NO" VARCHAR2(10),
"INTRO_ACCT_NO" VARCHAR2(10),
"INTRO_SIGN" VARCHAR2(1),
"ACCT_NO" VARCHAR2(10),
"TITLE" VARCHAR2(30),
"CORP_CUST_NO" VARCHAR2(10),
"CORP_CNST_TYPE" VARCHAR(4),
"VERI_EMP_NO" VARCHAR2(10),
"VERI_SIGN" VARCHAR2(1),
"MANAGER_SIGN" VARCHAR2(1));

-- FDSLAB_MSTR
CREATE TABLE "DBA_BANKSYS"."FDSLAB_MSTR"(

"FDSLAB_NO" NUMBER(2),
"MINPERIOD" NUMBER(5),
"MAXPERIOD" NUMBER(5),
"INTRATE" NUMBER(5,2));

-- FD_DTLS
CREATE TABLE "DBA_BANKSYS"."FD_DTLS"(

"FD_SER_NO" VARCHAR2(10),
"FD_NO" VARCHAR2(10),
"TYPE" VARCHAR2(1),
"PAYTO_ACCTNO" VARCHAR2(10),
"PERIOD" NUMBER(5),
"OPNDT" DATE,
"DUEDT" DATE,
"AMT" NUMBER(8,2),
"DUEAMT" NUMBER(8,2),
"INTRATE" NUMBER(3),
"STATUS" VARCHAR2(1) DEFAULT 'A',
"AUTO_RENEWAL" VARCHAR2(1));

-- ACCT_FD_CUST_DTLS
CREATE TABLE "DBA_BANKSYS"."ACCT_FD_CUST_DTLS"(

"ACCT_FD_NO" VARCHAR2(10),
"CUST_NO" VARCHAR2(10));

-- NOMINEE_MSTR
CREATE TABLE "DBA_BANKSYS"."NOMINEE_MSTR"(

"NOMINEE_NO" VARCHAR2(10),
"ACCT_FD_NO" VARCHAR2(10),
"NAME" VARCHAR2(75),
"DOB" DATE,
"RELATIONSHIP" VARCHAR2(25));

-- ADDR_DTLS
CREATE TABLE "DBA_BANKSYS"."ADDR_DTLS"(

"ADDR_NO" NUMBER(6),
"CODE_NO" VARCHAR2(10),
"ADDR_TYPE" VARCHAR2(1),

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

"ADDR1" VARCHAR2(50),
"ADDR2" VARCHAR2(50),
"CITY" VARCHAR2(25),
"STATE" VARCHAR2(25),
"PINCODE" VARCHAR2(6));

-- CNTC_DTLS
CREATE TABLE "DBA_BANKSYS"."CNTC_DTLS"(

"ADDR_NO" NUMBER(6),
"CODE_NO" VARCHAR2(10),
"CNTC_TYPE" VARCHAR2(1),
"CNTC_DATA" VARCHAR2(75));

-- TRANS_MSTR
CREATE TABLE "DBA_BANKSYS"."TRANS_MSTR"(

"TRANS_NO" VARCHAR2(10),
"ACCT_NO" VARCHAR2(10),
"DT" DATE,
"TYPE" VARCHAR2(1),
"PARTICULAR" VARCHAR2(30),
"DR_CR" VARCHAR2(1),
"AMT" NUMBER(8,2),
"BALANCE" NUMBER(8,2));

-- TRANS_DTLS
CREATE TABLE "DBA_BANKSYS"."TRANS_DTLS"(

"TRANS_NO" VARCHAR2(10),
"INST_NO" NUMBER(6),
"INST_DT" DATE,
"PAYTO" VARCHAR2(30),
"INST_CLR_DT" DATE,
"BANK_NAME" VARCHAR2(35),
"BRANCH_NAME" VARCHAR2(25),
"PAIDFROM" VARCHAR2(10));

-- TMP_FD_AMT
CREATE TABLE "DBA_BANKSYS"."TMP_FD_AMT"(

"FD_AMT" NUMBER(6));

-- Records for BRANCH_MSTR
INSERT INTO TMP_FD_AMT (FD_AMT) VALUES(5000);
INSERT INTO TMP_FD_AMT (FD_AMT) VALUES(10000);
INSERT INTO TMP_FD_AMT (FD_AMT) VALUES(15000);
INSERT INTO TMP_FD_AMT (FD_AMT) VALUES(20000);
INSERT INTO TMP_FD_AMT (FD_AMT) VALUES(25000);
INSERT INTO TMP_FD_AMT (FD_AMT) VALUES(30000);
INSERT INTO TMP_FD_AMT (FD_AMT) VALUES(4000);
INSERT INTO TMP_FD_AMT (FD_AMT) VALUES(50000);

-- Records for BRANCH_MSTR
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B1', 'Vile Parle (HO)');
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B2', 'Andheri');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B3', 'Churchgate');
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B4', 'Mahim');
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B5', 'Borivali');
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B6', 'Darya Ganj');

-- Records for EMP_MSTR
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E1', 'B1', 'Ivan', 'Nelson', 'Bayross', 'Administration', 'Managing Director', NULL);
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E2', 'B2', 'Amit', null, 'Desai', 'Loans And Financing', 'Finance Manager', NULL);
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E3', 'B3', 'Maya', 'Mahima', 'Joshi', 'Client Servicing', 'Sales Manager', NULL);
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E4', 'B1', 'Peter', 'Iyer', 'Joseph', 'Loans And Financing', 'Clerk', 'E2');
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E5', 'B4', 'Mandhar', 'Dilip', 'Dalvi', 'Marketing', 'Marketing Manager', NULL);
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E6', 'B6', 'Sonal', 'Abdul', 'Khan', 'Administration', 'Admin. Executive', 'E1');
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E7', 'B4', 'Anil', 'Ashutosh', 'Kambli', 'Marketing', 'Sales Asst.', 'E5');
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E8', 'B3', 'Seema', 'P.', 'Apte', 'Client Servicing', 'Clerk', 'E3');
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E9', 'B2', 'Vikram', 'Vilas', 'Randive', 'Marketing', 'Sales Asst.', 'E5');
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E10', 'B6', 'Anjali', 'Sameer', 'Pathak', 'Administration', 'HR Manager', 'E1');

-- Records for CUST_MSTR
INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C1', 'Ivan', 'Nelson', 'Bayross', '25-JUN-1952', 'Self Employed',
'D:/ClntPht/C1.gif', 'D:/ClntSgnt/C1.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C2', 'Chriselle', 'Ivan', 'Bayross', '29-OCT-1982', 'Service',
'D:/ClntPht/C2.gif', 'D:/ClntSgnt/C2.gif', 'N', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C3', 'Mamta', 'Arvind', 'Muzumdar', '28-AUG-1975', 'Service',
'D:/ClntPht/C3.gif', 'D:/ClntSgnt/C3.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C4', 'Chhaya', 'Sudhakar', 'Bankar', '06-OCT-1976', 'Service',
'D:/ClntPht/C4.gif', 'D:/ClntSgnt/C4.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C5', 'Ashwini', 'Dilip', 'Joshi', '20-NOV-1978', 'Business',
'D:/ClntPht/C5.gif', 'D:/ClntSgnt/C5.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C6', 'Hansel', 'I.', 'Colaco', '01-JAN-1982', 'Service',
'D:/ClntPht/C6.gif', 'D:/ClntSgnt/C6.gif', 'N', 'Y');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C7', 'Anil', 'Arun', 'Dhone', '12-OCT-1983', 'Self Employed',
'D:/ClntPht/C7.gif', 'D:/ClntSgnt/C7.gif', 'N', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C8', 'Alex', 'Austin', 'Fernandes', '30-SEP-1962', 'Executive',
'D:/ClntPht/C8.gif', 'D:/ClntSgnt/C8.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C9', 'Ashwini', 'Shankar', 'Apte', '19-APR-1979', 'Service',
'D:/ClntPht/C9.gif', 'D:/ClntSgnt/C9.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C10', 'Namita', 'S.', 'Kanade', '10-JUN-1978', 'Self Employed',
'D:/ClntPht/C10.gif', 'D:/ClntSgnt/C10.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('O11', null, null, null, '14-NOV-1997', 'Retail Business', null, null, 'Y', 'N');
INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('O12', null, null, null, '23-OCT-1992', 'Information Technology', null, null, 'Y', 'N');
INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('O13', null, null, null, '05-FEB-1989', 'Community Welfare', null, null, 'Y', 'N');
INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('O14', null, null, null, '24-MAY-1980', 'Retail Business', null, null, 'N', 'Y');
INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('O15', null, null, null, '02-APR-2000', 'Retail Business', null, null, 'Y', 'N');
INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('O16', null, null, null, '13-JAN-2002', 'Marketing', null, null, 'Y', 'N');

-- Records for SPRT_DOC
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('0S', 'Individuals / Savings Bank Account', 'Driving Licence / Ration Card / Passport');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('0S', 'Individuals / Savings Bank Account', 'Birth Certificate / School Leaving Certificate');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('1C', 'Propriety / Sole Trading Concerns', 'Letter From The Propriety');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('2C', 'Partnership Concerns', 'Letter From The Partners');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('2C', 'Partnership Concerns', 'Partnership Deed / Registration Certificate');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('3C', 'Hindu Undivided Family Businesses', 'Letter From The Karta');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('3C', 'Hindu Undivided Family Businesses', 'List Of Members');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('4C', 'Limited Companies', 'Copy Of Board Of Directors'' Resolution For Opening The Account');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('4C', 'Limited Companies', 'Memorandum and Articles Of Association');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('4C', 'Limited Companies', 'Certificate Of Incorporation');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('4C', 'Limited Companies', 'Certificate Of Commencement Of Business / Registration Certificate');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('5C', 'Trust Accounts', 'Trust Deed');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('5C', 'Trust Accounts', 'Resolution Of Trustees');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('5C', 'Trust Accounts', 'List Of Trusties');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('6C', 'Clubs / Societies', 'Resolution');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('6C', 'Clubs / Societies', 'Constitution And Bye-laws');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('6C', 'Clubs / Societies', 'Certificate Of Registration');

INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)
VALUES('7C', 'Legislative Bodies', 'Letter From The Authority');

-- Records for ACCT_MSTR
INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('SB1', 'SF-0001', 'NOV03-05', 'B1', 'C1', 'SB1', 'Y', 'SB', 'SI', '0S', null, null,
'05-NOV-2003', '05-NOV-2003', 'E1', 'Y', 'Y', 500, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('CA2', 'SF-0002', 'NOV03-10', 'B2', 'C1', 'SB1', 'Y', 'CA', 'JO', '1C', 'Uttam Stores', 'O11',
'07-NOV-2003', '10-NOV-2003', 'E1', 'Y', 'Y', 3000, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('SB3', 'SF-0003', 'NOV03-22', 'B3', 'C4', 'SB3', 'Y', 'SB', 'SI', '0S', null, null,
'20-NOV-2003', '22-NOV-2003', 'E4', 'Y', 'Y', 500, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('CA4', 'SF-0004', 'DEC03-05', 'B5', 'C4', 'SB3', 'Y', 'CA', 'AS', '4C', 'Sun''s Pvt. Ltd.', 'O12',
'02-DEC-2003', '05-DEC-2003', 'E4', 'Y', 'Y', 12000, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('SB5', 'SF-0005', 'DEC03-15', 'B6', 'C1', 'SB1', 'Y', 'SB', 'JO', '0S', null, null,
'14-DEC-2003', '15-DEC-2003', 'E1', 'Y', 'Y', 500, 'A');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('SB6', 'SF-0006', 'DEC03-27', 'B4', 'C5', 'SB6', 'Y', 'SB', 'ES', '0S', null, null,
'27-DEC-2003', '27-DEC-2003', 'E4', 'Y', 'Y', 500, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('CA7', 'SF-0007', 'JAN04-14', 'B1', 'C8', 'CA7', 'Y', 'CA', 'AS', '6C', 'Puru Hsg. Soc', 'O13',
'14-JAN-2004', '14-JAN-2004', 'E4', 'Y', 'Y', 22000, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('SB8', 'SF-0008', 'JAN04-29', 'B2', 'C9', 'SB8', 'Y', 'SB', 'SI', '0S', null, null,
'27-JAN-2004', '29-JAN-2004', 'E1', 'Y', 'Y', 500, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('SB9', 'SF-0009', 'FEB04-05', 'B4', 'C10', 'SB9', 'Y', 'SB', 'JO', '0S', null, null,
'05-FEB-2004', '05-FEB-2004', 'E4', 'Y', 'Y', 500, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('CA10', 'SF-0010', 'FEB04-19', 'B6', 'C10', 'SB9', 'Y', 'CA', 'AS', '3C', 'Ghar Karobar', 'O14',
'19-FEB-2004', '19-FEB-2004', 'E4', 'Y', 'Y', 32000, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('SB11', 'SF-0011', 'MAR04-10', 'B1', 'C1', 'SB1', 'Y', 'SB', 'SI', '0S', null, null,
'05-MAR-2004', '10-MAR-2004', 'E1', 'Y', 'Y', 500, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('CA12', 'SF-0012', 'MAR04-10', 'B2', 'C1', 'SB5', 'Y', 'CA', 'JO', '1C', 'Suresh Stores', 'O15',
'07-MAR-2004', '10-MAR-2004', 'E1', 'Y', 'Y', 5000, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('SB13', 'SF-0013', 'MAR04-22', 'B3', 'C4', 'SB3', 'Y', 'SB', 'SI', '0S', null, null,
'20-MAR-2004', '22-MAR-2004', 'E4', 'Y', 'Y', 500, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('CA14', 'SF-0014', 'APR04-05', 'B5', 'C4', 'SB3', 'Y', 'CA', 'AS', '4C', 'Moon''s Pvt. Ltd.', 'O16',
'02-APR-2004', '05-APR-2004', 'E4', 'Y', 'Y', 10000, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('SB15', 'SF-0015', 'APR04-15', 'B6', 'C1', 'SB1', 'Y', 'SB', 'JO', '0S', null, null,
'14-APR-2004', '15-APR-2004', 'E1', 'Y', 'Y', 500, 'A');

-- Records for FD_MSTR
INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO,

INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN)
VALUES ('FS1', 'SF-1001', 'B2', 'CA2', 'Uttam Stores', 'O11', '1C', null, null, 'N', 'E1', 'Y', 'Y');

INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO,

INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN)
VALUES ('FS2', 'SF-1002', 'B5', 'CA4', 'Sun''s Pvt. Ltd.', 'C12', '4C', null, null, 'N', 'E1', 'Y', 'Y');

INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO,

INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN)
VALUES ('FS3', 'SF-1003', 'B1', 'CA7', 'Puru Hsg. Soc', 'O13', '6C', null, null, 'N', 'E4', 'Y', 'Y');

INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO,

INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN)
VALUES ('FS4', 'SF-1004', 'B6', 'CA10', 'Ghar Karobar', 'O14', '3C', null, null, 'N', 'E4', 'Y', 'Y');

INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO,

INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN)
VALUES ('FS5', 'SF-1005', 'B4', null, null, null, '0S', 'C7', 'SB6', 'Y', 'E4', 'Y', 'Y');

-- Record for FDSLAB_MSTR
INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE) VALUES(1, 1, 30, 5);
INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE) VALUES(2, 31, 92, 5.5);
INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE) VALUES(3, 93, 183, 6);
INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE) VALUES(4, 184, 365, 6.5);
INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE) VALUES(5, 366, 731, 7.5);
INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE) VALUES(6, 732, 1097, 8.5);
INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE) VALUES(7, 1098, 1829, 10);

-- Record for FD_DTLS
INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT,

INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS1', 'F1', 'S', 'CA2', 365, '02-JAN-2004', '01-JAN-2005', 15000, 16050.00, 6.5, 'A', 'Y');

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT,

INTRATE, STATUS, AUTO_RENEWAL)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

VALUES('FS1', 'F2', 'S', 'CA2', 365, '02-JAN-2004', '01-JAN-2005', 5000, 5350.00, 6.5, 'A', 'N');
INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT,

INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS2', 'F3', 'S', 'CA4', 366, '25-MAR-2004', '25-MAR-2005', 10000, 10802.19, 7.5, 'A', 'Y');

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT,

INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS2', 'F4', 'S', 'CA4', 366, '15-APR-2004', '15-APR-2005', 10000, 10802.19, 7.5, 'A', 'Y');

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT,

INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS3', 'F5', 'S', 'CA7', 183, '24-APR-2004', '24-OCT-2006', 2000, 2060.16, 6, 'A', 'Y');

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT,

INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS4', 'F6', 'S', 'CA10', 732, '19-MAY-2004', '20-MAY-2006', 5000, 5902.47, 8.5, 'A', 'Y');

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT,

INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS5', 'F7', 'S', 'SB6', 366, '27-MAY-2004', '27-MAY-2005', 15000, 16203.30, 7.5, 'A', 'N');

-- Record for ACCT_FD_CUST_DTLS
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB1', 'C1');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA2', 'C2');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA2', 'C3');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB3', 'C4');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA4', 'C4');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA4', 'C5');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB5', 'C1');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB5', 'C4');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB6', 'C5');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB6', 'C7');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA7', 'C6');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA7', 'C8');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB8', 'C9');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB9', 'C3');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB9', 'C10');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA10', 'C10');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA10', 'C9');

INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB11', 'C1');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA12', 'C2');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA12', 'C3');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB13', 'C4');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA14', 'C4');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA14', 'C5');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB15', 'C1');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB15', 'C4');

INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS1', 'C2');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS1', 'C3');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS2', 'C4');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS2', 'C5');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS2', 'C5');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS3', 'C6');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS3', 'C8');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS4', 'C10');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS4', 'C9');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS5', 'C5');

-- Record for NOMINEE_MSTR
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N1', 'CA2', 'Joseph Martin Dias', '17-SEP-1984', 'Colleague');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N2', 'CA2', 'Nilesh Sawant', '25-AUG-1987', 'Colleague');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N3', 'SB1', 'Chriselle Ivan Bayross', '25-JUN-1952', 'Daughter');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N4', 'SB3', 'Mamta Arvind Muzumdar', '28-AUG-1975', 'Friend');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N5', 'SB6', 'Preeti Suresh Shah', '12-FEB-1978', 'Friend');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N6', 'SB8', 'Rohit Rajan Sahakarkar', '30-MAY-1985', 'Relative');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N7', 'CA10', 'Namita S. Kanade', '10-JUN-1978', 'Niece');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N8', 'FS1', 'Rohit Rajan Sahakarkar', '30-MAY-1985', 'Relative');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N9', 'FS2', 'Joseph Martin Dias', '17-SEP-1984', 'Colleague');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N10', 'FS2', 'Nilesh Sawant', '25-AUG-1987', 'Colleague');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N11', 'FS3', 'Chriselle Ivan Bayross', '25-JUN-1952', 'Colleague');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N12', 'FS3', 'Mamta Arvind Muzumdar', '28-AUG-1975', 'Friend');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N13', 'FS4', 'Namita S. Kanade', '10-JUN-1978', 'Relative');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N14', 'FS5', 'Pramila P. Pius', '10-OCT-1985', 'Niece');

-- Record for ADDR_DTLS
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(1, 'B1', 'H', 'A/5, Jay Chambers,', 'Service Road, Vile Parle (East),',
'Mumbai', 'Maharashtra', '400057');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(2, 'B2', 'B', 'BSES Chambers, 10th floor,',

'Near Rly. Station, Andheri (West),', 'Mumbai', 'Maharashtra', '400058');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(3, 'B3', 'B', 'Prabhat Complex, No. 5 / 6,', 'Opp. Air India Bldg., Churchgate,',
'Mumbai', 'Maharashtra', '400004');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(4, 'B4', 'B', '23/A, Swarna Bldg., Smt. Rai Marg,',

'Eastern Express Highway, Kurla (East),', 'Mumbai', 'Maharashtra', '400045');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(5, 'B5', 'B', 'Vikas Centre, Shop 37, Near National Park,',

'Western Express Highway, Borivali (East),', 'Mumbai', 'Maharashtra', '400078');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(6, 'B6', 'B', '24/A, Mahima Plaza, First Floor,', 'Darya Ganj,',
'New Delhi', 'Delhi', '110004');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(7, 'E1', 'N', 'F-12, Diamond Palace, West Avenue,',

'North Avenue, Santacruz (West),', 'Mumbai', 'Maharashtra', '400056');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(8, 'E2', 'C', 'Desai House, Plot No. 25, P.G. Marg,',
'Near Malad Rly. Stat., Malad (West),', 'Mumbai', 'Maharashtra', '400078');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(9, 'E3', 'N', 'Room No. 56, 3rd Floor, Swamibhavan,',

'J. P. Road Junction, Andheri (East),', 'Mumbai', 'Maharashtra', '400059');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(10, 'E4', 'C', '301, Thomas Palace, Opp. Indu Child Care,',
'Yadnik Nagar, Andheri (West),', 'Mumbai', 'Maharashtra', '400058');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(11, 'E5', 'C', '456/A, Bldg. No. 4, Vahatuk Nagar,',

'Amboli, Andheri (West),', 'Mumbai', 'Maharashtra', '400058');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(12, 'E6', 'N', '201, Meena Towers, Nr. Sun Gas Agency,',
'S. V. Rd., Goregoan (West),', 'Mumbai', 'Maharashtra', '400076');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(13, 'E7', 'N', 'Patel Chawl, Rm. No. 15, B. P. Lal Marg,',

'Mahim (West),', 'Mumbai', 'Maharashtra', '400016');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(14, 'E8', 'C', 'A - 10, Neelam, L. J. Road,', 'Mahim (East),',
'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(15, 'E9', 'N', '1/12 Bal Govindas Society, M. B. Raut Rd.,',

'Dadar (East),', 'Mumbai', 'Maharashtra', '400028');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(16, 'E10', 'C', 'Pathak Nagar, Cadal Road,', 'Mahim (West),', 'New Delhi',
'Delhi', '110016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(17, 'C1', 'C', 'F-12, Diamond Palace, West Avenue,',

'North Avenue, Santacruz (West),', 'Mumbai', 'Maharashtra', '400056');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(18, 'C2', 'C', 'F-12, Silver Stream,', 'Santacruz (East),', 'Mumbai',
'Maharashtra', '400056');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(19, 'C3', 'C', 'Magesh Prasad,', 'Saraswati Baug, Jogeshwari(E),',

'Mumbai', 'Maharashtra', '400060');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(20, 'C4', 'C', '4, Sampada,', 'Kataria Road, Mahim,', 'Mumbai',
'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(21, 'C5', 'C', '104, Vikram Apts. Bhagat Lane,', 'Shivaji Park, Mahim,',

'Mumbai', 'Maharashtra', '400016');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

VALUES(22, 'C6', 'C', '12, Radha Kunj, N.C Kelkar Road,', 'Dadar,', 'Mumbai',
'Maharashtra', '400028');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(23, 'C7', 'C', 'A/14, Shanti Society, Mogal Lane,', 'Mahim,', 'Mumbai',

'Maharashtra', '400016');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(24, 'C8', 'C', '5, Vagdevi, Senapati Bapat Rd.,', 'Dadar,', 'Mumbai',
'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(25, 'C9', 'C', 'A-10 Nutan Vaishali,', 'Shivaji Park, Mahim,', 'Mumbai',

'Maharashtra', '400016');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(26, 'C10', 'C', 'B-10, Makarand Society,', 'Cadal Road, Mahim,', 'Mumbai',
'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(27, 'N1', 'C', '307/E, Meena Mansion,', 'R. S. Road, Andheri (West),',

'Mumbai', 'Maharashtra', '400058');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(28, 'N2', 'C', 'Smt. Veenu Chawl, Sawant Colony Rd.,',
'Opp. Veer Road, Matunga (West),', 'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(29, 'N3', 'C', 'F-12, Silver Stream,', 'Santacruz (East),', 'Mumbai',

'Maharashtra', '400056');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(30, 'N4', 'C', 'Magesh Prasad,', 'Saraswati Baug, Jogeshwari(E),',
'Mumbai', 'Maharashtra', '400060');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(31, 'N5', 'C', 'Rita Apartment, Room No. 46, 2nd Floor,',

'J. P. Road, Andheri (East),', 'Mumbai', 'Maharashtra', '400067');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(32, 'N6', 'N', '106/A, Sunrise Apmt., Opp. Vahatuk Nagar,',
'Kevni-Pada, Jogeshwari (West),', 'Mumbai', 'Maharashtra', '400102');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(33, 'N7', 'C', 'Pathak Nagar, Cadal Road,', 'Mahim (West),', 'Mumbai',

'Maharashtra', '400016');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(34, 'O11', 'H', 'Shop No. 4, Simon Streams,',
'V. P. Road, Andheri (West),', 'Mumbai', 'Maharashtra', '400058');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(35, 'O12', 'H', '230-E, Patel Chambers,', 'Service Road, Vile Parle (East),',

'Mumbai', 'Maharashtra', '400057');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(36, 'O13', 'H', 'G-2, Puru Hsg. Society,', 'Senapati Bapat Rd., Dadar,',
'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(37, 'O14', 'H', 'B-10, Makarand Society,', 'Cadal Road, Mahim,',

'Mumbai', 'Maharashtra', '400016');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(38, 'N8', 'N', '106/A, Sunrise Apmt., Opp. Vahatuk Nagar,',
'Kevni-Pada, Jogeshwari (West),', 'Mumbai', 'Maharashtra', '400102');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(39, 'N9', 'C', '307/E, Meena Mansion,', 'R. S. Road, Andheri (West),',

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

'Mumbai', 'Maharashtra', '400058');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(40, 'N10', 'C', 'Smt. Veenu Chawl, Sawant Colony Rd.,',
'Opp. Veer Road, Matunga (West),', 'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(41, 'N11', 'C', 'F-12, Silver Stream,', 'Santacruz (East),', 'Mumbai',

'Maharashtra', '400056');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(42, 'N12', 'C', 'Magesh Prasad', 'Saraswati Baug, Jogeshwari(E),',
'Mumbai', 'Maharashtra', '400060');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(43, 'N13', 'C', 'Pathak Nagar, Cadal Road,', 'Mahim (West),', 'Mumbai',

'Maharashtra', '400016');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(44, 'N14', 'C', '405, Vahatuk Nagar, Kevni-Pada,', 'Jogeshwari (West),',
'Mumbai', 'Maharashtra', '400102');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(45, 'C6', 'N', '203/A, Prachi Apmt.,', 'Andheri (East),', 'Mumbai',

'Maharashtra', '400058');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(46, 'O15', 'H', 'Shop No. 4, Sai Compound,',
'Service Road, Vile Parle (East),', 'Mumbai', 'Maharashtra', '400057');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(47, 'O15', 'H', 'G-4, Sagar Chambers,', 'G. P. Road, Andheri (West),',

'Mumbai', 'Maharashtra', '400058');

-- Record for CNTC_DTLS
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(1, 'B1', 'O', '26124571');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(1, 'B1', 'F', '26124533');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(1, 'B1', 'E',
'admin_vileparle@bom2.vsnl.in');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(2, 'B2', 'O', '26790014');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(2, 'B2', 'E',
'admin_andheri@bom2.vsnl.in');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(3, 'B3', 'O', '23457855');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(3, 'B3', 'E',
'admin_churchgate@bom2.vsnl.in');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(4, 'B4', 'O', '25545455');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(4, 'B4', 'E',
'admin_sion@bom2.vsnl.in');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(5, 'B5', 'O', '28175454');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(5, 'B5', 'E',
'admin_borivali@bom2.vsnl.in');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(6, 'B6', 'O', '24304545');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(6, 'B6', 'E',
'admin_matunga@bom2.vsnl.in');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(8, 'E2', 'R', '28883779');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(9, 'E3', 'R', '28377634');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(10, 'E4', 'R', '26323560');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(11, 'E5', 'R', '26793231');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(12, 'E6', 'R', '28085654');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(13, 'E7', 'R', '24442342');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(14, 'E8', 'R', '24365672');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(15, 'E9', 'R', '24327349');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(16, 'E10', 'R', '24302579');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(17, 'C1', 'R', '26405853');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(17, 'C1', 'O', '26134553');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(17, 'C1', 'O', '26134571');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(17, 'C1', 'M', '9820178955');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(18, 'C2', 'R', '26045754');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(18, 'C2', 'O', '26134571');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(19, 'C3', 'R', '28324567');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(19, 'C3', 'O', '26197654');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(20, 'C4', 'R', '24449852');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(20, 'C4', 'O', '28741370');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(21, 'C5', 'R', '24302934');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(21, 'C5', 'O', '22819964');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(22, 'C6', 'R', '24217592');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(23, 'C7', 'R', '24372247');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(24, 'C8', 'O', '26480903');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(25, 'C9', 'R', '24313408');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(25, 'C9', 'M', '9821176651');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(26, 'C10', 'R', '24362680');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(26, 'C10', 'O', '28973355');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(26, 'C10', 'M',
'9820484648');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(27, 'N1', 'R', '26762154');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(28, 'N2', 'R', '24307887');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(29, 'N3', 'R', '260455754');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(30, 'N4', 'R', '28645489');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(31, 'N5', 'R', '30903564');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(32, 'N6', 'R', '26793771');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(33, 'N7', 'R', '24304455');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(34, 'O11', 'O', '26790055');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(34, 'O11', 'F', '26784409');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(35, 'O12', 'O', '26120455');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(35, 'O12', 'O', '26120456');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(35, 'O12', 'F', '26121450');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(35, 'O12', 'E',
'admin@sunpvtltd.com');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(35, 'O12', 'W',
'www.sunpvtltd.com');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(36, 'O13', 'O', '24301090');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(36, 'O13', 'O', '24301196');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(37, 'O14', 'O', '24321122');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(38, 'N8', 'R', '26793771');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(39, 'N9', 'R', '26762154');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(40, 'N10', 'R', '24307887');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(41, 'N11', 'R', '26045754');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(42, 'N12', 'R', '28645489');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(43, 'N13', 'R', '24304455');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(44, 'N14', 'R', '26790180');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(44, 'N14', 'R', '26771275');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(45, 'C6', 'R', '28274784');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(46, 'O15', 'O', '26170055');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(46, 'O15', 'F', '26174409');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(47, 'O16', 'O', '26790455');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(47, 'O16', 'F', '26781450');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(47, 'O16', 'E',
'admin@moonmltg.com');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(47, 'O16', 'W',
'www.moonmltg.com');

-- Record for TRANS_MSTR
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T1', 'SB1', '05-NOV-2003', 'C', 'Initial Payment', 'D', 500, 500);
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T2', 'CA2', '10-NOV-2003', 'C', 'Initial Payment', 'D', 2000, 2000);
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T3', 'CA2', '13-NOV-2003', 'C', 'Self', 'D', 3000, 5000);
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T4', 'SB3', '22-NOV-2003', 'C', 'Initial Payment', 'D', 500, 500);
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T5', 'CA2', '10-DEC-2003', 'C', 'Self', 'W', 2000, 3000);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T6', 'CA4', '05-DEC-2003', 'B', 'Initial Payment', 'D', 2000, 2000);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T7', 'SB5', '15-DEC-2003', 'B', 'Initial Payment', 'D', 500, 500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T8', 'SB6', '27-DEC-2003', 'C', 'Initial Payment', 'D', 500, 500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T9', 'CA7', '14-JAN-2004', 'B', 'Initial Payment', 'D', 2000, 2000);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T10', 'SB8', '29-JAN-2004', 'C', 'Initial Payment', 'D', 500, 500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T11', 'SB9', '05-FEB-2004', 'C', 'Initial Payment', 'D', 500, 500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T12', 'SB9', '15-FEB-2004', 'B', 'CLR-204907', 'D', 3000, 3500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T13', 'SB9', '17-FEB-2004', 'C', 'Self', 'W', 2500, 1000);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T14', 'CA10', '19-FEB-2004', 'B', 'Initial Payment', 'D', 2000, 2000);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T15', 'SB9', '05-APR-2004', 'B', 'CLR-204908', 'D', 3000, 4000);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T16', 'SB9', '27-APR-2004', 'C', 'Self', 'W', 2500, 1500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T17', 'SB1', '05-NOV-2003', 'C', 'Initial Payment', 'D', 500, 500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T18', 'CA2', '10-NOv-2003', 'C', 'Initial Payment', 'D', 2000, 2000);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T19', 'SB3', '22-NOV-2003', 'C', 'Initial Payment', 'D', 500, 500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T20', 'CA4', '05-DEC-2003', 'B', 'Initial Payment', 'D', 2000, 2000);

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T21', 'SB5', '15-DEC-2003', 'B', 'Initial Payment', 'D', 500, 500);

-- Record for TRANS_DTLS
INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)

VALUES('T6', 098324, '02-DEC-2003', 'Self', '05-DEC-2003', 'HDFC', 'Vile Parle (East)', '2982');
INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)

VALUES('T7', 232324, '14-DEC-2003', 'Self', '15-DEC-2003', 'India Bank', 'Andheri (West)', '30434');
INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)

VALUES('T9', 434560, '14-JAN-2004', 'Self', '14-JAN-2004', 'ICICI Bank', 'Bandra (West)', '4882');
INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)

VALUES('T12', 204907, '14-FEB-2004', 'Self', '15-FEB-2004', 'Memon Co-operative Bank', 'Jogeshwari (West)',
'1767');
INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)

VALUES('T14', 100907, '19-FEB-2004', 'Self', '19-FEB-2004', 'Memon Co-operative Bank', 'Jogeshwari (West)',
'2001');
INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)

VALUES('T15', 204908, '01-APR-2004', 'Self', '05-APR-2004', 'Memon Co-operative Bank', 'Jogeshwari (West)',
'1767');

INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)

VALUES('T20', 098324, '02-DEC-2003', 'Self', '05-DEC-2003', 'HDFC', 'Vile Parle (East)', '2982');
INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)

VALUES('T21', 232324, '14-DEC-2003', 'Self', '15-DEC-2003', 'India Bank', 'Andheri (West)', '30434');

COMMIT;

Primary Key
Sample 1
Drop the CUST_MSTR table, if it already exists. Create a table CUST_MSTR such that the contents of the column CUST_NO
is a primary key i.e. it is not null.
DROP TABLE CUST_MSTR;
CREATE TABLE CUST_MSTR (

"CUST_NO" VARCHAR2(10) PRIMARY KEY,
"FNAME" VARCHAR2(25),
"MNAME" VARCHAR2(25),
"LNAME" VARCHAR2(25),
"DOB_INC" DATE,
"OCCUP" VARCHAR2(25),
"PHOTOGRAPH" VARCHAR2(25),

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

"SIGNATURE" VARCHAR2(25),
"PANCOPY" VARCHAR2(1),
"FORM60" VARCHAR2(1));

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C1', 'Ivan', 'Nelson', 'Bayross', '25-JUN-1952', 'Self Employed',
'D:/ClntPht/C1.gif', 'D:/ClntSgnt/C1.gif', 'Y', 'Y');

Sample 2
Drop the FD_MSTR table, if it already exists. Create a table FD_MSTR where there is a composite primary key mapped to the
columns FD_SER_NO and CORP_CUST_NO.
Since this constraint spans across columns, it must be described at table level.
DROP TABLE FD_MSTR;
CREATE TABLE "DBA_BANKSYS"."FD_MSTR"(

"FD_SER_NO" VARCHAR2(10),
"SF_NO" VARCHAR2(10),
"BRANCH_NO" VARCHAR2(10),
"INTRO_CUST_NO" VARCHAR2(10),
"INTRO_ACCT_NO" VARCHAR2(10),
"INTRO_SIGN" VARCHAR2(1),
"ACCT_NO" VARCHAR2(10),
"TITLE" VARCHAR2(30),
"CORP_CUST_NO" VARCHAR2(10),
"CORP_CNST_TYPE" VARCHAR(4),
"VERI_EMP_NO" VARCHAR2(10),
"VERI_SIGN" VARCHAR2(1),
"MANAGER_SIGN" VARCHAR2(1),

PRIMARY KEY(FD_SER_NO, CORP_CUST_NO));
INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO, INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN)

VALUES ('FS1', 'SF-0011', 'B1', 'CA2', 'Uttam Stores', 'O11', '1C', null, null, 'N', 'E1', 'Y', 'Y');
INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO, INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN)

VALUES ('FS2', 'SF-0012', 'B1', 'CA4', 'Sun''s Pvt. Ltd.', 'C12', '4C', null, null, 'N', 'E1', 'Y', 'Y');

Foreign Key
Sample 1
Drop the table EMP_MSTR, if it already exists. Create a table EMP_MSTR with its primary as EMP_NO. the foreign key is
BRANCH_NO in the BRANCH_MSTR table
DROP TABLE EMP_MSTR;

CREATE TABLE "DBA_BANKSYS"."EMP_MSTR"(
"EMP_NO" VARCHAR2(10) PRIMARY KEY,
"BRANCH_NO" VARCHAR2(10) REFERENCES BRANCH_MSTR,
"FNAME" VARCHAR2(25),
"MNAME" VARCHAR2(25),
"LNAME" VARCHAR2(25),
"DEPT" VARCHAR2(30),
"DESIG" VARCHAR2(30));

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Sample 2
Drop the table ACCT_FD_CUST_DTLS, if it already exists. Create a table ACCT_FD_CSUT_DTLS with CUST_NO as
foreign key referencing column CUST_NO in the CUST_MSTR table
DROP TABLE ACCT_FD_CUST_DTLS;
CREATE TABLE "DBA_BANKSYS"."ACCT_FD_CUST_DTLS"(

"ACCT_FD_NO" VARCHAR2(10),
"CUST_NO" VARCHAR2(10),
FOREIGN KEY (CUST_NO) REFERENCES CUST_MSTR(CUST_NO));

Assigning User Defined Names To Constraints
Sample 1
Drop the CUST_MSTR table, if it already exists. Create a table CUST_MSTR with a primary key constraint on the column
CUST_NO and also define its constraint name.
DROP TABLE CUST_MSTR;
CREATE TABLE CUST_MSTR (

"CUST_NO" VARCHAR2(10) CONSTRAINT p_CUSTKey PRIMARY KEY,
"FNAME" VARCHAR2(25),
"MNAME" VARCHAR2(25),
"LNAME" VARCHAR2(25),
"DOB_INC" DATE,
"OCCUP" VARCHAR2(25),
"PHOTOGRAPH" VARCHAR2(25),
"SIGNATURE" VARCHAR2(25),
"PANCOPY" VARCHAR2(1),
"FORM60" VARCHAR2(1));

Sample 2
Drop the table EMP_MSTR, if it already exists. Create a table EMP_MSTR with its foreign key as BRANCH_NO. The foreign
key is BRANCH_NO in the BRANCH_MSTR table and also define the name of the foreign key
DROP TABLE EMP_MSTR;

CREATE TABLE "DBA_BANKSYS"."EMP_MSTR"(
"EMP_NO" VARCHAR2(10),
"BRANCH_NO" VARCHAR2(10),
"FNAME" VARCHAR2(25),
"MNAME" VARCHAR2(25),
"LNAME" VARCHAR2(25),
"DEPT" VARCHAR2(30),
"DESIG" VARCHAR2(30),
CONSTRAINT f_BranchKey

FOREIGN KEY (BRANCH_NO) REFERENCES BRANCH_MSTR);

Candidate Key
Sample 1
Drop the FD_MSTR table, if it already exists. Create a table FD_MSTR where there is a candidate primary key mapped to the
columns FD_SER_NO and CORP_CUST_NO.
Since this constraint spans across columns, it must be described at table level.
DROP TABLE FD_MSTR;
CREATE TABLE "DBA_BANKSYS"."FD_MSTR"(

"FD_SER_NO" VARCHAR2(10),
"SF_NO" VARCHAR2(10),

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

"BRANCH_NO" VARCHAR2(10),
"INTRO_CUST_NO" VARCHAR2(10),
"INTRO_ACCT_NO" VARCHAR2(10),
"INTRO_SIGN" VARCHAR2(1),
"ACCT_NO" VARCHAR2(10),
"TITLE" VARCHAR2(30),
"CORP_CUST_NO" VARCHAR2(10),
"CORP_CNST_TYPE" VARCHAR(4),
"VERI_EMP_NO" VARCHAR2(10),
"VERI_SIGN" VARCHAR2(1),
"MANAGER_SIGN" VARCHAR2(1),

PRIMARY KEY(FD_SER_NO, CORP_CUST_NO));
INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO, INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN)

VALUES ('FS1', 'SF-0011', 'B1', 'CA2', 'Uttam Stores', 'O11', '1C', null, null, 'N', 'E1', 'Y', 'Y');
INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO, INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN)

VALUES ('FS2', 'SF-0012', 'B1', 'CA4', 'Sun''s Pvt. Ltd.', 'C12', '4C', null, null, 'N', 'E1', 'Y', 'Y');

Unique Key
Sample 1
Drop the CUST_MSTR table, if it already exists. Create a table CUST_MSTR such that the contents of the column CUST_NO
are unique across the entire column.
DROP TABLE CUST_MSTR;
CREATE TABLE CUST_MSTR (

"CUST_NO" VARCHAR2(10) UNIQUE,
"FNAME" VARCHAR2(25),
"MNAME" VARCHAR2(25),
"LNAME" VARCHAR2(25),
"DOB_INC" DATE,
"OCCUP" VARCHAR2(25),
"PHOTOGRAPH" VARCHAR2(25),
"SIGNATURE" VARCHAR2(25),
"PANCOPY" VARCHAR2(1),
"FORM60" VARCHAR2(1));

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C1', 'Ivan', 'Nelson', 'Bayross', '25-JUN-1952', 'Self Employed',
'D:/ClntPht/C1.gif', 'D:/ClntSgnt/C1.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C1', 'Chriselle', 'Ivan', 'Bayross', '29-OCT-1982', 'Service',
'D:/ClntPht/C2.gif', 'D:/ClntSgnt/C2.gif', 'N', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C2', 'Mamta', 'Arvind', 'Muzumdar', '28-AUG-1975', 'Service',
'D:/ClntPht/C3.gif', 'D:/ClntSgnt/C3.gif', 'Y', 'Y');

Sample 2

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Drop the CUST_MSTR table, if it already exists. Create a table CUST_MSTR such that the contents of the column CUST_NO
are unique across the entire column.
DROP TABLE CUST_MSTR;
CREATE TABLE CUST_MSTR (

"CUST_NO" VARCHAR2(10),
"FNAME" VARCHAR2(25),
"MNAME" VARCHAR2(25),
"LNAME" VARCHAR2(25),
"DOB_INC" DATE,
"OCCUP" VARCHAR2(25),
"PHOTOGRAPH" VARCHAR2(25),
"SIGNATURE" VARCHAR2(25),
"PANCOPY" VARCHAR2(1),
"FORM60" VARCHAR2(1),

UNIQUE(CUST_NO));
INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C1', 'Ivan', 'Nelson', 'Bayross', '25-JUN-1952', 'Self Employed',
'D:/ClntPht/C1.gif', 'D:/ClntSgnt/C1.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C1', 'Chriselle', 'Ivan', 'Bayross', '29-OCT-1982', 'Service',
'D:/ClntPht/C2.gif', 'D:/ClntSgnt/C2.gif', 'N', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C2', 'Mamta', 'Arvind', 'Muzumdar', '28-AUG-1975', 'Service',
'D:/ClntPht/C3.gif', 'D:/ClntSgnt/C3.gif', 'Y', 'Y');

NULL Value Concepts
Sample 1
First drop the table CUST_MSTR if it exist and then create it again but make Date of Birth field not null. Refer to the details of
table in chapter 6
CREATE TABLE "DBA_BANKSYS"."CUST_MSTR"(

"CUST_NO" VARCHAR2(10),
"FNAME" VARCHAR2(25),
"MNAME" VARCHAR2(25),
"LNAME" VARCHAR2(25),
"DOB_INC" DATE NOT NULL,
"OCCUP" VARCHAR2(25),
"PHOTOGRAPH" VARCHAR2(25),
"SIGNATURE" VARCHAR2(25),
"PANCOPY" VARCHAR2(1),
"FORM60" VARCHAR2(1));

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('O14', null, null, null, null, 'Retail Business', null, null, 'N', 'Y');

Check Constraint
Sample 1
Create a table CUST_MSTR with the following check constraints:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

1. Data values being inserted into the column CUST_NO must start with the capital letter C
2. Data values being inserted into the column FNAME, MNAME and LNAME should be in upper case only

CREATE TABLE CUST_MSTR(
"CUST_NO" VARCHAR2(10) CHECK(CUST_NO LIKE ‘C%’),
"FNAME" VARCHAR2(25) CHECK (FNAME = upper(Fname)),
"MNAME" VARCHAR2(25) CHECK (MNAME = upper(Mname)),
"LNAME" VARCHAR2(25) CHECK (LNAME = upper(Lname)),
"DOB_INC" DATE,
"OCCUP" VARCHAR2(25),
"PHOTOGRAPH" VARCHAR2(25),
"SIGNATURE" VARCHAR2(25),
"PANCOPY" VARCHAR2(1),
"FORM60" VARCHAR2(1));

Sample 2
Create a table CUST_MSTR with the following check constraints:
1. Data values being inserted into the column CUST_NO must start with the capital letter C
2. Data values being inserted into the column FNAME, MNAME and LNAME should be in upper case only

CREATE TABLE CUST_MSTR(
"CUST_NO" VARCHAR2(10),
"FNAME" VARCHAR2(25),
"MNAME" VARCHAR2(25),
"LNAME" VARCHAR2(25),
"DOB_INC" DATE,
"OCCUP" VARCHAR2(25),
"PHOTOGRAPH" VARCHAR2(25),
"SIGNATURE" VARCHAR2(25),
"PANCOPY" VARCHAR2(1),
"FORM60" VARCHAR2(1),

CHECK (CUST_NO LIKE ‘C%’),
CHECK (FNAME = upper(Fname)),
CHECK (MNAME = upper(Mname)),
CHECK (LNAME = upper(Lname)));

DEFINING DIFFERENT CONSTRAINTS ON A TABLE
Sample 1
Create FD_MSTR table where
1. The BRANCH_NO is the foreign key from the table BRANCH_MSTR
2. The CORP_CUST_NO is the primary key of this table and a foreign key from CUST_MSTR
3. The FD_SER_NO is a primary key
4. The VERI_EMP_NO is a foreign key from the table EMP_MSTR
5. The CORP_CNST_TYPE will have values ØS, 1C, 2C, 3C, 4C, 5C, 6C, 7C for different types of companies

CREATE TABLE "DBA_BANKSYS"."FD_MSTR"(
"FD_SER_NO" VARCHAR2(10),
"SF_NO" VARCHAR2(10),
"BRANCH_NO" VARCHAR2(10),
"INTRO_CUST_NO" VARCHAR2(10),
"INTRO_ACCT_NO" VARCHAR2(10),
"INTRO_SIGN" VARCHAR2(1),
"ACCT_NO" VARCHAR2(10),
"TITLE" VARCHAR2(30),
"CORP_CUST_NO" VARCHAR2(10),

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

"CORP_CNST_TYPE" VARCHAR(4),
"VERI_EMP_NO" VARCHAR2(10),
"VERI_SIGN" VARCHAR2(1) ,
"MANAGER_SIGN" VARCHAR2(1),
CONSTRAINT PK PRIMARY KEY (FD_SER_NO, CORP_CUST_NO),
CONSTRAINT FK_BR FOREIGN KEY (BRANCH_NO)

REFERENCES BRANCH_MSTR,
CONSTRAINT FK_CU FOREIGN KEY (CORP_CUST_NO)

REFERENCES CUST_MSTR,
CONSTRAINT FK_EM FOREIGN KEY (VERI_EMP_NO)

REFERENCES EMP_MSTR,
CONSTRAINT CHK CHECK (CORP_CNST_TYPE IN (‘ØS’, ‘1C’, ‘2C’, ‘3C’, ‘4C’, ‘5C’, ‘6C’, ‘7C’)));

User Constraints Table
Sample 1
View the contents of the table CUST_MSTR

SELECT Owner, Constraint_Name, Constraint_type
FROM USER_CONSTRAINTS

WHERE Table_Name = 'CUST_MSTR’ ;

DEFINING INTEGRITY CONSTRAINTS VIA THE ALTER TABLE COMMAND
Sample 1
Alter the table EMP_MSTR by adding a primary key on the column EMP_NO

ALTER TABLE EMP_MSTR
ADD PRIMARY KEY (EMP_NO);

Sample 2
Add FOREIGN KEY constraint on the column VERI_EMP_NO belonging to the table FD_MSTR, which references the table
EMP_MSTR. Modify column MANAGER_SIGN to include the NOT NULL constraint

ALTER TABLE FD_MSTR
ADD CONSTRAINT F_EmpKey FOREIGN KEY(VERI_EMP_NO)
REFERENCES EMP_MSTR
MODIFY (MANAGER_SIGN NOT NULL);

DROPPING INTEGRITY CONSTRAINTS VIA THE ALTER TABLE COMMAND
Sample 1
Drop the PRIMARY KEY constraint from EMP_MSTR.
ALTER TABLE EMP_MSTR DROP PRIMARY KEY;

Sample 2
Drop FOREIGN KEY constraint on column VERI_EMP_NO in table FD_MSTR
ALTER TABLE FD_MSTR DROP CONSTRAINT F_EmpKey;

DEFAULT VALUE CONCEPTS
Sample 1
Create ACCT_MSTR table where the column CURBAL is the number and by default it should be zero. The other column
STATUS is a varchar2 and by default it should have character A (Refer to table in the chapter 6)
CREATE TABLE "DBA_BANKSYS"."ACCT_MSTR"(

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

"ACCT_NO" VARCHAR2(10),
"SF_NO" VARCHAR2(10),
"LF_NO" VARCHAR2(10),
"BRANCH_NO" VARCHAR2(10),
"INTRO_CUST_NO" VARCHAR2(10),
"INTRO_ACCT_NO" VARCHAR2(10),
"INTRO_SIGN" VARCHAR2(1),
"TYPE" VARCHAR2(2),
"OPR_MODE" VARCHAR2(2),
"CUR_ACCT_TYPE" VARCHAR2(4),
"TITLE" VARCHAR2(30),
"CORP_CUST_NO" VARCHAR2(10),
"APLNDT" DATE,
"OPNDT" DATE,
"VERI_EMP_NO" VARCHAR2(10),
"VERI_SIGN" VARCHAR2(1),
"MANAGER_SIGN" VARCHAR2(1),
"CURBAL" NUMBER(8, 2) DEFAULT 0,
"STATUS" VARCHAR2(1) DEFAULT 'A');

DROP TABLE TMP_FD_AMT;
DROP TABLE TRANS_DTLS;
DROP TABLE TRANS_MSTR;
DROP TABLE CNTC_DTLS;
DROP TABLE ADDR_DTLS;
DROP TABLE ACCT_FD_CUST_DTLS;
DROP TABLE NOMINEE_MSTR;
DROP TABLE FD_DTLS;
DROP TABLE FDSLAB_MSTR;
DROP TABLE FD_MSTR;
DROP TABLE ACCT_MSTR;
DROP TABLE SPRT_DOC;
DROP TABLE CUST_MSTR;
DROP TABLE EMP_MSTR;
DROP TABLE BRANCH_MSTR;

-- BRANCH_MSTR
CREATE TABLE "DBA_BANKSYS"."BRANCH_MSTR"(

"BRANCH_NO" VARCHAR2(10),
"NAME" VARCHAR2(25),
CONSTRAINT PK_BRANCHMSTR_BRANCHNO PRIMARY KEY(BRANCH_NO),
CONSTRAINT CHK_BRANCHMSTR_BRANCHNO CHECK(BRANCH_NO LIKE 'B%'));

-- EMP_MSTR
CREATE TABLE "DBA_BANKSYS"."EMP_MSTR"(

"EMP_NO" VARCHAR2(10),
"BRANCH_NO" VARCHAR2(10),
"FNAME" VARCHAR2(25),
"MNAME" VARCHAR2(25),

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

"LNAME" VARCHAR2(25),
"DEPT" VARCHAR2(30),
"DESIG" VARCHAR2(30),
"MNGR_NO" VARCHAR2(10),
CONSTRAINT PK_EMPMSTR_EMPNO PRIMARY KEY(EMP_NO),
CONSTRAINT CHK_EMPMSTR_EMPNO CHECK(EMP_NO LIKE 'E%'),
CONSTRAINT FK_EMPMSTR_BRANCHNO FOREIGN KEY(BRANCH_NO)

REFERENCES BRANCH_MSTR(BRANCH_NO),
CONSTRAINT FK_EMPMSTR_MNGRNO FOREIGN KEY(MNGR_NO)

REFERENCES EMP_MSTR(EMP_NO));

-- CUST_MSTR
CREATE TABLE "DBA_BANKSYS"."CUST_MSTR"(

"CUST_NO" VARCHAR2(10),
"FNAME" VARCHAR2(25),
"MNAME" VARCHAR2(25),
"LNAME" VARCHAR2(25),
"DOB_INC" DATE NOT NULL,
"OCCUP" VARCHAR2(25),
"PHOTOGRAPH" VARCHAR2(25),
"SIGNATURE" VARCHAR2(25),
"PANCOPY" VARCHAR2(1),
"FORM60" VARCHAR2(1),
CONSTRAINT PK_CUSTMSTR_CUSTNO PRIMARY KEY(CUST_NO),
CONSTRAINT CHK_CUSTMSTR_CUSTNO

CHECK(CUST_NO LIKE 'C%' OR CUST_NO LIKE 'O%'),
CONSTRAINT CHK_CUSTMSTR_PANCOPY CHECK(PANCOPY IN('Y', 'N')),
CONSTRAINT CHK_CUSTMSTR_FORM60 CHECK(FORM60 IN('Y', 'N')));

-- SPRT_DOC
CREATE TABLE "DBA_BANKSYS"."SPRT_DOC"(

"ACCT_CODE" VARCHAR2(4),
"TYPE" VARCHAR2(40),
"DOCS" VARCHAR2(75));

-- ACCT_MSTR
CREATE TABLE "DBA_BANKSYS"."ACCT_MSTR"(

"ACCT_NO" VARCHAR2(10),
"SF_NO" VARCHAR2(10),
"LF_NO" VARCHAR2(10),
"BRANCH_NO" VARCHAR2(10),
"INTRO_CUST_NO" VARCHAR2(10),
"INTRO_ACCT_NO" VARCHAR2(10),
"INTRO_SIGN" VARCHAR2(1),
"TYPE" VARCHAR2(2),
"OPR_MODE" VARCHAR2(2),
"CUR_ACCT_TYPE" VARCHAR2(4),
"TITLE" VARCHAR2(30),
"CORP_CUST_NO" VARCHAR2(10),
"APLNDT" DATE,
"OPNDT" DATE,
"VERI_EMP_NO" VARCHAR2(10),

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

"VERI_SIGN" VARCHAR2(1),
"MANAGER_SIGN" VARCHAR2(1),
"CURBAL" NUMBER(8, 2) DEFAULT 0,
"STATUS" VARCHAR2(1) DEFAULT 'A',
CONSTRAINT PK_ACCTMSTR_ACCTNO PRIMARY KEY(ACCT_NO),
CONSTRAINT FK_ACCTMSTR_BRANCHNO FOREIGN KEY(BRANCH_NO)

REFERENCES BRANCH_MSTR(BRANCH_NO),
CONSTRAINT FK_ACCTMSTR_INTROCUSTNO FOREIGN KEY(INTRO_CUST_NO)

REFERENCES CUST_MSTR(CUST_NO),
CONSTRAINT FK_ACCTMSTR_INTROACCTNO FOREIGN KEY(INTRO_ACCT_NO)

REFERENCES ACCT_MSTR(ACCT_NO),
CONSTRAINT CHK_ACCTMSTR_INTROSIGN CHECK(INTRO_SIGN IN('Y', 'N')),
CONSTRAINT CHK_ACCTMSTR_TYPE CHECK(TYPE IN('SB', 'CA')),
CONSTRAINT CHK_ACCTMSTR_OPRMODE CHECK(OPR_MODE IN('SI', 'ES', 'JO', 'AS')),
CONSTRAINT CHK_ACCTMSTR_CURACCTTYPE

CHECK(CUR_ACCT_TYPE IN('0S', '1C', '2C', '3C', '4C', '5C', '6C', '7C')),
CONSTRAINT CHK_ACCTMSTR_CORPCUSTNO CHECK(CORP_CUST_NO LIKE 'O%'),
CONSTRAINT FK_ACCTMSTR_VERIEMPNO FOREIGN KEY(VERI_EMP_NO)

REFERENCES EMP_MSTR(EMP_NO),
CONSTRAINT CHK_ACCTMSTR_VERISIGN CHECK(VERI_SIGN IN('Y', 'N')),
CONSTRAINT CHK_ACCTMSTR_MANAGERSIGN CHECK(MANAGER_SIGN IN('Y', 'N')),
CONSTRAINT CHK_ACCTMSTR_STATUS CHECK(STATUS IN('A', 'S', 'T')));

-- FD_MSTR
CREATE TABLE "DBA_BANKSYS"."FD_MSTR"(

"FD_SER_NO" VARCHAR2(10),
"SF_NO" VARCHAR2(10),
"BRANCH_NO" VARCHAR2(10),
"INTRO_CUST_NO" VARCHAR2(10),
"INTRO_ACCT_NO" VARCHAR2(10),
"INTRO_SIGN" VARCHAR2(1),
"ACCT_NO" VARCHAR2(10),
"TITLE" VARCHAR2(30),
"CORP_CUST_NO" VARCHAR2(10),
"CORP_CNST_TYPE" VARCHAR(4),
"VERI_EMP_NO" VARCHAR2(10),
"VERI_SIGN" VARCHAR2(1),
"MANAGER_SIGN" VARCHAR2(1),
CONSTRAINT PK_FDMSTR_FDSERNO PRIMARY KEY(FD_SER_NO),
CONSTRAINT FK_FDMSTR_BRANCHNO FOREIGN KEY(BRANCH_NO)

REFERENCES BRANCH_MSTR(BRANCH_NO),
CONSTRAINT FK_FDMSTR_INTROCUSTNO FOREIGN KEY(INTRO_CUST_NO)

REFERENCES CUST_MSTR(CUST_NO),
CONSTRAINT FK_FDMSTR_INTROACCTNO FOREIGN KEY(INTRO_ACCT_NO)

REFERENCES ACCT_MSTR(ACCT_NO),
CONSTRAINT CHK_FDMSTR_INTROSIGN CHECK(INTRO_SIGN IN('Y', 'N')),
CONSTRAINT CHK_FDMSTR_ACCTNO CHECK(ACCT_NO LIKE 'CA%' OR ACCT_NO LIKE 'SB%'),
CONSTRAINT CHK_FDMSTR_CORPCUSTNO CHECK(CORP_CUST_NO LIKE 'O%'),
CONSTRAINT CHK_FDMSTR_CORPCNSTTYPE

CHECK(CORP_CNST_TYPE IN('0S', '1C', '2C', '3C', '4C', '5C', '6C', '7C')),
CONSTRAINT FK_FDMSTR_VERIEMPNO FOREIGN KEY(VERI_EMP_NO)

REFERENCES EMP_MSTR(EMP_NO),

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

CONSTRAINT CHK_FDMSTR_VERISIGN CHECK(VERI_SIGN IN('Y', 'N')),
CONSTRAINT CHK_FDMSTR_MANAGERSIGN CHECK(MANAGER_SIGN IN('Y', 'N')));

-- FDSLAB_MSTR
CREATE TABLE "DBA_BANKSYS"."FDSLAB_MSTR"(

"FDSLAB_NO" NUMBER(2),
"MINPERIOD" NUMBER(5),
"MAXPERIOD" NUMBER(5),
"INTRATE" NUMBER(5,2),
CONSTRAINT PK_FDSLABMSTR_FDSLABNO PRIMARY KEY(FDSLAB_NO));

-- FD_DTLS
CREATE TABLE "DBA_BANKSYS"."FD_DTLS"(

"FD_SER_NO" VARCHAR2(10),
"FD_NO" VARCHAR2(10),
"TYPE" VARCHAR2(1),
"PAYTO_ACCTNO" VARCHAR2(10),
"PERIOD" NUMBER(5),
"OPNDT" DATE,
"DUEDT" DATE,
"AMT" NUMBER(8,2),
"DUEAMT" NUMBER(8,2),
"INTRATE" NUMBER(3),
"STATUS" VARCHAR2(1) DEFAULT 'A',
"AUTO_RENEWAL" VARCHAR2(1),
CONSTRAINT PK_FDDTLS_FDNO PRIMARY KEY(FD_NO),
CONSTRAINT FK_FDDTLS_FDSERNO FOREIGN KEY(FD_SER_NO)

REFERENCES FD_MSTR(FD_SER_NO),
CONSTRAINT CHK_FDDTLS_TYPE CHECK(TYPE IN('S', 'R')),
CONSTRAINT CHK_FDDTKS_PAYTOACCTNO CHECK(PAYTO_ACCTNO LIKE 'CA%' OR PAYTO_ACCTNO

LIKE 'SB%'),
CONSTRAINT CHK_FDDTLS_STATUS CHECK(STATUS IN('A', 'C', 'M')),
CONSTRAINT CHK_FDDTLS_AUTORENEWAL CHECK(AUTO_RENEWAL IN('Y', 'N')));

-- ACCT_FD_CUST_DTLS
CREATE TABLE "DBA_BANKSYS"."ACCT_FD_CUST_DTLS"(

"ACCT_FD_NO" VARCHAR2(10),
"CUST_NO" VARCHAR2(10),
CONSTRAINT CHK_ACCTFDCUSTDTLS_ACCTFDNO

CHECK(ACCT_FD_NO LIKE 'CA%' OR ACCT_FD_NO LIKE 'FS%'
OR ACCT_FD_NO LIKE 'SB%'),

CONSTRAINT FK_ACCTFDCUSTDTLS_CUSTNO FOREIGN KEY(CUST_NO)
REFERENCES CUST_MSTR(CUST_NO));

-- NOMINEE_MSTR
CREATE TABLE "DBA_BANKSYS"."NOMINEE_MSTR"(

"NOMINEE_NO" VARCHAR2(10),
"ACCT_FD_NO" VARCHAR2(10),
"NAME" VARCHAR2(75),
"DOB" DATE,
"RELATIONSHIP" VARCHAR2(25),

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

CONSTRAINT PK_NOMINEEMSTR_NOMINEENO PRIMARY KEY(NOMINEE_NO),
CONSTRAINT CHK_NOMINEEMSTR_ACCTFDNO

CHECK(ACCT_FD_NO LIKE 'CA%' OR ACCT_FD_NO LIKE 'FS%'
OR ACCT_FD_NO LIKE 'SB%'));

-- ADDR_DTLS
CREATE TABLE "DBA_BANKSYS"."ADDR_DTLS"(

"ADDR_NO" NUMBER(6),
"CODE_NO" VARCHAR2(10),
"ADDR_TYPE" VARCHAR2(1),
"ADDR1" VARCHAR2(50),
"ADDR2" VARCHAR2(50),
"CITY" VARCHAR2(25),
"STATE" VARCHAR2(25),
"PINCODE" VARCHAR2(6),
CONSTRAINT PK_ADDRDTLS_ADDRNO PRIMARY KEY(ADDR_NO),
CONSTRAINT CHK_ADDRDTLS_CODENO

CHECK(CODE_NO LIKE 'B%' OR CODE_NO LIKE 'C%' OR CODE_NO LIKE 'E%'
OR CODE_NO LIKE 'N%' OR CODE_NO LIKE 'O%'),

CONSTRAINT CHK_ADDRDTLS_ADDRTYPE
CHECK(ADDR_TYPE IN('C', 'N', 'H', 'B')));

-- CNTC_DTLS
CREATE TABLE "DBA_BANKSYS"."CNTC_DTLS"(

"ADDR_NO" NUMBER(6),
"CODE_NO" VARCHAR2(10),
"CNTC_TYPE" VARCHAR2(1),
"CNTC_DATA" VARCHAR2(75),
CONSTRAINT FK_CNTCDTLS_ADDRNO FOREIGN KEY(ADDR_NO)

REFERENCES ADDR_DTLS(ADDR_NO),
CONSTRAINT CHK_CNTCDTLS_CODENO

CHECK(CODE_NO LIKE 'B%' OR CODE_NO LIKE 'C%' OR CODE_NO LIKE 'E%'
OR CODE_NO LIKE 'N%' OR CODE_NO LIKE 'O%'),

CONSTRAINT CHK_CNTCDTLS_CNTCTYPE
CHECK(CNTC_TYPE IN('R', 'O', 'M', 'P', 'E', 'F', 'W')));

-- TRANS_MSTR
CREATE TABLE "DBA_BANKSYS"."TRANS_MSTR"(

"TRANS_NO" VARCHAR2(10),
"ACCT_NO" VARCHAR2(10),
"DT" DATE,
"TYPE" VARCHAR2(1),
"PARTICULAR" VARCHAR2(30),
"DR_CR" VARCHAR2(1),
"AMT" NUMBER(8,2),
"BALANCE" NUMBER(8,2),
CONSTRAINT PK_TRANSMSTR_TRANSNO PRIMARY KEY(TRANS_NO),
CONSTRAINT CHK_TRANSMSTR_ACCTNO

CHECK(ACCT_NO LIKE 'CA%' OR ACCT_NO LIKE 'SB%'),
CONSTRAINT CHK_TRANSMSTR_TYPE CHECK(TYPE IN('B', 'C', 'D')),
CONSTRAINT CHK_TRANSMSTR_DRCR CHECK(DR_CR IN('D', 'W')));

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

-- TRANS_DTLS
CREATE TABLE "DBA_BANKSYS"."TRANS_DTLS"(

"TRANS_NO" VARCHAR2(10),
"INST_NO" NUMBER(6),
"INST_DT" DATE,
"PAYTO" VARCHAR2(30),
"INST_CLR_DT" DATE,
"BANK_NAME" VARCHAR2(35),
"BRANCH_NAME" VARCHAR2(25),
"PAIDFROM" VARCHAR2(10),
CONSTRAINT FK_TRANSDTLS_TRANSNO FOREIGN KEY(TRANS_NO)

REFERENCES TRANS_MSTR(TRANS_NO));

-- TMP_FD_AMT
CREATE TABLE "DBA_BANKSYS"."TMP_FD_AMT"(

"FD_AMT" NUMBER(6));

-- Records for BRANCH_MSTR
INSERT INTO TMP_FD_AMT (FD_AMT) VALUES(5000);
INSERT INTO TMP_FD_AMT (FD_AMT) VALUES(10000);
INSERT INTO TMP_FD_AMT (FD_AMT) VALUES(15000);
INSERT INTO TMP_FD_AMT (FD_AMT) VALUES(20000);
INSERT INTO TMP_FD_AMT (FD_AMT) VALUES(25000);
INSERT INTO TMP_FD_AMT (FD_AMT) VALUES(30000);
INSERT INTO TMP_FD_AMT (FD_AMT) VALUES(4000);
INSERT INTO TMP_FD_AMT (FD_AMT) VALUES(50000);

-- Records for BRANCH_MSTR
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B1', 'Vile Parle (HO)');
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B2', 'Andheri');
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B3', 'Churchgate');
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B4', 'Mahim');
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B5', 'Borivali');
INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME) VALUES('B6', 'Darya Ganj');

-- Records for EMP_MSTR
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E1', 'B1', 'Ivan', 'Nelson', 'Bayross', 'Administration', 'Managing Director', NULL);
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E2', 'B2', 'Amit', null, 'Desai', 'Loans And Financing', 'Finance Manager', NULL);
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E3', 'B3', 'Maya', 'Mahima', 'Joshi', 'Client Servicing', 'Sales Manager', NULL);
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E4', 'B1', 'Peter', 'Iyer', 'Joseph', 'Loans And Financing', 'Clerk', 'E2');
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E5', 'B4', 'Mandhar', 'Dilip', 'Dalvi', 'Marketing', 'Marketing Manager', NULL);
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E6', 'B6', 'Sonal', 'Abdul', 'Khan', 'Administration', 'Admin. Executive', 'E1');
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E7', 'B4', 'Anil', 'Ashutosh', 'Kambli', 'Marketing', 'Sales Asst.', 'E5');
INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)

VALUES('E8', 'B3', 'Seema', 'P.', 'Apte', 'Client Servicing', 'Clerk', 'E3');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)
VALUES('E9', 'B2', 'Vikram', 'Vilas', 'Randive', 'Marketing', 'Sales Asst.', 'E7');

INSERT INTO EMP_MSTR (EMP_NO, BRANCH_NO, FNAME, MNAME, LNAME, DEPT, DESIG, MNGR_NO)
VALUES('E10', 'B6', 'Anjali', 'Sameer', 'Pathak', 'Administration', 'HR Manager', 'E1');

-- Records for CUST_MSTR
INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C1', 'Ivan', 'Nelson', 'Bayross', '25-JUN-1952', 'Self Employed',
'D:/ClntPht/C1.gif', 'D:/ClntSgnt/C1.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C2', 'Chriselle', 'Ivan', 'Bayross', '29-OCT-1982', 'Service',
'D:/ClntPht/C2.gif', 'D:/ClntSgnt/C2.gif', 'N', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C3', 'Mamta', 'Arvind', 'Muzumdar', '28-AUG-1975', 'Service',
'D:/ClntPht/C3.gif', 'D:/ClntSgnt/C3.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C4', 'Chhaya', 'Sudhakar', 'Bankar', '06-OCT-1976', 'Service',
'D:/ClntPht/C4.gif', 'D:/ClntSgnt/C4.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C5', 'Ashwini', 'Dilip', 'Joshi', '20-NOV-1978', 'Business',
'D:/ClntPht/C5.gif', 'D:/ClntSgnt/C5.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C6', 'Hansel', 'I.', 'Colaco', '01-JAN-1982', 'Service',
'D:/ClntPht/C6.gif', 'D:/ClntSgnt/C6.gif', 'N', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C7', 'Anil', 'Arun', 'Dhone', '12-OCT-1983', 'Self Employed',
'D:/ClntPht/C7.gif', 'D:/ClntSgnt/C7.gif', 'N', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C8', 'Alex', 'Austin', 'Fernandes', '30-SEP-1962', 'Executive',
'D:/ClntPht/C8.gif', 'D:/ClntSgnt/C8.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C9', 'Ashwini', 'Shankar', 'Apte', '19-APR-1979', 'Service',
'D:/ClntPht/C9.gif', 'D:/ClntSgnt/C9.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('C10', 'Namita', 'S.', 'Kanade', '10-JUN-1978', 'Self Employed',
'D:/ClntPht/C10.gif', 'D:/ClntSgnt/C10.gif', 'Y', 'Y');

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('O11', null, null, null, '14-NOV-1997', 'Retail Business', null, null, 'Y', 'N');
INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('O12', null, null, null, '23-OCT-1992', 'Information Technology', null, null, 'Y', 'N');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('O13', null, null, null, '05-FEB-1989', 'Community Welfare', null, null, 'Y', 'N');
INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('O14', null, null, null, '24-MAY-1980', 'Retail Business', null, null, 'N', 'Y');
INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('O15', null, null, null, '02-APR-2000', 'Retail Business', null, null, 'Y', 'N');
INSERT INTO CUST_MSTR (CUST_NO, FNAME, MNAME, LNAME, DOB_INC, OCCUP, PHOTOGRAPH,
SIGNATURE, PANCOPY, FORM60)

VALUES('O16', null, null, null, '13-JAN-2002', 'Marketing', null, null, 'Y', 'N');

-- Records for SPRT_DOC
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('0S', 'Individuals / Savings Bank Account', 'Driving Licence / Ration Card / Passport');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('0S', 'Individuals / Savings Bank Account', 'Birth Certificate / School Leaving Certificate');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('1C', 'Propriety / Sole Trading Concerns', 'Letter From The Propriety');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('2C', 'Partnership Concerns', 'Letter From The Partners');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('2C', 'Partnership Concerns', 'Partnership Deed / Registration Certificate');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('3C', 'Hindu Undivided Family Businesses', 'Letter From The Karta');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('3C', 'Hindu Undivided Family Businesses', 'List Of Members');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('4C', 'Limited Companies', 'Copy Of Board Of Directors'' Resolution For Opening The Account');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('4C', 'Limited Companies', 'Memorandum and Articles Of Association');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('4C', 'Limited Companies', 'Certificate Of Incorporation');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('4C', 'Limited Companies', 'Certificate Of Commencement Of Business / Registration Certificate');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('5C', 'Trust Accounts', 'Trust Deed');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('5C', 'Trust Accounts', 'Resolution Of Trustees');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('5C', 'Trust Accounts', 'List Of Trusties');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('6C', 'Clubs / Societies', 'Resolution');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('6C', 'Clubs / Societies', 'Constitution And Bye-laws');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('6C', 'Clubs / Societies', 'Certificate Of Registration');
INSERT INTO SPRT_DOC (ACCT_CODE, TYPE, DOCS)

VALUES('7C', 'Legislative Bodies', 'Letter From The Authority');

-- Records for ACCT_MSTR

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('SB1', 'SF-0001', 'NOV03-05', 'B1', 'C1', 'SB1', 'Y', 'SB', 'SI', '0S', null, null,
'05-NOV-2003', '05-NOV-2003', 'E1', 'Y', 'Y', 500, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('CA2', 'SF-0002', 'NOV03-10', 'B2', 'C1', 'SB1', 'Y', 'CA', 'JO', '1C', 'Uttam Stores', 'O11',
'07-NOV-2003', '10-NOV-2003', 'E1', 'Y', 'Y', 3000, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('SB3', 'SF-0003', 'NOV03-22', 'B3', 'C4', 'SB3', 'Y', 'SB', 'SI', '0S', null, null,
'20-NOV-2003', '22-NOV-2003', 'E4', 'Y', 'Y', 500, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('CA4', 'SF-0004', 'DEC03-05', 'B5', 'C4', 'SB3', 'Y', 'CA', 'AS', '4C', 'Sun''s Pvt. Ltd.', 'O12',
'02-DEC-2003', '05-DEC-2003', 'E4', 'Y', 'Y', 12000, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('SB5', 'SF-0005', 'DEC03-15', 'B6', 'C1', 'SB1', 'Y', 'SB', 'JO', '0S', null, null,
'14-DEC-2003', '15-DEC-2003', 'E1', 'Y', 'Y', 500, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('SB6', 'SF-0006', 'DEC03-27', 'B4', 'C5', 'SB6', 'Y', 'SB', 'ES', '0S', null, null,
'27-DEC-2003', '27-DEC-2003', 'E4', 'Y', 'Y', 500, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('CA7', 'SF-0007', 'JAN04-14', 'B1', 'C8', 'CA7', 'Y', 'CA', 'AS', '6C', 'Puru Hsg. Soc', 'O13',
'14-JAN-2004', '14-JAN-2004', 'E4', 'Y', 'Y', 22000, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('SB8', 'SF-0008', 'JAN04-29', 'B2', 'C9', 'SB8', 'Y', 'SB', 'SI', '0S', null, null,
'27-JAN-2004', '29-JAN-2004', 'E1', 'Y', 'Y', 500, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

VALUES('SB9', 'SF-0009', 'FEB04-05', 'B4', 'C10', 'SB9', 'Y', 'SB', 'JO', '0S', null, null,
'05-FEB-2004', '05-FEB-2004', 'E4', 'Y', 'Y', 500, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('CA10', 'SF-0010', 'FEB04-19', 'B6', 'C10', 'SB9', 'Y', 'CA', 'AS', '3C', 'Ghar Karobar', 'O14',
'19-FEB-2004', '19-FEB-2004', 'E4', 'Y', 'Y', 32000, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('SB11', 'SF-0011', 'MAR04-10', 'B1', 'C1', 'SB1', 'Y', 'SB', 'SI', '0S', null, null,
'05-MAR-2004', '10-MAR-2004', 'E1', 'Y', 'Y', 500, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('CA12', 'SF-0012', 'MAR04-10', 'B2', 'C1', 'SB5', 'Y', 'CA', 'JO', '1C', 'Suresh Stores', 'O15',
'07-MAR-2004', '10-MAR-2004', 'E1', 'Y', 'Y', 5000, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('SB13', 'SF-0013', 'MAR04-22', 'B3', 'C4', 'SB3', 'Y', 'SB', 'SI', '0S', null, null,
'20-MAR-2004', '22-MAR-2004', 'E4', 'Y', 'Y', 500, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('CA14', 'SF-0014', 'APR04-05', 'B5', 'C4', 'SB3', 'Y', 'CA', 'AS', '4C', 'Moon''s Pvt. Ltd.', 'O16',
'02-APR-2004', '05-APR-2004', 'E4', 'Y', 'Y', 10000, 'A');

INSERT INTO ACCT_MSTR (ACCT_NO, SF_NO, LF_NO, BRANCH_NO, INTRO_CUST_NO, INTRO_ACCT_NO,
INTRO_SIGN, TYPE, OPR_MODE,

CUR_ACCT_TYPE, TITLE, CORP_CUST_NO, APLNDT, OPNDT, VERI_EMP_NO, VERI_SIGN,
MANAGER_SIGN, CURBAL, STATUS)

VALUES('SB15', 'SF-0015', 'APR04-15', 'B6', 'C1', 'SB1', 'Y', 'SB', 'JO', '0S', null, null,
'14-APR-2004', '15-APR-2004', 'E1', 'Y', 'Y', 500, 'A');

-- Records for FD_MSTR
INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO,

INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN)
VALUES ('FS1', 'SF-1001', 'B2', 'CA2', 'Uttam Stores', 'O11', '1C', null, null, 'N', 'E1', 'Y', 'Y');

INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO,

INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN)
VALUES ('FS2', 'SF-1002', 'B5', 'CA4', 'Sun''s Pvt. Ltd.', 'O12', '4C', null, null, 'N', 'E1', 'Y', 'Y');

INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO,

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN)
VALUES ('FS3', 'SF-1003', 'B1', 'CA7', 'Puru Hsg. Soc', 'O13', '6C', null, null, 'N', 'E4', 'Y', 'Y');

INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO,

INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN)
VALUES ('FS4', 'SF-1004', 'B6', 'CA10', 'Ghar Karobar', 'O14', '3C', null, null, 'N', 'E4', 'Y', 'Y');

INSERT INTO FD_MSTR (FD_SER_NO, SF_NO, BRANCH_NO, ACCT_NO, TITLE, CORP_CUST_NO,
CORP_CNST_TYPE, INTRO_CUST_NO,

INTRO_ACCT_NO, INTRO_SIGN, VERI_EMP_NO, VERI_SIGN, MANAGER_SIGN)
VALUES ('FS5', 'SF-1005', 'B4', null, null, null, '0S', 'C7', 'SB6', 'Y', 'E4', 'Y', 'Y');

-- Record for FDSLAB_MSTR
INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE) VALUES(1, 1, 30, 5);
INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE) VALUES(2, 31, 92, 5.5);
INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE) VALUES(3, 93, 183, 6);
INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE) VALUES(4, 184, 365, 6.5);
INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE) VALUES(5, 366, 731, 7.5);
INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE) VALUES(6, 732, 1097, 8.5);
INSERT INTO FDSLAB_MSTR (FDSLAB_NO, MINPERIOD, MAXPERIOD, INTRATE) VALUES(7, 1098, 1829, 10);

-- Record for FD_DTLS
INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT,

INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS1', 'F1', 'S', 'CA2', 365, '02-JAN-2004', '01-JAN-2005', 15000, 16050.00, 6.5, 'A', 'Y');

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT,

INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS1', 'F2', 'S', 'CA2', 365, '02-JAN-2004', '01-JAN-2005', 5000, 5350.00, 6.5, 'A', 'N');

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT,

INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS2', 'F3', 'S', 'CA4', 366, '25-MAR-2004', '25-MAR-2005', 10000, 10802.19, 7.5, 'A', 'Y');

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT,

INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS2', 'F4', 'S', 'CA4', 366, '15-APR-2004', '15-APR-2005', 10000, 10802.19, 7.5, 'A', 'Y');

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT,

INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS3', 'F5', 'S', 'CA7', 183, '24-APR-2004', '24-OCT-2006', 2000, 2060.16, 6, 'A', 'Y');

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT,

INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS4', 'F6', 'S', 'CA10', 732, '19-MAY-2004', '20-MAY-2006', 5000, 5902.47, 8.5, 'A', 'Y');

INSERT INTO FD_DTLS (FD_SER_NO, FD_NO, TYPE, PAYTO_ACCTNO, PERIOD, OPNDT, DUEDT, AMT,
DUEAMT,

INTRATE, STATUS, AUTO_RENEWAL)
VALUES('FS5', 'F7', 'S', 'SB6', 366, '27-MAY-2004', '27-MAY-2005', 15000, 16203.30, 7.5, 'A', 'N');

-- Record for ACCT_FD_CUST_DTLS
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB1', 'C1');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA2', 'C2');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA2', 'C3');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB3', 'C4');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA4', 'C4');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA4', 'C5');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB5', 'C1');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB5', 'C4');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB6', 'C5');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB6', 'C7');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA7', 'C6');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA7', 'C8');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB8', 'C9');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB9', 'C3');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB9', 'C10');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA10', 'C10');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA10', 'C9');

INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB11', 'C1');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA12', 'C2');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA12', 'C3');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB13', 'C4');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA14', 'C4');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('CA14', 'C5');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB15', 'C1');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('SB15', 'C4');

INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS1', 'C2');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS1', 'C3');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS2', 'C4');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS2', 'C5');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS2', 'C5');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS3', 'C6');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS3', 'C8');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS4', 'C10');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS4', 'C9');
INSERT INTO ACCT_FD_CUST_DTLS (ACCT_FD_NO, CUST_NO) VALUES('FS5', 'C5');

-- Record for NOMINEE_MSTR
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N1', 'CA2', 'Joseph Martin Dias', '17-SEP-1984', 'Colleague');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N2', 'CA2', 'Nilesh Sawant', '25-AUG-1987', 'Colleague');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N3', 'SB1', 'Chriselle Ivan Bayross', '25-JUN-1952', 'Daughter');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N4', 'SB3', 'Mamta Arvind Muzumdar', '28-AUG-1975', 'Friend');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N5', 'SB6', 'Preeti Suresh Shah', '12-FEB-1978', 'Friend');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N6', 'SB8', 'Rohit Rajan Sahakarkar', '30-MAY-1985', 'Relative');
INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)

VALUES('N7', 'CA10', 'Namita S. Kanade', '10-JUN-1978', 'Niece');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N8', 'FS1', 'Rohit Rajan Sahakarkar', '30-MAY-1985', 'Relative');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N9', 'FS2', 'Joseph Martin Dias', '17-SEP-1984', 'Colleague');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N10', 'FS2', 'Nilesh Sawant', '25-AUG-1987', 'Colleague');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N11', 'FS3', 'Chriselle Ivan Bayross', '25-JUN-1952', 'Colleague');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N12', 'FS3', 'Mamta Arvind Muzumdar', '28-AUG-1975', 'Friend');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N13', 'FS4', 'Namita S. Kanade', '10-JUN-1978', 'Relative');

INSERT INTO NOMINEE_MSTR (NOMINEE_NO, ACCT_FD_NO, NAME, DOB, RELATIONSHIP)
VALUES('N14', 'FS5', 'Pramila P. Pius', '10-OCT-1985', 'Niece');

-- Record for ADDR_DTLS
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(1, 'B1', 'H', 'A/5, Jay Chambers,', 'Service Road, Vile Parle (East),',
'Mumbai', 'Maharashtra', '400057');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(2, 'B2', 'B', 'BSES Chambers, 10th floor,',

'Near Rly. Station, Andheri (West),', 'Mumbai', 'Maharashtra', '400058');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(3, 'B3', 'B', 'Prabhat Complex, No. 5 / 6,', 'Opp. Air India Bldg., Churchgate,',
'Mumbai', 'Maharashtra', '400004');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(4, 'B4', 'B', '23/A, Swarna Bldg., Smt. Rai Marg,',

'Eastern Express Highway, Kurla (East),', 'Mumbai', 'Maharashtra', '400045');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(5, 'B5', 'B', 'Vikas Centre, Shop 37, Near National Park,',
'Western Express Highway, Borivali (East),', 'Mumbai', 'Maharashtra', '400078');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(6, 'B6', 'B', '24/A, Mahima Plaza, First Floor,', 'Darya Ganj,',

'New Delhi', 'Delhi', '110004');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(7, 'E1', 'N', 'F-12, Diamond Palace, West Avenue,',
'North Avenue, Santacruz (West),', 'Mumbai', 'Maharashtra', '400056');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(8, 'E2', 'C', 'Desai House, Plot No. 25, P.G. Marg,',

'Near Malad Rly. Stat., Malad (West),', 'Mumbai', 'Maharashtra', '400078');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(9, 'E3', 'N', 'Room No. 56, 3rd Floor, Swamibhavan,',
'J. P. Road Junction, Andheri (East),', 'Mumbai', 'Maharashtra', '400059');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(10, 'E4', 'C', '301, Thomas Palace, Opp. Indu Child Care,',

'Yadnik Nagar, Andheri (West),', 'Mumbai', 'Maharashtra', '400058');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(11, 'E5', 'C', '456/A, Bldg. No. 4, Vahatuk Nagar,',
'Amboli, Andheri (West),', 'Mumbai', 'Maharashtra', '400058');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(12, 'E6', 'N', '201, Meena Towers, Nr. Sun Gas Agency,',

'S. V. Rd., Goregoan (West),', 'Mumbai', 'Maharashtra', '400076');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(13, 'E7', 'N', 'Patel Chawl, Rm. No. 15, B. P. Lal Marg,',

'Mahim (West),', 'Mumbai', 'Maharashtra', '400016');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(14, 'E8', 'C', 'A - 10, Neelam, L. J. Road,', 'Mahim (East),',
'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(15, 'E9', 'N', '1/12 Bal Govindas Society, M. B. Raut Rd.,',

'Dadar (East),', 'Mumbai', 'Maharashtra', '400028');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(16, 'E10', 'C', 'Pathak Nagar, Cadal Road,', 'Mahim (West),', 'New Delhi',
'Delhi', '110016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(17, 'C1', 'C', 'F-12, Diamond Palace, West Avenue,',

'North Avenue, Santacruz (West),', 'Mumbai', 'Maharashtra', '400056');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(18, 'C2', 'C', 'F-12, Silver Stream,', 'Santacruz (East),', 'Mumbai',
'Maharashtra', '400056');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(19, 'C3', 'C', 'Magesh Prasad,', 'Saraswati Baug, Jogeshwari(E),',

'Mumbai', 'Maharashtra', '400060');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(20, 'C4', 'C', '4, Sampada,', 'Kataria Road, Mahim,', 'Mumbai',
'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(21, 'C5', 'C', '104, Vikram Apts. Bhagat Lane,', 'Shivaji Park, Mahim,',

'Mumbai', 'Maharashtra', '400016');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(22, 'C6', 'C', '12, Radha Kunj, N.C Kelkar Road,', 'Dadar,', 'Mumbai',
'Maharashtra', '400028');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(23, 'C7', 'C', 'A/14, Shanti Society, Mogal Lane,', 'Mahim,', 'Mumbai',

'Maharashtra', '400016');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(24, 'C8', 'C', '5, Vagdevi, Senapati Bapat Rd.,', 'Dadar,', 'Mumbai',
'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(25, 'C9', 'C', 'A-10 Nutan Vaishali,', 'Shivaji Park, Mahim,', 'Mumbai',

'Maharashtra', '400016');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(26, 'C10', 'C', 'B-10, Makarand Society,', 'Cadal Road, Mahim,', 'Mumbai',
'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(27, 'N1', 'C', '307/E, Meena Mansion,', 'R. S. Road, Andheri (West),',

'Mumbai', 'Maharashtra', '400058');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(28, 'N2', 'C', 'Smt. Veenu Chawl, Sawant Colony Rd.,',
'Opp. Veer Road, Matunga (West),', 'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(29, 'N3', 'C', 'F-12, Silver Stream,', 'Santacruz (East),', 'Mumbai',

'Maharashtra', '400056');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

VALUES(30, 'N4', 'C', 'Magesh Prasad,', 'Saraswati Baug, Jogeshwari(E),',
'Mumbai', 'Maharashtra', '400060');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(31, 'N5', 'C', 'Rita Apartment, Room No. 46, 2nd Floor,',

'J. P. Road, Andheri (East),', 'Mumbai', 'Maharashtra', '400067');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(32, 'N6', 'N', '106/A, Sunrise Apmt., Opp. Vahatuk Nagar,',
'Kevni-Pada, Jogeshwari (West),', 'Mumbai', 'Maharashtra', '400102');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(33, 'N7', 'C', 'Pathak Nagar, Cadal Road,', 'Mahim (West),', 'Mumbai',

'Maharashtra', '400016');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(34, 'O11', 'H', 'Shop No. 4, Simon Streams,',
'V. P. Road, Andheri (West),', 'Mumbai', 'Maharashtra', '400058');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(35, 'O12', 'H', '230-E, Patel Chambers,', 'Service Road, Vile Parle (East),',

'Mumbai', 'Maharashtra', '400057');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(36, 'O13', 'H', 'G-2, Puru Hsg. Society,', 'Senapati Bapat Rd., Dadar,',
'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(37, 'O14', 'H', 'B-10, Makarand Society,', 'Cadal Road, Mahim,',

'Mumbai', 'Maharashtra', '400016');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(38, 'N8', 'N', '106/A, Sunrise Apmt., Opp. Vahatuk Nagar,',
'Kevni-Pada, Jogeshwari (West),', 'Mumbai', 'Maharashtra', '400102');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(39, 'N9', 'C', '307/E, Meena Mansion,', 'R. S. Road, Andheri (West),',

'Mumbai', 'Maharashtra', '400058');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(40, 'N10', 'C', 'Smt. Veenu Chawl, Sawant Colony Rd.,',
'Opp. Veer Road, Matunga (West),', 'Mumbai', 'Maharashtra', '400016');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(41, 'N11', 'C', 'F-12, Silver Stream,', 'Santacruz (East),', 'Mumbai',

'Maharashtra', '400056');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(42, 'N12', 'C', 'Magesh Prasad', 'Saraswati Baug, Jogeshwari(E),',
'Mumbai', 'Maharashtra', '400060');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(43, 'N13', 'C', 'Pathak Nagar, Cadal Road,', 'Mahim (West),', 'Mumbai',

'Maharashtra', '400016');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(44, 'N14', 'C', '405, Vahatuk Nagar, Kevni-Pada,', 'Jogeshwari (West),',
'Mumbai', 'Maharashtra', '400102');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(45, 'C6', 'N', '203/A, Prachi Apmt.,', 'Andheri (East),', 'Mumbai',

'Maharashtra', '400058');
INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)

VALUES(46, 'O15', 'H', 'Shop No. 4, Sai Compound,',
'Service Road, Vile Parle (East),', 'Mumbai', 'Maharashtra', '400057');

INSERT INTO ADDR_DTLS (ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(47, 'O15', 'H', 'G-4, Sagar Chambers,', 'G. P. Road, Andheri (West),',

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

'Mumbai', 'Maharashtra', '400058');

-- Record for CNTC_DTLS
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(1, 'B1', 'O', '26124571');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(1, 'B1', 'F', '26124533');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(1, 'B1', 'E',
'admin_vileparle@bom2.vsnl.in');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(2, 'B2', 'O', '26790014');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(2, 'B2', 'E',
'admin_andheri@bom2.vsnl.in');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(3, 'B3', 'O', '23457855');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(3, 'B3', 'E',
'admin_churchgate@bom2.vsnl.in');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(4, 'B4', 'O', '25545455');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(4, 'B4', 'E',
'admin_sion@bom2.vsnl.in');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(5, 'B5', 'O', '28175454');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(5, 'B5', 'E',
'admin_borivali@bom2.vsnl.in');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(6, 'B6', 'O', '24304545');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(6, 'B6', 'E',
'admin_matunga@bom2.vsnl.in');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(8, 'E2', 'R', '28883779');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(9, 'E3', 'R', '28377634');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(10, 'E4', 'R', '26323560');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(11, 'E5', 'R', '26793231');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(12, 'E6', 'R', '28085654');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(13, 'E7', 'R', '24442342');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(14, 'E8', 'R', '24365672');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(15, 'E9', 'R', '24327349');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(16, 'E10', 'R', '24302579');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(17, 'C1', 'R', '26405853');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(17, 'C1', 'O', '26134553');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(17, 'C1', 'O', '26134571');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(17, 'C1', 'M', '9820178955');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(18, 'C2', 'R', '26045754');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(18, 'C2', 'O', '26134571');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(19, 'C3', 'R', '28324567');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(19, 'C3', 'O', '26197654');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(20, 'C4', 'R', '24449852');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(20, 'C4', 'O', '28741370');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(21, 'C5', 'R', '24302934');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(21, 'C5', 'O', '22819964');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(22, 'C6', 'R', '24217592');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(23, 'C7', 'R', '24372247');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(24, 'C8', 'O', '26480903');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(25, 'C9', 'R', '24313408');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(25, 'C9', 'M', '9821176651');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(26, 'C10', 'R', '24362680');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(26, 'C10', 'O', '28973355');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(26, 'C10', 'M',
'9820484648');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(27, 'N1', 'R', '26762154');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(28, 'N2', 'R', '24307887');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(29, 'N3', 'R', '260455754');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(30, 'N4', 'R', '28645489');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(31, 'N5', 'R', '30903564');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(32, 'N6', 'R', '26793771');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(33, 'N7', 'R', '24304455');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(34, 'O11', 'O', '26790055');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(34, 'O11', 'F', '26784409');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(35, 'O12', 'O', '26120455');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(35, 'O12', 'O', '26120456');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(35, 'O12', 'F', '26121450');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(35, 'O12', 'E',
'admin@sunpvtltd.com');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(35, 'O12', 'W',
'www.sunpvtltd.com');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(36, 'O13', 'O', '24301090');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(36, 'O13', 'O', '24301196');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(37, 'O14', 'O', '24321122');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(38, 'N8', 'R', '26793771');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(39, 'N9', 'R', '26762154');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(40, 'N10', 'R', '24307887');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(41, 'N11', 'R', '26045754');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(42, 'N12', 'R', '28645489');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(43, 'N13', 'R', '24304455');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(44, 'N14', 'R', '26790180');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(44, 'N14', 'R', '26771275');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(45, 'C6', 'R', '28274784');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(46, 'O15', 'O', '26170055');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(46, 'O15', 'F', '26174409');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(47, 'O16', 'O', '26790455');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(47, 'O16', 'F', '26781450');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(47, 'O16', 'E',
'admin@moonmltg.com');
INSERT INTO CNTC_DTLS (ADDR_NO, CODE_NO, CNTC_TYPE, CNTC_DATA) VALUES(47, 'O16', 'W',
'www.moonmltg.com');

-- Record for TRANS_MSTR
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T1', 'SB1', '05-NOV-2003', 'C', 'Initial Payment', 'D', 500, 500);
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T2', 'CA2', '10-NOV-2003', 'C', 'Initial Payment', 'D', 2000, 2000);
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T3', 'CA2', '13-NOV-2003', 'C', 'Self', 'D', 3000, 5000);
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T4', 'SB3', '22-NOV-2003', 'C', 'Initial Payment', 'D', 500, 500);
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T5', 'CA2', '10-DEC-2003', 'C', 'Self', 'W', 2000, 3000);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T6', 'CA4', '05-DEC-2003', 'B', 'Initial Payment', 'D', 2000, 2000);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

VALUES('T7', 'SB5', '15-DEC-2003', 'B', 'Initial Payment', 'D', 500, 500);
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T8', 'SB6', '27-DEC-2003', 'C', 'Initial Payment', 'D', 500, 500);
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T9', 'CA7', '14-JAN-2004', 'B', 'Initial Payment', 'D', 2000, 2000);
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T10', 'SB8', '29-JAN-2004', 'C', 'Initial Payment', 'D', 500, 500);
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T11', 'SB9', '05-FEB-2004', 'C', 'Initial Payment', 'D', 500, 500);
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T12', 'SB9', '15-FEB-2004', 'B', 'CLR-204907', 'D', 3000, 3500);
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T13', 'SB9', '17-FEB-2004', 'C', 'Self', 'W', 2500, 1000);
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T14', 'CA10', '19-FEB-2004', 'B', 'Initial Payment', 'D', 2000, 2000);
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T15', 'SB9', '05-APR-2004', 'B', 'CLR-204908', 'D', 3000, 4000);
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)

VALUES('T16', 'SB9', '27-APR-2004', 'C', 'Self', 'W', 2500, 1500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T17', 'SB1', '05-NOV-2003', 'C', 'Initial Payment', 'D', 500, 500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T18', 'CA2', '10-NOv-2003', 'C', 'Initial Payment', 'D', 2000, 2000);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T19', 'SB3', '22-NOV-2003', 'C', 'Initial Payment', 'D', 500, 500);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T20', 'CA4', '05-DEC-2003', 'B', 'Initial Payment', 'D', 2000, 2000);

INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR, AMT, BALANCE)
VALUES('T21', 'SB5', '15-DEC-2003', 'B', 'Initial Payment', 'D', 500, 500);

-- Record for TRANS_DTLS
INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)

VALUES('T6', 098324, '02-DEC-2003', 'Self', '05-DEC-2003', 'HDFC', 'Vile Parle (East)', '2982');
INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)

VALUES('T7', 232324, '14-DEC-2003', 'Self', '15-DEC-2003', 'India Bank', 'Andheri (West)', '30434');
INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)

VALUES('T9', 434560, '14-JAN-2004', 'Self', '14-JAN-2004', 'ICICI Bank', 'Bandra (West)', '4882');
INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)

VALUES('T12', 204907, '14-FEB-2004', 'Self', '15-FEB-2004', 'Memon Co-operative Bank', 'Jogeshwari (West)',
'1767');
INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)

VALUES('T14', 100907, '19-FEB-2004', 'Self', '19-FEB-2004', 'Memon Co-operative Bank', 'Jogeshwari (West)',
'2001');
INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

VALUES('T15', 204908, '01-APR-2004', 'Self', '05-APR-2004', 'Memon Co-operative Bank', 'Jogeshwari (West)',
'1767');

INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)

VALUES('T20', 098324, '02-DEC-2003', 'Self', '05-DEC-2003', 'HDFC', 'Vile Parle (East)', '2982');
INSERT INTO TRANS_DTLS (TRANS_NO, INST_NO, INST_DT, PAYTO, INST_CLR_DT, BANK_NAME,
BRANCH_NAME, PAIDFROM)

VALUES('T21', 232324, '14-DEC-2003', 'Self', '15-DEC-2003', 'India Bank', 'Andheri (West)', '30434');

COMMIT;

Example 1:
SELECT FD_NO, TYPE, PERIOD, OPNDT, DUEDT, AMT, INTRATE, DUEAMT,

ROUND(AMT + (AMT * ROUND(SYSDATE - OPNDT)/365 * (INTRATE/100)), 2)
FROM FD_DTLS WHERE DUEDT > SYSDATE;

Example 2:
SELECT Fd_No, Type, Period, OpnDt, DueDt, Amt, IntRate, DueAmt,

ROUND(Amt + (Amt * ROUND(SysDate - OpnDt)/365 * (IntRate/100)), 2) "Pre Maturity Amount"
FROM Fd_Dtls WHERE DueDt > SysDate;

Example 3:
SELECT * FROM Trans_Mstr WHERE Amt >= 500 AND Amt <= 5000 AND Amt <= 5000

AND TO_CHAR(Dt) = TO_CHAR(SysDate);

Example 4:
SELECT Cust_no, FName || ' ' || MName || ' ' || LName "Customers"

FROM Cust_Mstr, Addr_Dtls
WHERE Cust_Mstr.Cust_No = Addr_Dtls.Code_No

AND (Occup = 'Information Technology' OR Occup = 'Self Employed')
AND Cust_No LIKE 'C%';

Example 5:
SELECT Cust_No, FName || ' ' || MName || ' ' || LName "Customers",

ROUND((SYSDATE - DOB_Inc)/365) "Age"
FROM Cust_Mstr

WHERE (ROUND((SYSDATE - DOB_Inc)/365) < 25 AND LName='Bayross')
OR (ROUND((SYSDATE - DOB_Inc)/365) > 25

AND ROUND((SYSDATE - DOB_Inc)/365) < 55) AND Cust_No LIKE 'C%';

Example 6:
SELECT Acct_No, Type, Opr_Mode, OpnDt, CurBal, Status

FROM Acct_Mstr WHERE NOT (Opr_Mode = 'SI' OR Opr_Mode = 'JO');

Example 7:
SELECT * FROM Trans_Mstr WHERE TO_CHAR(DT, 'MM') BETWEEN 01 AND 03;
SELECT * FROM Trans_Mstr

WHERE TO_CHAR(DT, 'MM') >= 01 AND TO_CHAR(DT, 'MM') <= 03;

Example 8:
SELECT DISTINCT Acct_No FROM Trans_Mstr

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

WHERE TO_CHAR(DT, 'MM') NOT BETWEEN 01 AND 04;

Example 9:
SELECT Fname, Lname, DOB_INC "Birthdate", Occup FROM Cust_Mstr

WHERE Fname LIKE 'Ch%';

Example 10:
SELECT Fname, Lname, DOB_INC "Birthdate", Occup FROM Cust_Mstr

WHERE Fname LIKE '_a%' OR Fname LIKE '_s%';

Example 11:
SELECT Fname, Lname, DOB_INC "Birthdate", Occup FROM Cust_Mstr

WHERE Fname LIKE 'Iv__';

Example 12:
SELECT Fname, Lname, DOB_INC "Birthdate", Occup FROM Cust_Mstr

WHERE Fname IN('Hansel', 'Mamta', 'Namita', 'Aruna');

Example 13:
SELECT Fname, Lname, DOB_INC "Birthdate", Occup FROM Cust_Mstr

WHERE Fname NOT IN('Hansel', 'Mamta', 'Namita', 'Aruna');

Example 14:
DESC DUAL
SELECT * FROM DUAL;
SELECT 2*2 FROM DUAL;

Example 15:
SELECT SYSDATE FROM DUAL;

Example 16:
SELECT AVG(CurBal) "Average Balance" FROM Acct_Mstr;

Example 17:
SELECT MIN(CurBal) "Minimum Balance" FROM Acct_Mstr;

Example 18:
SELECT COUNT(Acct_No) "No. of Accounts" FROM Acct_Mstr;

Example 19:
SELECT MAX(CurBal) "Maximum Balance" FROM Acct_Mstr;

Example 20:
SELECT SUM(CurBal) "Total Balance" FROM Acct_Mstr;

Example 21:
SELECT ABS(-15) "Absolute" FROM DUAL;

Example 22:
SELECT POWER(3,2) "Raised" FROM DUAL;

Example 23:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

SELECT ROUND(15.19,1) "Round" FROM DUAL;

Example 24:
SELECT SQRT(25) "Square Root" FROM DUAL;

SELECT EXP(5) "Exponent" FROM DUAL;

SELECT LOG(25, 4) "Log" FROM DUAL;

SELECT LN(4) "Log" FROM DUAL;

SELECT VARIANCE(Char_Length) "Variance" FROM ALL_TAB_COLUMNS;

SELECT EXTRACT(YEAR FROM DATE '2004-07-02') "Year",
EXTRACT(MONTH FROM SYSDATE) "Month" FROM DUAL;

SELECT GREATEST(4, 5, 17) "Num", GREATEST('4', '5', '17') "Text" FROM DUAL;

SELECT LEAST(4, 5, 17) "Num", LEAST('4', '5', '17') "Text" FROM DUAL;

SELECT MOD(15, 7) "Mod1", MOD(15.7, 7) "Mod2" FROM DUAL;

SELECT TRUNC(125.815, 1) "Trunc1", TRUNC(125.815, -2) "Trunc2" FROM DUAL;

SELECT FLOOR(24.8) "Flr1", FLOOR(13.15) "Flr2" FROM DUAL;

SELECT CEIL(24.8) "CeilFlr1",CEIL(13.15) "Ceil2" FROM DUAL;

Example 25:
SELECT LOWER('IVAN BAYROSS') "Lower" FROM DUAL;

Example 26:
SELECT INITCAP('IVAN BAYROSS') "Title Case" FROM DUAL;

Example 27:
SELECT UPPER('Ms. Carol') "Capitalised" FROM DUAL;

SELECT ASCII('a') "ASCII1", ASCII('Aa') "ASCII2" FROM DUAL;

SELECT COMPOSE('a' || UNISTR('\0301')) "Composed" FROM DUAL;

SELECT DECOMPOSE(COMPOSE('a' || UNISTR('\0301'))) "Decomposed" FROM DUAL;

SELECT DUMP('SCT') "Dump1", DUMP('SCT', 1017) "Dump2" FROM DUAL;

SELECT INSTR('SCT on the net', 't') "Instr1", INSTR('SCT on the net', 't', 1, 2) "Instr2"
FROM DUAL;

SELECT SOUNDEX('SCT on the net') "Sound" FROM DUAL;

SELECT TRANSLATE('1sct523', '123', '7a9') "Change" FROM DUAL;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

SELECT SUBSTR('This is a test', 6, 2) "Extracted" FROM DUAL;

SELECT LENGTH('SHARANAM') "Length" FROM DUAL;

SELECT LTRIM('NISHA','N') "Left" FROM DUAL;

SELECT RTRIM('SUNILA','A') "RTRIM" FROM DUAL;

SELECT TRIM(' Hansel ') "Trim both sides" FROM DUAL;
SELECT TRIM(LEADING 'x' FROM 'xxxHanselxxx') "Remove prefixes" FROM DUAL;
SELECT TRIM(BOTH 'x' FROM 'xxxHanselxxx') "Remove prefixes N suffixes" FROM DUAL;
SELECT TRIM(BOTH '1' FROM '123Hansel12111') "Remove string" FROM DUAL;

SELECT LPAD('Page 1',10,'*') "Lpad" FROM DUAL;

SELECT RPAD(Fname,10,'x') "RPAD Example" FROM Cust_Mstr
WHERE Fname = 'Ivan';

SELECT VSIZE('SCT on the net') "Size" FROM DUAL;

UPDATE Acct_Mstr SET CurBal = CurBal + TO_NUMBER(SUBSTR('$100',2,3));

SELECT TO_CHAR(17145, '$099,999') "Char" FROM DUAL;

SELECT TO_CHAR(DT, 'Month DD, YYYY') "New Date Format" FROM Trans_Mstr
WHERE Trans_No = 'T1';

INSERT INTO CUST_MSTR(CUST_NO, FNAME, MNAME, LNAME, DOB_INC)
VALUES('C1', 'Ivan', 'Nelson', 'Bayross',

TO_DATE('25-JUN-1952 10:55 A.M.', 'DD-MON-YY HH:MI A.M.'));

SELECT ADD_MONTHS(SYSDATE, 4) FROM DUAL;

SELECT SYSDATE, LAST_DAY(SYSDATE) "LastDay" FROM DUAL;

SELECT MONTHS_BETWEEN('02-FEB-92', '02-JAN-92') "Months" FROM DUAL;

SELECT NEXT_DAY('06-JULY-02', 'Saturday') "NEXT DAY" FROM DUAL;

SELECT TRUNC(To_Date('01-JUL-04'), 'YEAR') "Year" FROM DUAL;

SELECT ROUND(TO_DATE('01-JUL-04'), 'YEAR') "Year" FROM DUAL;

SELECT NEW_TIME(TO_DATE('2004/07/01 01:45', 'yyyy/mm/dd HH24:MI'), 'AST', 'MST') "MST"
FROM DUAL;

SELECT TO_CHAR(SYSDATE, 'DD-MM-YY') FROM DUAL;

SELECT TO_DATE ('06/07/02', 'DD/MM/YY') FROM DUAL;

SELECT Trans_No, Acct_No, TO_CHAR(DT, 'DD/MM/YY') "Transaction Date",

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Particular, DR_CR, Amt, Balance
FROM Trans_Mstr WHERE Acct_No = 'SB9' ORDER BY TO_CHAR(DT, 'MM');

INSERT INTO Cust_Mstr (Cust_No, Fname, Lname, Dob_Inc)
VALUES('C100', 'Sharanam', 'Shah',

TO_DATE('03/Jan/1981 12:23:00', 'DD/MON/YY hh:mi:ss'));

SELECT Cust_No, Fname, Lname, Dob_Inc FROM Cust_Mstr WHERE Cust_No LIKE 'C_';

SELECT Cust_No, Fname, Lname, TO_CHAR(DOB_Inc, 'DDTH-MON-YY') "DOB_DDTH"
FROM Cust_Mstr WHERE Cust_No LIKE 'C_';

SELECT Cust_No, Fname, Lname, TO_CHAR(Dob_Inc, 'DDSP') "DOB_DDSP"
FROM Cust_Mstr WHERE Cust_No LIKE 'C_';

SELECT Cust_No, Fname, Lname, TO_CHAR(Dob_Inc, 'DDSPTH') "DOB_DDSPTH"
FROM Cust_Mstr WHERE Cust_No LIKE 'C_';

SELECT UID FROM DUAL;

SELECT USER FROM DUAL;

SELECT SYS_CONTEXT('USERENV', 'NLS_DATE_FORMAT') "SysContext" FROM DUAL;

SELECT USERENV('LANGUAGE') FROM DUAL;

SELECT COALESCE(ADDR1, ADDR2, CITY) Addr FROM ADDR_DTLS;

Example 1:
SELECT BRANCH_NO "Branch No.", COUNT(EMP_NO) "No. Of Employees"

FROM EMP_MSTR GROUP BY BRANCH_NO;

Example 2:
SELECT VERI_EMP_NO "Emp. No.", COUNT(ACCT_NO) "No. Of A/Cs Verified"

FROM ACCT_MSTR GROUP BY VERI_EMP_NO;

Example 3:
SELECT BRANCH_NO "Branch No.", TYPE "A/C Type", COUNT(ACCT_NO) "No. Of A/Cs"

FROM ACCT_MSTR GROUP BY BRANCH_NO, TYPE;

Example 4:
SELECT CUST_NO, COUNT(ACCT_FD_NO) "No. Of A/Cs Held" FROM ACCT_FD_CUST_DTLS

WHERE ACCT_FD_NO LIKE 'CA%' OR ACCT_FD_NO LIKE 'SB%'
GROUP BY CUST_NO HAVING COUNT(ACCT_FD_NO)>1;

Example 5:
SELECT BRANCH_NO, COUNT(ACCT_NO) "No. Of A/Cs Activated"

FROM ACCT_MSTR WHERE TO_CHAR(OPNDT, 'DD-MM-YYYY') > '03-01-2003'
GROUP BY BRANCH_NO HAVING COUNT(ACCT_NO) > 1;

Example 6:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

SELECT CUST_NO, COUNT(ACCT_FD_NO) "No. Of A/Cs Or FDs Held"
FROM ACCT_FD_CUST_DTLS GROUP BY CUST_NO HAVING COUNT(ACCT_FD_NO) = 1;

Example 7:
SELECT CUST_NO, COUNT(ACCT_FD_NO) "No. Of A/Cs or FDs Held"

FROM ACCT_FD_CUST_DTLS GROUP BY CUST_NO HAVING COUNT(ACCT_FD_NO) > 1;

Example 8:
SELECT FD_SER_NO, FD_NO, SUM(AMT), SUM(DUEAMT)

FROM FD_DTLS
GROUP BY ROLLUP (FD_SER_NO, FD_NO);

Example 9:
SELECT BRANCH_NO, ACCT_NO, SUM(CURBAL) FROM ACCT_MSTR

GROUP BY CUBE (BRANCH_NO, ACCT_NO);

Example 10:
SELECT CODE_NO "Cust. No.", ADDR1 || ' ' || ADDR2 || ' ' || CITY || ', ' || STATE || ', ' || PINCODE "Address"

FROM ADDR_DTLS WHERE CODE_NO IN(SELECT CUST_NO FROM CUST_MSTR
WHERE FNAME = 'Ivan' AND LNAME = 'Bayross');

SELECT CUST_NO FROM CUST_MSTR WHERE FNAME = 'IVAN' AND LNAME = 'BAYROSS';
SELECT CODE_NO "Cust. No.", ADDR1 || ' ' || ADDR2 || ' ' || CITY || ', ' || STATE || ', ' || PINCODE "Address"

FROM ADDR_DTLS WHERE CODE_NO IN('C1');

Example 11:
SELECT (FNAME || ' ' || LNAME) "Customer" FROM CUST_MSTR

WHERE CUST_NO IN(SELECT CODE_NO FROM ADDR_DTLS
WHERE CODE_NO LIKE 'C%' AND PINCODE NOT IN(SELECT PINCODE
FROM ADDR_DTLS WHERE CODE_NO LIKE 'B%'));

SELECT PINCODE FROM ADDR_DTLS WHERE CODE_NO LIKE 'B%';
SELECT (FNAME || ' ' || LNAME) "Customer" FROM CUST_MSTR

WHERE CUST_NO IN(SELECT CODE_NO FROM ADDR_DTLS
WHERE CODE_NO LIKE 'C%'
AND PINCODE NOT IN('400057', '400058', '400004', '400045', '400078', '110004'));

SELECT CODE_NO FROM ADDR_DTLS WHERE CODE_NO LIKE 'C%'
AND PINCODE NOT IN('400057', '400058', '400004', '400045', '400078', '110004');

SELECT (FName || ' ' || LName) "Customer" FROM Cust_Mstr
WHERE Cust_No IN('C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9', 'C10');

Example 12:
SELECT (FNAME || ' ' || LNAME) "Customer" FROM CUST_MSTR

WHERE CUST_NO IN(SELECT CUST_NO FROM ACCT_FD_CUST_DTLS
WHERE ACCT_FD_NO IN(SELECT FD_SER_NO FROM FD_DTLS WHERE AMT > 5000));

SELECT FD_SER_NO FROM FD_DTLS WHERE AMT > 5000;
SELECT (FNAME || ' ' || LNAME) "Customer" FROM CUST_MSTR

WHERE CUST_NO IN(SELECT CUST_NO FROM ACCT_FD_CUST_DTLS
WHERE ACCT_FD_NO IN('FS1', 'FS2', 'FS2', 'FS5'));

SELECT CUST_NO FROM ACCT_FD_CUST_DTLS
WHERE ACCT_FD_NO IN('FS1', 'FS2', 'FS2', 'FS5');
SELECT (FNAME || ' ' || LNAME) "Customer" FROM CUST_MSTR

WHERE CUST_NO IN('C2', 'C3', 'C4', 'C5', 'C5', 'C5');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Example 13:

Example 14:
SELECT LENGTH(City), COUNT(Addr_Dtls.Code_No) "No. Of Customers" FROM Addr_Dtls

WHERE Code_No LIKE 'C%' GROUP BY Addr_Dtls.City;
SELECT Addr_Dtls.City "Len", COUNT(Addr_Dtls.Code_No) "No. Of Customers"

FROM Addr_Dtls WHERE Code_No LIKE 'C%' GROUP BY Len;
SELECT Addr_Dtls.City, COUNT(Addr_Dtls.Code_No) "No. Of Customers"

FROM Addr_Dtls WHERE Code_No LIKE 'C%' GROUP BY 1;

Example :
SELECT Branch_No, Acct_No, SUM(CurBal) FROM Acct_Mstr

WHERE Type = 'CA' AND Corp_Cust_No IS NOT NULL
GROUP BY ROLLUP (Branch_No, Acct_No);

Example :
SELECT Branch_No, Acct_No, SUM(CurBal) FROM Acct_Mstr

WHERE Type = 'CA' AND Corp_Cust_No IS NOT NULL
GROUP BY CUBE (Branch_No, Acct_No);

Example :
SELECT Code_No "Cust. No.", Addr1 || ' ' || Addr2 || ' ' || City || ', ' || State

|| ', ' || Pincode "Address"
FROM Addr_Dtls WHERE Code_No IN(SELECT Cust_No FROM Cust_Mstr

WHERE FName = 'Ivan' AND LName = 'Bayross');

Example :
SELECT A.Acct_No, A.CurBal, A.Branch_No, B.AvgBal

FROM Acct_Mstr A, (SELECT Branch_No, AVG(CurBal) AvgBal FROM Acct_Mstr
GROUP BY Branch_No) B

WHERE A.Branch_No = B.Branch_No AND A.CurBal > B.AvgBal;

Example :
SELECT Acct_No, CurBal, Branch_No FROM Acct_Mstr A

WHERE CurBal > (SELECT AVG(CurBal) FROM Acct_Mstr
WHERE Branch_No = A.Branch_No);

Example :
SELECT FName, LName FROM Cust_Mstr

WHERE (FName, LName) IN(SELECT FName, LName FROM EMP_MSTR);

Example :
SELECT Emp_No, (FName || ' ' || LName) "Name", Dept FROM Emp_Mstr E

ORDER BY (SELECT Name FROM Branch_Mstr B WHERE E.Branch_No = B.Branch_no);

Example :
SELECT Emp_No, FName, LName FROM Emp_Mstr E

WHERE EXISTS(SELECT 'SCT' FROM Acct_Mstr WHERE Veri_Emp_No = E.Emp_No);

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Example :
SELECT Branch_No, Name FROM Branch_Mstr B

WHERE NOT EXISTS(SELECT 'SCT' FROM Emp_Mstr
WHERE Branch_No = B.Branch_No);

Example :
SELECT E.Emp_No, (E.FName || ' ' || E.MName || ' ' || E.LName) "Name", B.Name "Branch", E.Dept, E.Desig

FROM Emp_Mstr E INNER JOIN Branch_Mstr B ON B.Branch_No = E.Branch_No;
SELECT E.Emp_No, (E.FName || ' ' || E.MName || ' ' || E.LName) "Name", B.Name "Branch", E.Dept, E.Desig

FROM Emp_Mstr E, Branch_Mstr B WHERE B.Branch_No = E.Branch_No;

Example :
SELECT (E.FName || ' ' || E.LName) "Name", E.Dept, C.Cntc_Type, C.Cntc_Data

FROM Emp_Mstr E LEFT JOIN Cntc_Dtls C ON E.Emp_No = C.Code_No;
SELECT (E.FName || ' ' || E.LName) "Name", E.Dept, C.Cntc_Type, C.Cntc_Data

FROM Emp_Mstr E, Cntc_Dtls C WHERE E.Emp_No = C.Code_No(+);

Example :
SELECT Emp.Fname "Employee", Mngr.Fname "Manager"

FROM Emp_Mstr Emp, Emp_Mstr Mngr
WHERE Emp.Mngr_No = Mngr.Emp_No;

Example :
SELECT First.Intro_Cust_No "Cust. No.",

(SELECT Fname || ' ' || Lname FROM Cust_Mstr
WHERE Cust_No = First.Intro_Cust_No) "Customer", First.Acct_No

FROM Acct_Mstr First, Acct_Mstr Second
WHERE First.Intro_Cust_No = Second.Intro_Cust_No

AND First.Acct_no <> Second.Acct_no;

Example :
SELECT 'Account No. ' || Acct_No || ' was introduced by Customer No. '

|| Intro_Cust_No || ' At Branch No. ' || Branch_No FROM Acct_Mstr;
SELECT 'Account No. ' || Acct_No || ' was introduced by Customer No. '

|| Intro_Cust_No || ' At Branch No. ' || Branch_No "Accounts Opened"
FROM Acct_Mstr;

Example :
SELECT Cust_No "ID", Fname || ' ' || Lname "Customer / Employees"

FROM Cust_Mstr, Addr_Dtls
WHERE Cust_Mstr.Cust_No = Addr_Dtls.Code_No

AND Addr_Dtls.City = 'Mumbai' AND Addr_Dtls.Code_No LIKE 'C%'
UNION
SELECT Emp_No "ID", Fname || ' ' || Lname "Customer / Employees"

FROM Emp_Mstr, Addr_Dtls
WHERE Emp_Mstr.Emp_No = Addr_Dtls.Code_No

AND Addr_Dtls.City = 'Mumbai' AND Addr_Dtls.Code_No LIKE 'E%';
SELECT Cust_No "ID", Fname || ' ' || Lname "Customer / Employees"

FROM Cust_Mstr, Addr_Dtls

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

WHERE Cust_Mstr.Cust_No = Addr_Dtls.Code_No
AND Addr_Dtls.City = 'Mumbai' AND Addr_Dtls.Code_No LIKE 'C%';

SELECT Emp_No "ID", Fname || ' ' || Lname " Customer / Employees"
FROM Emp_Mstr, Addr_Dtls

WHERE Emp_Mstr.Emp_No = Addr_Dtls.Code_No
AND Addr_Dtls.City = 'Mumbai' AND Addr_Dtls.Code_No LIKE 'E%';

Example :
SELECT DISTINCT Cust_No FROM Acct_FD_Cust_Dtls

WHERE Acct_FD_No LIKE 'CA%' OR Acct_FD_No LIKE 'SB%'
INTERSECT
SELECT DISTINCT Cust_No FROM Acct_FD_Cust_Dtls

WHERE Acct_FD_No LIKE 'FS%';
SELECT DISTINCT Cust_No FROM Acct_FD_Cust_Dtls

WHERE Acct_FD_No LIKE 'CA%' OR Acct_FD_No LIKE 'SB%';
SELECT DISTINCT Cust_No FROM Acct_FD_Cust_Dtls

WHERE Acct_FD_No LIKE 'FS%';

Example :
SELECT DISTINCT Cust_No FROM Acct_FD_Cust_Dtls

WHERE Acct_FD_No LIKE 'CA%' OR Acct_FD_No LIKE 'SB%'
MINUS
SELECT DISTINCT Cust_No FROM Acct_FD_Cust_Dtls

WHERE Acct_FD_No LIKE 'FS%';
SELECT DISTINCT Cust_No FROM Acct_FD_Cust_Dtls

WHERE Acct_FD_No LIKE 'CA%' OR Acct_FD_No LIKE 'SB%';
SELECT DISTINCT Cust_No FROM Acct_FD_Cust_Dtls

WHERE Acct_FD_No LIKE 'FS%';
Address Field In The Index

SELECT ROWID, ACCT_NO FROM ACCT_MSTR;

Example 1:
SELECT ACCT_NO, OPNDT, VERI_EMP_NO FROM ACCT_MSTR WHERE VERI_EMP_NO = 'E1';

Example 2:
SELECT ACCT_NO, OPNDT, VERI_EMP_NO FROM ACCT_MSTR WHERE VERI_EMP_NO = 'E1';

Example 3:
CREATE INDEX idxVeriEmpNo ON ACCT_MSTR (VERI_EMP_NO);

Example 4:
CREATE INDEX idxTransAcctNo ON TRANS_MSTR (TRANS_NO, ACCT_NO);

Example 5:
CREATE UNIQUE INDEX idx_CustNo ON CUST_MSTR (CUST_NO);

Example 6:
CREATE INDEX idx_CustNo ON CUST_MSTR (CUST_NO) REVERSE;

Example 7:
ALTER INDEX idx_CustNo REBUILD NOREVERSE;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Example 8:
CREATE BITMAP INDEX bitidx_TransNo ON TRANS_DTLS (TRANS_NO);

Example 9:
CREATE INDEX idx_Name ON CUST_MSTR (UPPER(FNAME));

Example 10:
DROP INDEX idx_CustNo;

Example 11:

DELETE FROM EMP_MSTR WHERE ROWID NOT IN(SELECT MIN(ROWID)
FROM EMP_MSTR GROUP BY EMP_NO, FNAME, DEPT);

DELETE FROM EMP_MSTR WHERE ROWID NOT IN('AAAHebAABAAAMVqAAA',
'AAAHebAABAAAMVqAAB', 'AAAHebAABAAAMVqAAC', 'AAAHebAABAAAMVqAAD',
'AAAHebAABAAAMVqAAE', 'AAAHebAABAAAMVqAAF', 'AAAHebAABAAAMVqAAG',
'AAAHebAABAAAMVqAAH', 'AAAHebAABAAAMVqAAI', 'AAAHebAABAAAMVqAAJ');

SELECT EMP_NO, FNAME, DEPT FROM EMP_MSTR;

Example 12:
SELECT ROWNUM, BRANCH_NO, NAME FROM BRANCH_MSTR WHERE ROWNUM < 4;

Example 13:
CREATE VIEW vw_Customers AS SELECT * FROM CUST_MSTR;

Example 14:
CREATE VIEW vw_Employees AS SELECT FNAME, MNAME, LNAME, DEPT

FROM EMP_MSTR;

Example 15:

CREATE VIEW vw_Transactions AS
SELECT ACCT_NO "Account No.", DT "Date", Type, DR_CR "Mode", AMT "Amount"

FROM TRANS_MSTR;

Example 15:
SELECT FNAME, LNAME, DEPT FROM vw_Employees

WHERE DEPT IN('Marketing', 'Loans And Financing');

Example 16:
CREATE VIEW vw_Nominees AS

SELECT NOMINEE_NO, ACCT_FD_NO, NAME FROM NOMINEE_MSTR;

When an INSERT operation is performed using the view:
INSERT INTO vw_Nominees VALUES('N100', 'SB432', 'Sharanam');

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Example 17:
CREATE VIEW vw_Branch AS

SELECT BRANCH_NO, NAME, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE
FROM BRANCH_MSTR, ADDR_DTS
WHERE ADDR_DTLS.CODE_NO = BRANCH_MSTR.BRANCH_NO;

When an INSERT operation is performed using the view
INSERT INTO vw_Branch VALUES('B7', 'Dahisar', 'B', 'Vertex Plaza, Shop 4,', 'Western Express Highway, Dahisar (East),',
'Mumbai', 'Maharashtra', '400078');

Example 18:
DROP VIEW vw_Branch;

Example 19:

CREATE CLUSTER "DBA_BANKSYS"."BRANCH_INFO"("BRANCH_NO" VARCHAR2(10));

CREATE TABLE "DBA_BANKSYS"."BRANCH_MSTR"(
"BRANCH_NO" VARCHAR2(10) PRIMARY KEY, "NAME" VARCHAR2(25))
CLUSTER BRANCH_INFO(BRANCH_NO);

CREATE TABLE "DBA_BANKSYS"."ADDR_DTLS"(
"ADDR_NO" NUMBER(6) PRIMARY KEY, "CODE_NO" VARCHAR2(10),
"ADDR_TYPE" VARCHAR2(1), "ADDR1" VARCHAR2(50),
"ADDR2" VARCHAR2(50), "CITY" VARCHAR2(25),
"STATE" VARCHAR2(25), "PINCODE" VARCHAR2(6));
CLUSTER BRANCH_INFO(BRANCH_NO);

Example 20:
CREATE SEQUENCE ADDR_SEQ INCREMENT BY 1 START WITH 1

MINVALUE 1 MAXVALUE 999 CYCLE;

Example 21:
INSERT INTO ADDR_DTLS

(ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(ADDR_SEQ.NextVal, 'B5', 'B', 'Vertex Plaza, Shop 4,', 'Western Express Highway, Dahisar (East),',

'Mumbai', 'Maharashtra', '400078');

Example 22:
INSERT INTO ADDR_DTLS

(ADDR_NO, CODE_NO, ADDR_TYPE, ADDR1, ADDR2, CITY, STATE, PINCODE)
VALUES(TO_CHAR(SYSDATE, 'MMYY) || TO_CHAR(ADDR_SEQ.NextVal), 'B5', 'B', 'Vertex Plaza, Shop 4,',

'Western Express Highway, Dahisar (East),', 'Mumbai', 'Maharashtra', '400078');

Example 23:
ALTER SEQUENCE ADDR_SEQ INCREMENT BY 2 CACHE 30;

Example 24:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

DROP SEQUENCE ADDR_SEQ;

Example 25:
CREATE SNAPSHOT NEW_EMP

PCTFREE 10 PCTUSED 70
TABLESPACE System
STORAGE (INITIAL 50K NEXT 50K PCTINCREASE 0)
REFRESH

START WITH ROUND(SYSDATE + 7) + 2/24
NEXT NEXT_DATE(TRUNC(SYSDATE, 'MONDAY') + 2/24

AS SELECT * FROM EMP_MSTR;

Example 26:
DROP SNAPSHOT New_Client

12. SECURITY MANAGEMENT USING SQL
GRANTING AND REVOKING PERMISSIONS

Example 1:
GRANT ALL ON EMP_MSTR TO Sharanam;

Example 2:
GRANT SELECT, UPDATE ON CUST_MSTR TO Hansel;

Example 3:
GRANT ALL ON ACCT_MSTR TO Ivan WITH GRANT OPTION;

Example 4:
SELECT * FROM Sharanam.FD_MSTR;

Example 5:
GRANT SELECT ON Vaishali.TRANS_MSTR TO Chhaya;

Example 6:
REVOKE DELETE ON NOMINEE_MSTR FROM Anil;

Example 7:
REVOKE ALL ON NOMINEE_MSTR FROM Anil;

Example 8:
REVOKE SELECT ON Alex.FDSLAB_MSTR FROM Rocky;

13. OOPS IN ORACLE
ORACLE 9i DATABASE FLAVOURS

Example 1:
CREATE TYPE ADDRESS_TY AS OBJECT(

STREET VARCHAR2(50), CITY VARCHAR2(25), STATE VARCHAR2(25), ZIP NUMBER);

Example 2:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

CREATE TYPE PERSON_TY AS OBJECT(
NAME VARCHAR2(25), ADDRESS ADDRESS_TY);

Example 3:
CREATE TYPE ADDRESS_TY AS OBJECT(

STREET VARCHAR2 (50), CITY VARCHAR2 (25), STATE VARCHAR2 (25), ZIP NUMBER);

Example 4:
CREATE TYPE PERSON_TY AS OBJECT(

NAME VARCHAR2 (25), ADDRESS ADDRESS_TY);

Example 5:
CREATE TABLE CUSTOMER(

CUSTOMER_ID NUMBER, PERSON PERSON_TY);

Example 6:
DESC CUSTOMER;

Example 7:
DESC PERSON_TY;

Example 8:
DESC ADDRESS_TY;

Example 9:
SELECT COLUMN_NAME, DATA_TYPE FROM USER_TAB_COLUMNS

WHERE TABLE_NAME = 'CUSTOMER';

Example 10:
SELECT ATTR_NAME, LENGTH, ATTR_TYPE_NAME FROM USER_TYPE_ATTRS

WHERE TYPE_NAME = 'PERSON_TY';

Example 11:
Query USER_TYPE_ATTRS again to see the attributes of the ADDRESS_TY datatype:

SELECT ATTR_NAME, LENGTH, ATTR_TYPE_NAME FROM USER_TYPE_ATTRS
WHERE TYPE_NAME = 'ADDRESS_TY';

Example 12:
INSERT INTO CUSTOMER VALUES(1, PERSON_TY('Sharanam',

ADDRESS_TY('Dadar', 'Mumbai', 'Maharashtra', 400016)));

INSERT INTO CUSTOMER VALUES(2, PERSON_TY ('Vaishali',
ADDRESS_TY ('Balgovinddas Rd', 'Mumbai', 'Maharashtra', 400016)));

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Example 13:
SELECT CUSTOMER_ID FROM CUSTOMER;

Example 14:
SELECT * FROM CUSTOMER;

Example 15:
SELECT CUSTOMER_ID, CLIENT.PERSON.NAME FROM CUSTOMER CLIENT;

Example 16:
SELECT CLIENT.PERSON.ADDRESS.STREET FROM CUSTOMER CLIENT;

Example 17:
SELECT CLIENT.PERSON.NAME, CLIENT.PERSON.ADDRESS.CITY FROM CUSTOMER CLIENT

WHERE CLIENT.PERSON.ADDRESS.CITY LIKE 'M%';

Example 18:
UPDATE CUSTOMER CLIENT SET CLIENT.PERSON.ADDRESS.CITY = 'Bombay'

WHERE CLIENT.PERSON.ADDRESS.CITY = 'Mumbai';

Example 19:
DELETE FROM CUSTOMER CLIENT WHERE CLIENT.PERSON.ADDRESS.STREET = 'Dadar';

Example 20:
CREATE OR REPLACE TYPE ADDRESS_TY AS OBJECT(

STREET VARCHAR2 (50), CITY VARCHAR2 (25), STATE VARCHAR2 (25), ZIP NUMBER);

Next, create PERSON_TY that uses ADDRESS_TY:

CREATE OR REPLACE TYPE PERSON_TY AS OBJECT(
NAME VARCHAR2 (25), ADDRESS ADDRESS_TY);

Next, create CUSTOMER_TY that uses PERSON_TY:

CREATE OR REPLACE TYPE CUSTOMER_TY AS OBJECT(
CUSTOMER_ID NUMBER, PERSON PERSON_TY);

CREATE OR REPLACE VIEW CUSTOMER_OV (CUSTOMER_ID, PERSON) AS
SELECT CUSTOMER_ID, PERSON_TY (NAME, ADDRESS_TY (STREET, CITY, STATE, ZIP))
FROM CUSTOMER;

INSERT INTO CUSTOMER VALUES(1, 'Sharanam', 'Dadar', 'Mumbai', 'Maharashtra', 400016);
INSERT INTO CUSTOMER

VALUES(2, 'Vaishali', 'Balgovinddas Rd', 'Mumbai', 'Maharashtra',400016);
INSERT INTO CUSTOMER VALUES(3, 'Hansel', 'Darya Rd', 'Ahemdabad', 'Gujarat', 300042);

Example 21:
CREATE OR REPLACE VIEW CUSTOMER_OV (CUSTOMER_ID, PERSON) AS

SELECT CUSTOMER_ID, PERSON_TY (NAME, ADDRESS_TY (STREET, CITY, STATE, ZIP))
FROM CUSTOMER WHERE STATE = 'Maharashtra';

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Example 22:
INSERT INTO CUSTOMER VALUES(4, 'Silicon Chip Technologies', 'A/5 Jay Chambers', 'Vile Parle (E)', 'Maharashtra',
400057);

Example 23:
INSERT INTO CUSTOMER_OV VALUES(5, PERSON_TY ('Jasper International',

ADDRESS_TY ('A/7 Jay Chambers', 'Vile Parle (E)', 'Maharashtra', 400057)));

Example 24:
1. For creating TYPE ADDRESS_TY:
CREATE OR REPLACE TYPE ADDRESS_TY AS OBJECT(

STREET VARCHAR2(50), CITY VARCHAR2(25), STATE VARCHAR2(25), ZIP NUMBER);

2. For creating TYPE NAME_TY:
CREATE OR REPLACE TYPE NAME_TY AS OBJECT(

NAME VARCHAR2(25), ADDRESS ADDRESS_TY);

3. For creating TYPE DEPENDENT_TY:
CREATE OR REPLACE TYPE DEPENDENT_TY AS OBJECT(

RELATION VARCHAR2(15), NAME NAME_TY, AGE NUMBER);

4. For creating a NESTED TABLE:

CREATE OR REPLACE TYPE DEPENDENT_LIST AS TABLE OF DEPENDENT_TY;

5. For creating TYPE EMPLOYEE_INFO_TY:

CREATE OR REPLACE TYPE EMPLOYEE_INFO_TY AS OBJECT(
EMPLOYEE_ID NUMBER(5), NAME NAME_TY, SALARY NUMBER(10,2),
DEPT_ID NUMBER(5), DEPENDENTS DEPENDENT_LIST);

6. For creating the TABLE EMPLOYEE_INFO of the TYPE EMPLOYEE_INFO_TY:

CREATE TABLE EMPLOYEE_INFO OF EMPLOYEE_INFO_TY
OIDINDEX OID_EMPLOYEE_INFO

NESTED TABLE DEPENDENTS STORE AS DEPENDENTS_TY;

1. Inserting values in the nested table:

INSERT INTO EMPLOYEE_INFO EMP VALUES(1, NAME_TY('Sharanam',
ADDRESS_TY('JAY Chambers', 'VILE PARLE', 'MUMBAI', 400057)),8000,10,
DEPENDENT_LIST(

DEPENDENT_TY('Sister', NAME_TY('Stuti',
ADDRESS_TY('Balgovinddas RD', 'Dadar', 'Mumbai', 400016)), 19),

DEPENDENT_TY('Mother', NAME_TY('Gopi',
ADDRESS_TY('Balgovinddas RD', 'Dadar', 'Mumbai', 400016)), 40),

DEPENDENT_TY('Father', NAME_TY('Chaitanya',

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

ADDRESS_TY('Balgovinddas RD', 'Dadar', 'Mumbai', 400016)), 42)));

2. Inserting only detail table values in the nested table:

INSERT INTO THE (SELECT DEPENDENTS FROM EMPLOYEE_INFO) DEPENDS
VALUES(DEPENDENT_TY('Friend', NAME_TY('Vaishali',

ADDRESS_TY('Balgovinddas Rd', 'Dadar', 'Mumbai', 400016)),23));
INSERT INTO THE (SELECT DEPENDENTS FROM employee_info) DEPENDS

VALUES(DEPENDENT_TY('Colleague', NAME_TY('Hansel',
ADDRESS_TY('Subhash Rd', 'Parle', 'Mumbai', 400057)), 22));

3. Updating values of a child record in the nested table:

UPDATE THE (SELECT DEPENDENTS FROM EMPLOYEE_INFO) DEPENDS
SET DEPENDS.RELATION = 'Wife' WHERE DEPENDS.RELATION = 'Friend';

4. Deleting values of a child record in the nested table:

DELETE THE (SELECT DEPENDENTS FROM EMPLOYEE_INFO) DEPENDS
WHERE DEPENDS.RELATION = 'Colleague';

Example 25:
CREATE TABLE COMPANY_INFO(NAME VARCHAR2(50), ADDRESS VARCHAR2(1000));

Example 26:
CREATE TYPE COMPANY_ADDRESS_TY AS VARRAY(3) OF VARCHAR2(1000);

Example 27:
CREATE TABLE COMPANY_INFO(

COMPANY_NAME VARCHAR2(50), ADDRESS COMPANY_ADDRESS_TY);

Example 28:
DESC COMPANY_INFO;

Example 29:

SELECT COLUMN_NAME, DATA_TYPE FROM USER_TAB_COLUMNS
WHERE TABLE_NAME = 'COMPANY_INFO';

Example 30:
SELECT TYPECODE, ATTRIBUTES FROM USER_TYPES

WHERE TYPE_NAME = 'COMPANY_ADDRESS_TY';

Example 31:
SELECT TYPE_NAME, COLL_TYPE, UPPER_BOUND FROM USER_COLL_TYPES

WHERE TYPE_NAME = 'COMPANY_ADDRESS_TY';

Example 32:

INSERT INTO COMPANY_INFO VALUES('Silicon Chip Technologies',

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

COMPANY_ADDRESS_TY('A/5 Jay Chambers, Service Road, Vile Parle (E), Mumbai 57', NULL, NULL));
INSERT INTO COMPANY_INFO VALUES('Jasper International',

COMPANY_ADDRESS_TY('S.D.F II, Seepz, Andheri(E), Mumbai', 'ABBA House, MIDC, Andheri (E), Mumbai',
'Emmar Commercial Complex, A/5-407, S.V. Road, Borivli(W)'));

Examples For The Use Of REF

1. For creating a TYPE object:
CREATE TYPE DEPT_TY AS OBJECT(

DNAME VARCHAR2(100), ADDRESS VARCHAR2(200));

2. For creating a TABLE object using the above TYPE object:
CREATE TABLE DEPT OF DEPT_TY;

3. For creating a TABLE object that references to the TYPE object and also specifies the SCOPE:
CREATE TABLE EMP(

ENAME VARCHAR2(100), ENUMBER NUMBER, EDEPT REF DEPT_TY SCOPE IS DEPT);

4. For inserting values in the DEPT table:
INSERT INTO DEPT VALUES(DEPT_TY('Sales', '501 Baliga Street'));
INSERT INTO DEPT VALUES(DEPT_TY('Accounts', '84 Darya Ganj'));

5. For viewing the DEPT table:
SELECT * FROM DEPT;

6. For viewing the REF from the DEPT table:
SELECT REF(D) FROM DEPT D;

7. For inserting a row into the EMP table for an employee in Sales department:
INSERT INTO EMP SELECT 'Nirmal Pandey', 1, REF(d) FROM DEPT D

WHERE D.DNAME = 'Sales';

8. For viewing records from the EMP table:
SELECT * FROM EMP;

9. For viewing the ENAME, ENUMBER and the details of EDEPT column of the EMP table using the DEREF routine:
SELECT ENAME, ENUMBER, DEREF (EDEPT) FROM EMP;

14. ADVANCE FEATURES IN SQL * PLUS

CODE A TREE-STRUCTURED QUERY

Example 1:
SELECT LPAD(' ', LEVEL * 4) || FNAME || ' ' || LNAME "Employee Hierarchy"

FROM EMP_MSTR
CONNECT BY PRIOR EMP_NO = MNGR_NO START WITH MNGR_NO IS NULL;

Example 2:
SELECT * FROM (SELECT B.NAME "BRANCH",

DECODE(E.BRANCH_NO, 'B1', (SELECT COUNT(EMP_NO) FROM EMP_MSTR
WHERE BRANCH_NO = 'B1')) "B1",

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

DECODE(E.BRANCH_NO, 'B2', (SELECT COUNT(EMP_NO) FROM EMP_MSTR
WHERE BRANCH_NO = 'B2')) "B2",

DECODE(E.BRANCH_NO, 'B3', (SELECT COUNT(EMP_NO) FROM EMP_MSTR
WHERE BRANCH_NO = 'B3')) "B3",

DECODE(E.BRANCH_NO, 'B4', (SELECT COUNT(EMP_NO) FROM EMP_MSTR
WHERE BRANCH_NO = 'B4')) "B4",

DECODE(E.BRANCH_NO, 'B5', (SELECT COUNT(EMP_NO) FROM EMP_MSTR
WHERE BRANCH_NO = 'B5')) "B5",

DECODE(E.BRANCH_NO, 'B6', (SELECT COUNT(EMP_NO) FROM EMP_MSTR
WHERE BRANCH_NO = 'B6')) "B6"

FROM EMP_MSTR E, BRANCH_MSTR B
WHERE B.BRANCH_NO = E.BRANCH_NO

GROUP BY B.NAME, E.BRANCH_NO) ORDER BY 3;

Example 3:
SELECT DUMP(ACCT_NO) FROM ACCT_MSTR;

Example 4:
1
UPDATE EMP_MSTR SET MNAME = NULL;

RENAME EMP_MSTR TO EMP_MSTR_BASE;

CREATE VIEW EMP_MSTR
AS SELECT EMP_NO, BRANCH_NO, FNAME, LNAME, DEPT, DESIG FROM EMP_MSTR_BASE;

2
CREATE TABLE EMP_MSTR_NEW

AS SELECT EMP_NO, BRANCH_NO, FNAME, LNAME, DEPT, DESIG FROM EMP_MSTR;

DROP TABLE EMP_MSTR CASCADE CONSTRAINTS;

RENAME EMP_MSTR_NEW TO EMP_MSTR;

3
ALTER TABLE EMP_MSTR DROP COLUMN MNAME;

4
ALTER TABLE EMP_MSTR SET UNUSED COLUMN MNAME;

SELECT * FROM SYS.DBA_UNUSED_COL_TABS;

ALTER TABLE EMP_MSTR DROP UNUSED COLUMNS;

Example 5:
Solution 1
RENAME BRANCH_MSTR TO BRANCH_MSTR_BASE;

CREATE VIEW BRANCH_MSTR(BRANCH_NO, BRANCH_NAME)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

AS SELECT * FROM BRANCH_MSTR_BASE;

Solution 2:
CREATE TABLE BRANCH_MSTR_NEW(BRANCH_NO, BRANCH_NAME)

AS SELECT * FROM BRANCH_MSTR;

DROP TABLE BRANCH_MSTR CASCADE CONSTRAINTS;

RENAME BRANCH_MSTR_NEW TO BRANCH_MSTR;

Solution 3:
ALTER TABLE BRANCH_MSTR ADD (BRANCH_NAME VARCHAR2(25));

UPDATE BRANCH_MSTR SET BRANCH_NAME = NAME;

ALTER TABLE BRANCH_MSTR DROP COLUMN NAME;

Example 6:
Solution 1: Using Sub Queries
SELECT ROWNUM RN, EMP_NO, FNAME FROM EMP_MSTR WHERE (ROWID, 0)

IN (SELECT ROWID, MOD(ROWNUM,2) FROM EMP_MSTR);

Solution 2: Using dynamic views
SELECT * FROM (SELECT ROWNUM RN, EMP_NO, FNAME FROM EMP_MSTR) E

WHERE MOD(E.RN,2) = 0;

Solution 3: Using GROUP BY and HAVING
SELECT ROWNUM, EMP_NO, FNAME FROM EMP_MSTR

GROUP BY ROWNUM, EMP_NO, FNAME
HAVING MOD(ROWNUM,2) = 0 OR ROWNUM = 2-0;

Example 7:
CREATE TABLE CUSTOMERS (CUST_NO NUMBER, NAME VARCHAR2(25));

INSERT INTO CUSTOMERS VALUES(0, 'Sharanam');
INSERT INTO CUSTOMERS VALUES(0, 'Vaishali');
INSERT INTO CUSTOMERS VALUES(0, 'Hansel');
INSERT INTO CUSTOMERS VALUES(0, 'Chhaya');
INSERT INTO CUSTOMERS VALUES(0, 'Ivan');

SELECT * FROM CUSTOMERS;

SELECT * FROM CUSTOMERS;

CREATE SEQUENCE SEQ_CUSTNO START WITH 1 INCREMENT BY 1;

UPDATE CUSTOMERS SET CUST_NO = SEQ_CUSTNO.NEXTVAL;

SELECT * FROM CUSTOMERS;

CREATE UNIQUE INDEX idxCUST_NO ON CUSTOMERS(CUST_NO);

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INSERT INTO CUSTOMERS VALUES(1, 'Sharanam');

Example 8:
SELECT TO_CHAR(SYSDATE, 'DD-MON-YYYY HH:MI:SS') "Date",

TO_CHAR(SYSDATE+1, 'DD-MON-YYYY HH:MI:SS') "By 1 Day",
TO_CHAR(SYSDATE+1/24, 'DD-MON-YYYY HH:MI:SS') "By 1 Hour",
TO_CHAR(SYSDATE+1/1440, 'DD-MON-YYYY HH:MI:SS') "By 1 Minute",
TO_CHAR(SYSDATE+ 1/86400 , 'DD-MON-YYYY HH:MI:SS') "By 1 Second" FROM DUAL;

Example 9:
SELECT ACCT_NO, COUNT(*) "TRANSACTIONS PERFORMED"

FROM TRANS_MSTR GROUP BY ACCT_NO;

Example 10:
SELECT CUST_NO,

SUM(DECODE(SUBSTR(ACCT_FD_NO, 1, 2), 'CA', 1, 0)) "CURRENT ACCOUNTS",
SUM(DECODE(SUBSTR(ACCT_FD_NO, 1, 2), 'SB', 1, 0)) "SAVINGS ACCOUNTS",
SUM(DECODE(SUBSTR(ACCT_FD_NO, 1, 2), 'FS', 1, 0)) "FIXED DEPOSITS",
COUNT(ACCT_FD_NO) "TOTAL"
FROM ACCT_FD_CUST_DTLS GROUP BY CUST_NO;

Example 11:
Solution 1:
SELECT * FROM (SELECT ROWNUM RN, FNAME FROM EMP_MSTR

WHERE ROWNUM < 8) WHERE RN BETWEEN 4 and 7;

Solution 2:
SELECT ROWNUM RN, FNAME FROM EMP_MSTR

GROUP BY ROWNUM, FNAME HAVING ROWNUM BETWEEN 4 AND 7;

Solution 3:
SELECT ROWNUM RN, FNAME FROM EMP_MSTR WHERE ROWID IN(

SELECT ROWID FROM EMP_MSTR WHERE ROWNUM <= 7
MINUS
SELECT ROWID FROM EMP_MSTR WHERE ROWNUM < 4);

Example 12:

Solution 1:
ALTER USER hansel IDENTIFIED BY hansel123;

Solution 2:
Password hansel;

Solution 3:
Password;

Example 13:
Solution:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

SELECT 'CUSTOMER NAME: ' || FNAME || ' ' || MNAME || ' ' || LNAME || CHR(10) ||
'BIRTHDATE: ' || DOB_INC || CHR(10) || 'OCCUPATION: ' || OCCUP "Customer Details"
FROM CUST_MSTR WHERE CUST_NO LIKE 'C%';

Example 14:
Solution 1: FOR UPPER-CASE LETTERS
SELECT TO_CHAR(TO_DATE(34654,'J'),'JSP') FROM DUAL;

Solution 2: FOR TITLE-CASE LETTERS
SELECT TO_CHAR(TO_DATE(34654,'J'),'JsP') FROM DUAL;

Solution 3: FOR LOWER-CASE LETTERS
SELECT TO_CHAR(TO_DATE(34654,'J'),'jSP') FROM DUAL;

SELECT 'Rupees ' || DECODE(TRUNC(34654.23), 0, 'ZERO',
TO_CHAR(TO_DATE(TRUNC(34654.23),'J'),'JSP')) || ' AND ' ||
DECODE(TRUNC(MOD(34654.23,1)*100), 0, 'ZERO',
TO_CHAR(TO_DATE(TRUNC(MOD(34654.23,1)*100),'J'),'JSP')) || ' Paise'
FROM DUAL;

Example 15:
Solution:

/* Suppress page headers, titles and all formatting */
SET PAGESIZE 0

/* Switch off the SQL text before/after any variable substitution */
SET VERIFY OFF

/* Set line size, make this as big as desired */
SET LINES 700

/* Delete any blank spaces at the end of each spooled line */
SET TRIMSPOOL ON

/* Switch off the lines number display returned by the query */
SET FEEDBACK OFF

/* Switch off SELECT output to the screen */
SET TERMOUT OFF

/* Separate each column by a comma character (CSV output) */
SET COLSEP ','

/* Put the SELECT output into a file*/
SPOOL MY_EMP_REPORT.TXT
SELECT EMP_NO, FNAME, LNAME, B.NAME, DEPT, DESIG

FROM EMP_MSTR E, BRANCH_MSTR B WHERE E.BRANCH_NO = B.BRANCH_NO;
SPOOL OFF

Example16:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

SELECT NVL(FNAME, 'A'), NVL(MNAME, 'Corporate'), NVL(LNAME, 'Customer'), DOB_INC, OCCUP, PANCOPY,
FORM60 FROM CUST_MSTR;

Example 17:
CREATE TABLE MyFriends (NAME VARCHAR2(15));

INSERT INTO MyFriends VALUES ('Neeta');
INSERT INTO MyFriends VALUES ('Mita');
INSERT INTO MyFriends VALUES ('Dipu');
INSERT INTO MyFriends VALUES ('Deepu');
INSERT INTO MyFriends VALUES ('Dipa');
INSERT INTO MyFriends VALUES ('Anil');
INSERT INTO MyFriends VALUES ('Sunil');

COMMIT;

SELECT * FROM MyFriends;

SELECT * FROM MyFriends WHERE SOUNDEX(NAME) = SOUNDEX('Nita');

SELECT * FROM MyFriends WHERE SOUNDEX(NAME) = SOUNDEX('Deep');

SELECT SOUNDEX(NAME), NAME, SOUNDEX('DEEP') FROM MYFRIENDS;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Course Description
Title of Course: Object-Oriented Programming lab (C++)
Course Code: MCA293
L-T-P Scheme:0-0-3 Course Credit: 2

Objectives:

The course presents basics of C++ programming including: Basics of C++ environment, Data
representation, Control structures, Functions, Arrays, Pointers, Strings, and Classes that aims to:

 Understand object oriented programming and able to explain the difference between object
oriented programming and procedural programming.

 Be able to program using more advanced C++ features such as composition of objects,
operator overloads, dynamic memory allocation, inheritance and polymorphism, file I/O,
exception handling, etc.

 Be able to build C++ classes using appropriate encapsulation and design principles.

Learning Outcome:

 Be able to develop, design and implement simple computer programs.
 Understand functions and parameter passing.
 Be able to do numeric (algebraic) and string-based computation.
 Understand object-oriented design and programming.
 Understand dynamic memory allocation and pointers.
 Be able to design, implement, and test relatively large C++ programs.

Lab Content:

Exercises that must be done in this course are listed below:

Experiment1:-Write a C++ programme to take 10 integer data from the user and find out the
maximum minimum from that data.

Experiment 2:-Write a c++ program to generate the Fibonacci series by using class.

Experiment 3:-Write a program to calculate 1+x+x*x+x*x*x.....using loop.

Experiment 4:-Write a program in c++ to find the reverse of a number.

Experiment 5:-A shop required to store information about each item. Information will be item code,
price and available quantities. User (sales person) will store information about each item and can
display information about each item. Model the above problem with OOP.

Experiment6:-A cricket organization need to store information like name, number of innings,
number of not out innings, total run scored and total wicket taken of each cricketer. After storing data,
organization will analyze the data and want to come on the following conclusion: If a cricketer plays
more or equal inning and is batting average is more than 35 then recognize him as a “BATSMAN”. if
a cricketer plays more or equal to 50 innings’ and if taken more than 49 wickets then recognize him as
a”BOWLER”.if one satisfies both condition then he will be “ALL ROUNDER”. Organization needs
to display each information about each cricketer. Model above problem using OOPs.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Experiment 7:-Create a class will two private integer data member, initialize them with constructor.
Now display data members with the help of function which is not a member of that class.

Experiment 8:-Write a C++program to display the concept of function with default argument.

Experiment 9:-Create class ‘fun’ with one private float data member. initialize that data member with
constructor. similarly create another class magic with private data member. Initialize that data
member with constructor. now using friend function check data member of which class is greater.

Experiment 10:-Create a class test with one private float data member initialize that data member
with constructor similarly create another class testing with one private data member. Initialize that
data member with constructor. Now using function swap the value of data member of the classes.

Experiment 11:-Write a C++ program to demonstrate the concept of single inheritance.

Experiment 12:-Write a C++ program to demonstrate the concept of multiple inheritance.

Experiment 13:-Write a C++ program to demonstrate the concept of MULTILEVEL inheritance.

Experiment 14:-Write a C++ program to demonstrate the concept of HYBRID inheritance.

Experiment15:-An application needs to swap two integer and two float values using functions.
Approach the above problem using functions with same name.

Experiment16:-Write a program to calculate the number of objects created by your program.

Experiment 17:-Write a C++ program to achieve the following thing. A class contains 3 data
member of type integer. Use ++ and –- operator in a way so that whenever we use ++ with the object
of, all data member will incremented by one. Similarly, -- will work.

Experiment18:-Write a program to add two complex number using operators overloading.

Experiment19:-Write a C++ program to demonstrate the concept of Virtual Class.

Experiment 20:-Write a C++ program to show how Run Time Polymorphism is achieved in C++.

Text Books:

 Schildt, H., The Complete Reference C++, Tata McGraw Hill Education Pvt. Ltd.
 E.Balagurusamy; Object Oriented programming with C++; Tata McGraw Hill Education Pvt.

Ltd.
Reference Books:
 Debasish Jana, C++ object oriented programming paradigm, PHI.
 D. Ravichandran, Programming with C++, Tata McGraw Hill Education Pvt. Ltd.
 Y.I. Shah and M.H. Thaker, Programming In C++, ISTE/EXCEL BOOKS.

Recommended Systems/Software Requirements:
1. Intel based desktop PC with minimum of 166 MHZ or faster processor with at least 64 MB RAM

and 100 MB free disk space.
2. Turbo C++ compiler in Windows XP/7 or Linux Operating System.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Experiment1:-Write a C++ programme to take 10 integer data from the user and find out the
maximum minimum from that data.

Function declares two integers max and min and assign both integers with arrays first index value.
Then with in for loop there are two if condition first check is for minimum number and second check
is for maximum number. Finally program display the output values of both integers min and max.

#include<iostream.h>

#include<conio.h>

int main()

{

clrscr();

int a[6],i,large,small;

cout<<"Enter the value=";

for(i=0;i<6;i++)

{

cin>>a[i];

}

large=a[0];

for(i=0;i<6;i++)

{

if(a[i]>large)

{

large=a[i];

}

}

cout<<"The large number is ="<<large;

small=a[0];

for(i=0;i<6;i++)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

{

if(a[i]<small)

{

small=a[i];

}

}

cout<<"The small number is="<<small;

getch();

return 0;

}

Experiment 2.write a c++ program to generate the Fibonacci series by using class.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

In mathematics, the Fibonacci numbers or Fibonacci series or Fibonacci sequence are the numbers in
the following integer sequence:

1 1 2 3 5 8 13 21 34 55 89 144

By definition, the first two numbers in the Fibonacci sequence are 0 and 1, and each subsequent
number is the sum of the previous two.

#include<iostream.h>

#include<conio.h>

classfibonacii

{

inti,a,b,s,fibo,n;

public:

voidgetdata();

void display();

};

voidfibonacii::getdata()

{

a=0;

b=1;

cout<<"Enter the value n:";

cin>>n;

s=0;

for(i=0;i<n-1;i++)

{

fibo=a+b;

cout<<"\n"<<fibo<<" ";

b=a;

a=fibo;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

}

}

voidfibonacii::display()

{

cout<<"Thank you " ;

}

int main()

{

clrscr();

fibonacii f;

f.getdata();

f.display();

getch();

return 0;

}

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Experiment 3.write a program to calculate 1+x+x*x+x*x*x.....using loop.

Here's a C++ program to calculate the series with output. This program makes use of C++ concepts
like for loop,The program also uses C++’s math.h header file and power function pow(i, j).

#iinclude<iostream>

#include <math.h>

Using namespace std;

class series

{

inta,b;

public:

voidgetdata();

void cal();

void display();

};

Void series::getdata()

{

Cout<<”Enter the value of a:”

Cin>>a;

}

Void series::cal()

{

intc,i;

c=1;

cout<<”Enter the limit:”;

cin>>b;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

for(i=0;i<a;i++)

{

c=c+pow(b,i)

}

}

Void series::display()

{

Cout<<”The result is”<<c;

}

int main()

{

Series t;

t.getdata();

t.cal();

t.display();

return 0;

}

INPUT

Enter the value of a:5

Enter the limit:2

OUTPUT

The result is=32

Experiment 4.write a program in c++ to find the reverse of a number.

To reverse a number in C++ programming, then you have to ask to the user to enter a number.
Now, start reversing that number to find its reverse and then display its reverse on the screen. To
reverse a number, first make a variable say rev and place 0 to rev initially, and make one more
variable say rem.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

#include<iostream>

Usnig namespace std;

Class reverse

{

int n;

public:

voidgetdata();

void display();

};

Void reverse::getdata()

{

Cout<<”Enter the value n:”;

Cin>>n;

}

Void display()

{

intr,s=0;

r=n%10;

n=n/10;

s=(s*10)+r;

cout<<”The reverse number is”<<s;

}

int main()

{

Reverse r;

r.getdata();

r.display();

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

return 0;

}

INPUT

Enter the value of n:1234

OUTPUT

The reverse number is:4321

Experiment 5.A shop required to store information about each item. Information will be item
code, price and available quantities. User (sales person) will store information about each item
and can display information about each item. Model the above problem with OOP.

Into this programme there is only store and display concept of C++ Programming .

#include<iostream>

Using namespace std;

Class information

{

intc,p,q;

public:

voidgetdata();

void display();

};

Void information::getdata()

{

Cout<<”Enter the code of the item:”;

Cin>>c;

Cout<<”Enter the item price:”;

Cin>>p;

Cout<<”Enter the available quantities of item:”;

Cin>>q;

}

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Void information::display()

{

cout<<”Item code:”<<c;

cout<<”Item price:”<<p;

cout<<”Quantities of item:”<<q;

}

int main()

{

Information i;

i.getdata();

i.display();

return 0;

}

INPUT

Enter the code of item:23

Enter the item price:1025

Enter the available quantites of item:10

OUTPUT

Item code:23

Item price:1025

Quantites of the item:10

Experiment6.A cricket organization need to store information like name, number of innings,
number of not out innings, total run scored and total wicket taken of each cricketer. After
storing data, organization will analyze the data and want to come on the following conclusion: If
a cricketer plays more or equal inning and is batting average is more than 35 then recognize
him as a “BATSMAN”. if a cricketer plays more or equal to 50 innings’ and if taken more than
49 wickets then recognize him as a”BOWLER”.if one satisfies both condition then he will be
“ALL ROUNDER”. Organization needs to display each information about each cricketer.
Model above problem using OOPs.

The syntax of an if...else statement in C++ is

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

if(boolean_expression) {
// statement(s) will execute if the boolean expression is true

} else {
// statement(s) will execute if the boolean expression is false

}

if (testExpression)
{

// statements
}

The if statement evaluates the test expression inside parenthesis.

If test expression is evaluated to true, statements inside the body of if is executed.

If test expression is evaluated to false, statements inside the body of if is skipped.

#include<iostream>

Using namespace std;

Class info

{

intn,i,p,w,a;

public:

voidgetinfo();

voiddisinfo();

};

Void info::getinfo()

{

Cout<<”Name of the player:”;

Cin>>n;

Cout<<”Number of innings:”;

Cin>>i;

Cout<<”Number of not out innings:”;

Cin>>p;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Cout<<”Batting average:”;

Cin>>a;

Cout<<”Number of wickets:”;

Cin>>w;

}

Void info::disinfo()

{

If(i>=50 && a>35)

{

Printf(“BATSMAN”);

}

Elseif(i>=50 && w>49)

{

Printf(“BOWLER”);

}

else((i>=50 && a>35)&&(i>=50 && w>49));

{

Printf(“ALL ROUNDER”);

}

}

int main()

{

Info i;

i.getinfo();

i.disinfo();

return 0;

}

INPUT

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Name of the player =ARUP CHOWDHURY

Number of innings:35

NUMBER OF NOT OUT INNINGS:52

Number of wicket:50

OUTPUT:BOWLER.

Experiment 7.Create a class will two private integer data member, initialize them with
constructor. Now display data members with the help of function which is not a member of that
class.

#include<iostream>

Using namespace std;

Class test

{

Inta,b;

Public:

test(intm,int n)

{

a=m;

b=n;

}

Friend intmean(test a1);

Friend intmean(test a2);

};

int mean1(test a1)

{

return (a1.b);

}

int main()

{

test a2;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

a2.getdata(10,20)

cout<<”The data are”<<”\n”;

cout<< meam1(a2);

cout<<mean2(a2);

return 0;

}

OUTPUT

THE DATA ARE1020.

Experiment 8.Write a c++program to display the concept of function with default argument.

In C++programming, you can provide defaultvalues for function parameters. The ideabehind default
argument is simple. If a function is called by passing argument/s, those arguments are used by the
function. But if the argument/s are not passed while invoking a function then, the default values are
used.

#include<iostream>

Using namespace std;

Class student

{

Inta,b:

Public:

Void getdata();

Void display();

};

Void student::getdata()

{

Cout<<”Enter the value of a:”;

Cin>>a;

Cout<<”Enter the value of b:”;

Cin>>b;

}

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Void student::display()

{

Cout<<”The value of a is:”<<a;

Cout<<”The value of b is:”<<b;

}

Intmain()

{

Student t;

t.getdata();

t.display();

return 0;

}

INPUT

ENTER THE VALUE OF A:12

ENTER THE VALUE OF B:13

OUTPUT

THE VALUE OF A IS:12

THE VALUE OF B IS :13

Experiment 9:-Create class ‘fun’ with one private float data member. initialize that data
member with constructor. simillarly create another class magic with private data member.
initialize that data member with constructor. now using friend function check data member of
which class is greater.

A non member function cannot have an access to the private data of a class. However, there could be
a situation where we would like two classes to share a particular function. In such situations C++
allows the common function to be made friendly with both classes, thereby allowing the function to
have access to private data of these classes. Such a function need be a member of any of these
classes.To make an outside function "friendly" to a class, we have to simply declare this function as a
friend of the class. The functions that are declared with the keyword friend are known as friend
functions.

#include<iostream>

Using namespace std;

Class magic;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Class fun

{

Float fun;

Public:

Fun()

{

Cout<<”Enter the value of a: “;

Cin>>a;

}

Friend void check(fun f, magic m);

};

Class magic

{

Float b;

Public:

Magic()

{

Cout<<”Enter the value of b: “;

Cin>>b;

}

Friend void check(fun f, magic m);

};

Void check(fun f, magic m)

{

If(f.a>m.b)

{

Cout<<”a is greater than b”;

}

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Else if(f.a<m.b)

{

Cout<<”b is greater than a”;

}

Else

{

Cout<<”both are same”;

}

}

Intmain()

{

Fun f;

Magic m;

Check(f,m);

Return 0;

}

INPUT

Enter the value of a : 5

Enter the value of b: 10

OUTPUT

B is greater than a

Experiment 10. Create a class test with one private float data member initialize that data
member with constructor similarly create another class testing with one private data member.
Initialize that data member with constructor. Now using function swap the value of data
member of the classes.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

#include<iostream>

Using namespace std;

Class testing;

Class test

{

Float a;

Public:

Test()

{

Cout<<”Enter the value of a: “;

Cin>>a;

}

Friend void check(testing t1, test t2);

};

Class testing

{

Float b;

Public:

Testing()

{

Cout<<”Enter the value of b: “;

Cin>>b;

}

Friend void check(testing t1, test t2);

};

Void check(testing t1, test t2)

{

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Int c;

C=t2.a;

T2.a=t1.b;

T1.b=c;

Cout<<”the value of a is: “<<t2.a;

Cout<<”the value of b is: “<<t1.b;

}

Intmain()

{

Test t2;

Testing t2;

Check(t1, t2)

Return 0;

}

INPUT

Enter the value of a=5

Enter the value of b=10

OUTPUT

The value of a= 10

The value of b= 5

Experiment 11.write a c++ program to demonstrate the concept of single inheritance.

ALGORITHAM:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

• Start the process
• Invoke the base class B
• Invoke the derived class D using public derivation
• Get the input data
• Display the inputted data
• Call the derived classes member functions
o Assign a new value for base classes data member
• Display the outputs
• Stop the process

#include<iostream.h>
#include<conio.h>
class B
{
int a;
public:
int b;
void get_ab();
intget_a();
void show_a();
};
class D: private B
{
int c;
public:
void mul();
void display();
};
void B::get_ab()
{
cout<<"Enter Values for a and b";
cin>>a>>b;
}
int B::get_a()
{
return a;
}
void B::show_a(){

cout<<"a= "<<a<<"\n";
}

void D::mul()
{

get_ab();
c=b*get_a();

}
void D:: display()
{
show_a();
cout<<"b= "<<b<<"\n";
cout<<"c= "<<c<<"\n\n";
}

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

void main()
{

clrscr();
D d;
d.mul();
d.display();
d.mul();
d.display();
getch();

}

OUTPUT

A=5
A=5
B=10
C=50

A=5
B=20
C=100

Another Example for single inheritance:

#include<iostream>

Using namespace std;

Class A

{

Int a;

Public:

Int b;

Void getdata(int m, int n)

{

A=m;

B=n;

}

Intget_a()

{

Return a;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

}

Void show()

{

Cout<<a;

}

};

Class B

{

Public:

Void multiply()

{

Cout<<”The value of a: “<<get_a;

Cout<<”The value of b:”<<b;

Cout<<”Multiply= “<<b*get_a();

}

};

Intmain()

{

B B1;

B1.getdata(10,5);

B1.multiply();

Return 0;

}

OUTPUT

The value of a: 10

The value of b: 5

Multiply= 50

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Experiment 12. Write a c++ program to demonstrate the concept of multiple inheritance.

ALGORITHM:

Step 1: Start the program.

Step 2: Declare the base class student.
Step 3: Declare and define the function get() to get the student details.
Step 4: Declare the other class sports.
Step 5: Declare and define the function getsm() to read the sports mark.
Step 6: Create the class statement derived from student and sports.
Step 7: Declare and define the function display() to find out the total and average.
Step 8: Declare the derived class object,call the functions get(),getsm() and display().
Step 9: Stop the program.

#include<iostream.h>
#include<conio.h>

class student
{

protected:
int rno,m1,m2;

public:
void get()

{
cout<<"Enter the Roll no :";
cin>>rno;
cout<<"Enter the two marks :";
cin>>m1>>m2;

}
};
class sports
{

protected:
intsm; // sm = Sports mark

public:
voidgetsm()

{
cout<<"\nEnter the sports mark :";
cin>>sm;

}
};
classstatement:publicstudent,public sports
{

inttot,avg;
public:
void display()

{
tot=(m1+m2+sm);
avg=tot/3;
cout<<"\n\n\tRoll No : "<<rno<<"\n\tTotal : "<<tot;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

cout<<"\n\tAverage : "<<avg;
}

};
void main()
{

clrscr();
statementobj;
obj.get();
obj.getsm();
obj.display();
getch();

}

Output:

Enter the Roll no: 100

Enter two marks

90
80

Enter the Sports Mark: 90

Roll No: 100
Total : 260
Average: 86.66

Another Example for multiple inheritance:

#include<iostream>

Using namespace std;

Class student

{

Introll ;

Public:

Void getroll();

{

Cout<<”Enter the roll:”;

Cin>>roll;

}

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Void display()

{

Cout<<”The Roll is= “<<roll;

}

};

Class exam

{

Float marks1;

Public:

Void getmarks()

{

Cout<<”Enter the marks: “;

Cin>>marks1;

}

Void dispmarks()

{

Cout<<”\n the marks1 is: “<<marks1;

}

};

Class result: public student, public exam

{

Float marks2;

Public:

Void getmarks2()

{

Cout<<”\n enter the marks2”;

Cin>>marks2;

}

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Void dispmarks2()

{

Cout<<”\n The marks2 is: “<<marks2;

}

Intmain()

{

Result r;

r.getroll();

r.disproll();

r.getmark1();

r.dispmark1();

r.getmark2();

r.dispmark2();

return 0;

}

INPUT

Enter the roll is: 1

Enter the marks1: 98

Enter the marks2: 87

OUTPUT

The roll is: 1

The mark1 is: 98

The mark2 is: 87

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Experiment 13. Write a c++ program to demonstrate the concept of MULTILEVEL
inheritance.

In C++ programming, not only you can derive a class from the base class but you can also derive a
class from the derived class. This form of inheritance is known as multilevel inheritance.

class A
{
...
};
class B: public A
{
...
};
class C: public B
{
...
};

Here, class B is derived from the base class A and the class Cis derived from the derived class B.

Programme:

#include<iostream>

Using namespace std;

Class student

{

Int roll;

Public :

Void getdata()

{

Cout<<”Enter the roll is:”;

Cin>>roll;

}

Void disroll()

{

Cout<<”The roll is=”<<roll;

}

};

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Class exam:public student

{

Float marks;

Public:

Void marks()

{

Cout<<”Enter the marks1=”;

Cin>>marks1;

}

Void dismarks1()

{

Cout<< “The marks is=”<<marks1;

};

Class result:public exam

{

Float marks2;

Public:

Void getmarks2()

{

Cout<<”Enter the marks2 is=”;

Cin>> marks2;

}

Void dismarks2()

{

Cout<< “The marks2 is=”<<marks2;

}

};

Intmain()

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

{

result r;

r.getroll();

r.disroll();

r.getmarks1();

r.dismarks1();

r.getmarks2();

r.dismarks();

return 0;

}

INPUT

ENTER THE ROLL IS 80

ENTER THE MARKS1 IS 95

ENTER THE MARKS2 IS 90

OUTPUT

THE ROLL IS 80

THE MARKS1 IS 95

THE MARKS IS 90

Experiment 14. Write a c++ program to demonstrate the concept of HYBRID inheritance.

The method of combining any two or more forms of inheritance in single form is called hybrid
inheritance.

class base
{
.......
};
class derived1 : public base
{
.......
};
class derived2 : public base
{
.......
};
class dervied3 : public derived1,derived2
{

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

.......
};

#include<iosteam>

Using namespace std;

Class student

{

Protected:

Int roll;

Public:

Void getroll()

{

Cout<<”Enter the roll is:”;

Cin>>roll;

}

Void disroll()

{

Cout<<”The roll is =”<<roll;

}

Class test:public student

{

Protected:

Int marks1;

Public:

Void marks1()

{

Cout<<”Enter the marks1=”;

Cin>>marks1;

}

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Void dismarks1()

{

Cout<<”The marks1 is=”<<marks1;

}

};

Class score

{

Protected:

Int marks2;

Public:

Void getmarks2()

{

Cout<<”Enter the marks2=”;

Cin>>marks2;

}

Void dismarks2()

{

Cout<<”The marks2 is=”<<marks2;

}

};

Class result:publictest,public score

{

Protected:

Int t;

Public:

Void total()

{

t=marks1+marks2;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

}

Void distotal()

{

Cout<<”The total is=”<<t;

}

};

Intmain()

{

result r;

r.getroll();

r.getmarks1();

r.getmarks2();

r.total();

r.disroll();

r.getmarks1();

r.getmarks2();

r.distotal();

return 0;

}

INTPUT

ENTER THE ROLL IS 80

ENTER THE MARKS1 IS 90

ENTER THE MARKS2 IS 90

OUTPUT

THE ROLL IS 80

THE MARKS1 IS 90

THE MARKS2 IS 90

THE TOTAL IS 180

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Experiment15. An application needs to swap two integer and two float values using functions.
Approach the above problem using functions with same name.

#include<iostream.h>

#include<conio.h>

class test

{

inta,b;

floatc,d;

public:

void swap(intm,int n)

{

a=m;

b=n;

cout<<"\n Now the value of a&b are"<<a<<"and"<<b<<"respctivly\n";

}

void swap(float p,floatq,float r)

{

c=p;d=q;

cout<<"\n Now the value of c&d are"<<c<<"and"<<d<<"respctivly\n";

c=c+d;

d=c-d;

c=c-d;

cout<<"\n after swaping the value of e&d are"<<c<<"and"<<d<<"respctivly\n";

}

friend void show(test t2)

};

void show(test 2)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

{

cout<<"\n Now the swapping float and int values\n";

inte,f;

e=t2.a;

f=t2.b;

cout<<"\n after swapping the value of a& b are"<<e<<"and"<<f<<"respactivly";

floatx,y;

x=t2.c;

y=t2.d;

cout<<"\n After swapping the value of a&b are"<<x<<"and"<<y<<"respactivaly";

}

int main()

{

test t;

t.swap(10,20);

t.swap(20.02,40.09,50.66);

show(t);

getch();

return 0;

}

Output:=

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Experiment16. Write a program to calculate the number of objects created by your program.

#include<iostream.h>
#include<conio.h>
int count=0;
class test
{
public:
test()
{
count++;
cout<<"\n Object"<<cout<<"is created\n";
}

};
int main()
{
test t1;

{
test t1,t3;

}
getch();
return 0;
}

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

Experiment 17. Write a C++ program to achieve the following thing. A class contains 3 data
member of type integer. Use ++ and –- operator in a way so that whenever we use ++ with the
object of, all data member will incremented by one. Similarly, -- will work.

Initially when the object obj is declared, the value of data member i for object obj is 0 (constructor
initializes i to 0).

When ++ operator is operated on obj, operator function void operator++() is invoked which increases
the value of data member i to 1.

#include<iostream.h>
#include<conio.h>
class test
{
inta,b,c;
public:
voidgetdata()
{
a=10;
b=20;
c=30;
}
void operator++()
{
a=a+1;
b=b+1;
c=c+1;
}
void operator--()
{
a=a-1;
b=b-1;
c=c-1;
}
void display()
{
cout<<"A"<<a;
cout<<"B"<<b;
cout<<"C"<<c;
}
};
int main()
{ test t;
t.getdata();
++t;
t.display();
--t;
t.display();

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

getch();
return 0;
}

Experiment18. Write a program to add two complex number using operators overloading.

In this program, three objects of type Complex are created and user is asked to enter the real and
imaginary parts for two complex numbers which are stored in objects T1 and T2.Then statement
result = T1 -T2 is executed. This statement invokes the operator function Complex operator -
(Complex T2).When result = T1 + T2 is executed, T2 is passed as argument to the operator
function.In case of operator overloading of binary operators in C++ programming, the object on right
hand side of operator is always assumed as argument by compiler.

#include<iostream.h>
#include<conio.h>
class test
{
floatx,y;
public:
test()
{}
test(float real,float image)
{
x=real;
y=image;
}
test operator+(test);
void display(void);
};
test test::operator+(test p)
{
test temp;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

temp.x=x+p.x;
temp.y=y+p.y;
return temp;
}
void complex::display(void)
{
cout<<x<<"+i"<<y;
}
int main()
{
test t1,t2,t3;
t1=test(5.8,8.4);
t2=test(9.3,12.8);
t3=t1+t2;
cout<<"\n t1=";
t1.display();
cout<<"\n t2=";
t2.display();
cout<<"\n t3=";
t3.display();
getch();
return 0;
}

Experiment19. Write a C++ program to demonstrate the concept of Virtual Class.

ALGORITHM:

Step 1: Start the program.
Step 2: Declare the base class student.
Step 3: Declare and define the functions getnumber() and putnumber().
Step 4: Create the derived class test virtually derived from the base class student.
Step 5: Declare and define the function getmarks() and putmarks().
Step 6: Create the derived class sports virtually derived from the base class student.
Step 7: Declare and define the function getscore() and putscore().
Step 8: Create the derived class result derived from the class test and sports.
Step 9: Declare and define the function display() to calculate the total.
Step 10: Create the derived class object obj.
Step 11: Call the function get number(),getmarks(),getscore() and display().
Step 12: Stop the program.

PROGRAM:

#include<iostream.h>
#include<conio.h>

class student
{

intrno;
public:
voidgetnumber()
{

cout<<"Enter Roll No:";

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

cin>>rno;
}
voidputnumber()
{

cout<<"\n\n\tRoll No:"<<rno<<"\n";
}

};

classtest:virtual public student
{

public:
int part1,part2;
voidgetmarks()
{

cout<<"Enter Marks\n";
cout<<"Part1:";
cin>>part1;
cout<<"Part2:";
cin>>part2;

}
voidputmarks()
{

cout<<"\tMarks Obtained\n";
cout<<"\n\tPart1:"<<part1;
cout<<"\n\tPart2:"<<part2;

}
};

classsports:public virtual student
{

public:
int score;
voidgetscore()
{

cout<<"Enter Sports Score:";
cin>>score;

}
voidputscore()
{

cout<<"\n\tSports Score is:"<<score;
}

};

classresult:publictest,public sports
{

int total;
public:
void display()
{

total=part1+part2+score;
putnumber();
putmarks();

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

putscore();
cout<<"\n\tTotal Score:"<<total;

}
};

void main()
{

resultobj;
clrscr();
obj.getnumber();
obj.getmarks();
obj.getscore();
obj.display();
getch();

}

Output:

Enter Roll No: 200

Enter Marks

Part1: 90
Part2: 80
Enter Sports Score: 80

Roll No: 200
Marks Obtained
Part1: 90
Part2: 80
Sports Score is: 80
Total Score is: 250

Another example of virtual class.

#include<iostream.h>
#include<conio.h>
class student
{
intrno;
public:
voidgetnumber()
{
cout<<"Enter rollno";
cin>>rno;
}
voidputnumber()
{
cout<<"\n Roll no"<<rno;
}
};

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

classtest:virtual public student
{
public:
int part1,part2;
voidgetmark()
{
cout<<"\n enter marks:";
cout<<"\n part1:";
cin>>part1;
cout<<"\n part2";
cin>>part2;

}
voidputmarks()
{
cout<<"\n marks obtained:\n";
cout<<"\n part1:"<<part1;
cout<<"\n part2:"<<part2;
}
};
classsports:public virtual student
{
public:
int score;
voidgetscore()
{
cout<<"\n enter sports score";
cin>>score;
}
voidputscore()
{
cout<<"\n sports score is"<<score;
}};
classresult:publictest,public sports
{
int total;
public:
void display()
{
total=part1+part2+score;
putnumber();
putmarks();
putscore();
cout<<"\n total score is":<<total;
}
};
int main()
{
result t;
t.getnumber();
t.getmark();
t.getscore();
t.display();
getch();

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

return 0;
}

Experiment 20. Write a C++ program to show how Run Time Polymorphism is achieved in
C++.

#include<iostream.h>

#include<conio.h>

class shape

{

protected:

intx,y;

public:

voidgetshape()

{

cout<<"Enter length";

cin>>x;

cout<<"Enter depth";

cin>>y;

}

virtual void area()=0;

};

classtriangle:public shape

{

float c;

public:

void area()

{

c=0.5*x*y;

cout<<c;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Dept. of Computer Science and Engineering, UEM Jaipur

}

};

int main()

{

shape s;

triangle t;

s.getshape();

shape*ptr;

ptr=&s;

ptr->area();

ptr=&t;

ptr->area();

getch();

return 0;

}

	1.MCA204_DC& CN_LP.pdf
	2.MCA205_ISAD_LP.pdf
	3. MCA201_DS_LP.pdf
	4. MCA202_DBMS-I_LP.pdf
	5. MCA203_C++_LP.pdf
	6. MCA291_DS_Lab_LM.pdf
	7. MCA292_DBMS_LAB_LM.pdf
	8. MCA293_C++_LAB_LM.pdf

