
UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Operating System Subject Code-BCA301
Year: 2nd Year Semester: Third

Module
Number

Topics Number of Lectures

1

Introduction: 4L
1. Introduction to OS. Operating system

functions, evaluation of O.S
.

1

2. Evaluation of O.S., Different types of O.S. 1
3. batch, multi-programmed, time-sharing 1
4. Different types of O.S.: real-time,

distributed, parallel 1

2

System Structure: 3L
1. Computer system operation, I/O structure,

storage structure
2

2. O/S services, system calls.
1

Process Management:

4.
Processes: 3L

1. Concept of processes, process scheduling,
operations on processes 3

CPU scheduling: 5L
1. scheduling criteria, preemptive & non-

preemptive scheduling 2
2. scheduling algorithms (FCFS, SJF, RR,

priority), 3

6
Process  Synchronization: 4L

1. background,  critical  section  problem,
critical  region 2

2. Synchronization hardware, classical
problems of synchronization, semaphores. 2

7

Deadlocks: 5L
1. System model, deadlock characterization 1
2. Methods for handling deadlocks, deadlock

prevention
2

3. Deadlock avoidance, deadlock detection 2

9

Virtual Memory: 3L
1. Demand paging, performance

1
2. Page replacement, page replacement

algorithms (FCFS, LRU) 2

12

Disk Management: 3L

1. disk structure, disk scheduling (FCFS,
SSTF, SCAN,C-SCAN) ,disk reliability, 3

Protection & Security:



13

Protection & Security: 2L

1. Goals of protection, domain of protection,
Security problem, authentication 2

2. Worm and Viruses 1

Total Number Of Hours = 32

Faculty In-Charge HOD, CSE Dept.



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Assignment:
1. What is the job of operating system?

2. Explain the benefits of Multithreading?

3. Describe the process life cycle with proper diagram

4. Describe different type of Disk Scheduling.

5. What is fragmentation? Why we need fragmentation?

6. Describe the necessary conditions for Deadlock.

7. What do you mean by starvation explain with proper example?

8. Using “ preemptive shortest remaining time first” find out the Average waiting time.

Process Name Burst Time Arrival Time
P1 3 0
P2 6 2
P3 4 4
P4 5 6
P5 2 89. Difference between Anti-Virus and Firewall.



UNIVERSITY OF ENGINEERING & MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: Data Structures With C Subject Code-BCA302
Year: 2nd Year Semester: 3rd
Module Number Topics Number of Lectures

1

Introduction: 5L

1. Why we need data structure? Concepts of data
structures: a) Data and data structure b)
Abstract Data Type and Data Type.
Algorithms and programs, basic idea of
pseudo-code.

.

1

2. Algorithm efficiency and analysis, time and
space analysis of algorithms – order notations.

4

Linear data structure:

2
Array: 2L

1. Different representations – row major, column
major. Sparse matrix - its application and
usage. Array representation of polynomials.

2

3
Linked List: 7L

1. Singly linked list, circular linked list, doubly
linked list, linked list representation of
polynomial and applications.

7

4

Stack and Queue: 6L
1. Stack and its implementations (using array,

using linked list), applications.
2

2. Queue, circular queue, dequeue.
Implementation of queue- both linear and
circular (using array, using linked list),
applications.

4

5

Recursion: 3L
1. Principles of recursion – use of stack,

differences between recursion and iteration,
tail recursion.

1

2. Applications - The Tower of Hanoi, Eight
Queens Puzzle. 2

Non Linear data structure:

6

Trees: 8L
1. Basic terminologies, forest, tree

representation (using array, using linked list).
Binary trees - binary tree traversal (pre-, in-,
post- order), threaded binary tree (left, right,
full) - non-recursive traversal algorithms
using threaded binary tree, expression tree.

4

2. Binary search tree- operations (creation,
insertion, deletion, searching). Height
balanced binary tree – AVL tree (insertion,
deletion with examples only). B- Trees –
operations (insertion, deletion with examples
only

4

7

Graphs: 5L
1. Graph definitions and concepts

(directed/undirected graph, weighted/un-
weighted edges, sub-graph, degree, cut-
vertex/articulation point, pendant node,
clique, complete graph, connected
components – strongly connected component,

1



weakly connected component, path, shortest
path, isomorphism). Graph
representations/storage implementations –
adjacency matrix, adjacency list, adjacency
multi-list.

2. Graph traversal and connectivity – Depth-first
search (DFS), Breadth-first search (BFS) –
concepts of edges used in DFS and BFS (tree-
edge, back-edge, cross-edge, forward-edge),
applications.

2

3. Minimal spanning tree – Prim’s, Kruskal and
Dijkstraalgorithm (basic idea of greedy
methods).

2

8

Sorting, Searching and Hashing Technique:

Sorting Algorithms: 6L
Bubble sort and its optimizations, insertion sort, shell
sort, selection sort, merge sort, quick sort, heap sort
(concept of max heap, application – priority queue),
radix sort.

6

Searching: 2L
Sequential search, binary search, interpolation search.

2
Hashing: 2L
Hashing functions, collision resolution techniques. 2

Total Number Of Hours = 46

Faculty In-Charge HOD, CSE Dept.

Assignment:
Module-1(Introduction):

1. DefineAbstractData Type, big oh, big omega, theta notationoftimecomplexity.
2. Findthetotalfrequency count of following code.

for send=1ton do
forreceive=1tosenddo

forack=2toreceivedo
message=send-(receive+ack)
ack=ack-1
send=send+1

end
end

end

Module-2 (Linear data Structure):
1. Write a function to insert an element after 4th position in an array.
2. Write a function to insert an element before 4th position in a single linked list
3. Write a function to insert an element after a particular data element 4 in a doubly linked list.
4. Write a function to concatenate two circular linked lists.
5. Write a function to implement stack and queue using linked list.
6. Convert infix to prefix and postfix.

A+B+C-D/E*R(S*T)/W+G
7. Define tail and tree recursion, explain them with example.



UNIVERSITY OF ENGINEERING & MANAGEMENT,JAIPUR
Lecture-wise Plan

Module-3(Non-linear data structure):
1. Why AVL tree is required?
2. Construct the AVL tree.

B,D,A,G,H,R,J,T,C,Y,X
3. Write a short note on B-Tree.
4. Write an algorithm of DFS and Dijkstra algorithm.

Module-4(Sorting, Searching and Hashing):
1. Explain quick and radix sort with example.
2. Why binary search is better than linear search.
3. Write down different techniques of collision resolution techniques.



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Graphics & Internet Subject Code- BCA303
Year: 2nd Year Semester: Third
Module Number Topics Number of

Lectures

1

Introduction: 7L
1. Computer graphics
2. Raster scan and random scan

2L
3L

2
Output Primitives 10L

1. Co-ordinate systems, Homogenous co-
ordinate Systems.

5L

2. Line drawing algorithm, Circle
drawing algorithm, circle drawing
algorithms.

5L

3

Two Dimension Transformations 9L
1. Rotation 3L
2. Scaling 3L
3. Sharing 3L

4

Two Dimensional Viewing 6L
1. Cliping operations 3L
2. Projections 3L

5
Three Dimensional Object Representation 8L

1. Bezier curves and surfaces 3L
2. B-Spline curves and surface 3L
3. Shadowing 2L

6
Transmission & Internet Protocol 6L

1. Addressing in Internet, IP and
Domains

3L

2. Servers and Type of Connectivity 3L

7

Web Publishing 10L
1. HTTP, Browsers
2. Introduction to HTML
3. Java Script
4. Uses of Java applet with in HTML files
5. Asp

2L
2L
2L
2L

8
Electronic Mail services 2L

1. Email
2. Protocols

1L
1L

9
Other 3L

1. Internet Security.
2. Introductions to E-commarce
3. Electronic Payment Standared and

Methods.

1L
1L
1L

Total= 63L

Faculty In-Charge HOD, CSE Dept.



UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Assignment:
Module-1(Introduction):

1. What is CGI?
2. What is computer Graphics?
3. Define vector generation?
4. Write short notes on: a. (a) Reflection (b) Shearing transformation.

Module-2 (Output Primitives):
1. Write a short note on 3D primitives?
2. Write a short note on interpolating polygons.?

Module-3(Two Dimension Transformations):
1. Perform 45o rotation of a triangle A(0, 0), B(1, 1), and C(5, 2) (a) about the origin and (b)

about P(−1, −1).
2. Find the form of the matrix for reflection about a line L with slope m and y intercept (0, b).

Module-4(Two Dimensional Viewing):
1. Show that the order in which the transformations are performed is important by the

transformation of the triangle A(1, 0), B(0, 1), and C(1, 1), by (a) rotating 45o about the origin
and then translating the the direction of vector I and (b) translating and then rotating.

Module-5(Three Dimensional Object Representation):
1. When playing the finished game you will find that it is hard to catch eggs since it is difficult to

perceive the exact 3D position of an egg and where it will land. Implement the method
drawPath() in the CEgg class, which draws a line from the centre of each egg to the ground. A
line is coloured blue (0.3, 0.3, 1.0) if the distance to the ground is larger than 3 units, orange
(1.0, 0.5, 0.3) if the distance is between 1.5 and 3 units and yellow (1.0, 1.0, 0.3) otherwise.
Visibility of the lines is toggled by pressing the ‘h’ key (already implemented). After
completing this exercise your programs should look similar to the screen shot on the right:

2.
Module-6(Transmission & Internet Protocol):

1. What is Packet switching?
2. Explain datagram packet switching

Module-7(Web Publishing):

3. How do you create tables using HTML? Explain with example.

Module-8(Electronic Mail services):

1. Write short notes on the following: (1) spyware (2) Cookie (3) Information privacy

Module-9(Other):

1. Write short note on the following: (1) Communication media (2) Network Types (3)
DNS



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Mathematics of Computing Subject Code-BCA301
Year: 2nd Year Semester: Third

Module Number Topics Number of Lectures
(26)

Propositional logic 3

Logicalequivalence 3

Permutation and combinations 3
Generating functions 1
Recurrence relations 1
GraphTheoryConceptsGraphs,sub-
graphs,cyclicgraphs

5

Trees,spanningtrees,binarytrees 4
Algorithms- Prim’s,Kruskal 3

Isomorphism,homomorphism 3

Assignment:
Propositional Logic and Logical Equivalence:

1. Construct truth table for   .P Q R p    

2. Obtain the true table of (P˄Q) V (~P˄R) V (Q˄R).
3. Find Adjacency and Incidence matrix of the graph

4. prove using truth table
(i)   p ↔ q  ≡  (p q)  (q p)
(ii)  p ↔ q ≡ (pq)  (~p  ~q)

5. Show following is a tautology



UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Mathematics of Computing Subject Code-BM301
Year: 2nd Year Semester: Third

(a).  ((p→q)Λ(q→r)) →(p→r)      (b).  (~qΛ(p→q))→~p

Permutation and Combination:

6. Out of 7 consonants and 4 vowels, how many words of 3 consonants and 2 vowels can be
formed?

7. In a group of 6 boys and 4 girls, four children are to be selected. In how many different ways
can they be selected such that at least one boy should be there?

8. From a group of 7 men and 6 women, five persons are to be selected to form a committee so
that at least 3 men are there on the committee. In how many ways can it be done?

9. In how many different ways can the letters of the word 'OPTICAL' be arranged so that the
vowels always come together?

10. In how many different ways can the letters of the word 'CORPORATION' be arranged so that
the vowels always come together?

11. In how many different ways can the letters of the word 'MATHEMATICS' be arranged so that
the (MAT) word comes together?

Generating Functions and recurrence Relation:

12. Determine whether the sequence an = 3n for every non zero integer n is a solution of the

recurrence relation 1 22n n na a a   for n = 2, 3, 4…

13. What is the generation function for the sequence 1, 1, 1, 1, 1, 1.

Graph Theory & Tree:

14. Prove every tree has either one or two centres.
15. Find the number of vertices, edges, loops, isolated vertices, parallel vertices in the following

graph.

16. Obtain the centre, radius and diameter in the following graph

17. Write Adjacency matrix  of simple graph G



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Mathematics of Computing Subject Code-BCA301
Year: 2nd Year Semester: Third

18. Write Incidence matrix  of simple graph G

19. Use BFS algorithm to find a spanning tree for the graph G shown below:

20. Minimum cost spanning tree using Algorithms (A) Prim’s,   (B) Kruskal

21. Use DFS algorithm to find a spanning tree for the graph G shown below:



UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Mathematics of Computing Subject Code-BM301
Year: 2nd Year Semester: Third

22. Obtain the centre, radius and diameter in the following



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Management & Accounting Subject Code: BBA301
Year: 2nd Year Semester: Third
Module Number Topics Number of Lectures

1
(Financial

Accounting)

I. Introduction to Financial Accounting 10L

1. Concepts – Conventions – Importance
and scope. 4L

2. Accounting Principles- Double entry
system – Brief overview of accounting
cycle

3L

3. Introduction to Balance Sheet and
Income Statement

3L

II. Accounting for Fixed assets 4L

1. Introduction – Valuation of Fixed assets 2L
2. Principles and norms of standard

accounting treatment (AS 10)
2L

III.Depreciation 2L

1. Methods – Accounting – Importance 2L

IV. Revenue Recognition 4L

1. Introduction -Definitions -Sale of Goods
-Rendering of Services -The Use by
Others of Enterprise Resources Yielding
Interest-Royalties and Dividends

2L

2. Effect of Uncertainties on Revenue
Recognition - accounting standard (AS
9)

2L

V. Provisions 2L

1. Doubtful Debt – Bad Debt – Importance
– Provisions – Reservations.

1L

2. Accounting Treatments 1L
VI. Financial Statements 2L

1. Introduction to Corporate Final
Accounts as per Schedule VI of
Companies Act 1956Income Statement.

1L

2. Interpretation of Annual Reports. 1L

2
(Cost accounting)

I. Cost Accounting 6L

1. Key terms, cost concepts,
classifications, total cost components.

2L

2. Cost accounting and management
accounting.

2L

3. Cost accounting and financial
accounting.

2L



II. Elements of Cost 6L

1. Materials (Purchasing, Storekeeping,
Issue, Pricing & Control)

2L

2. Labour (Costing & Control) 2L

3. Overheads (Analysis, Distribution and
Control, Treatment of Special Items).

2L

Total Number Of Hours = 36L

Faculty In-Charge HOD, MBA Dept.



UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Course Description

Title of Course: Internet & Computer Graphics Lab
Course Code: BCA393
L-T-P scheme: 0-0-3                                                                                      Course Credit: 2

Objectives:
This is an introductory course on principles of computer graphics. We will consider both 2D

and 3D graphics. Broadly speaking, we will look at raster scan graphics including line and circle
drawing, polygon filling, anti-aliasing algorithms, clipping, hidden-line and hidden surface
algorithms including ray tracing and, of course, rendering - the art of making photo realistic
pictures with local and global illumination models.
Lab course of two hours per week will supplement the theory. Implementation of basic and
advanced algorithms will be done in OpenGL and C++. Basic knowledge of C/C++
programming is mandatory.
The course will involve four hours of contact including lectures, tutorials and lab classes.
Students are strongly encouraged to participate actively in class discussions.

Learning Outcomes:
1. Using OpenGL for Graphics

2. Programming User-interface issues
3. Concepts of 2D & 3D object representation
4. Implementation of various scan & clipping algorithms
5. 2D modeling
6. Implementation of illumination model for rendering 3D objects
7. Visibility detection & 3D viewing
8. Implementation of a project based on learned concepts.

Course Contents:
Exercises that must be done in this course are listed below:
Exercise No.1: A program to draw a line using Digital Differential Analyzer (DDA)
Exercise No. 2: A program to draw a line using Bresenham's Line Algorithm (BLA) for lines with
slopes negative and less than 1.
Exercise No. 3:A program to draw a line using Bresenham's Line Algorithm (BLA) for lines with
slopes positive and less than 1.
Exercise No. 4:A program to draw a line using Bresenham's Line Algorithm (BLA) for lines with
slopes positive and greater than 1.
Exercise No. 5:A program to draw a line using Bresenham's Line Algorithm (BLA) for lines with
slopes negative and greater than 1.
Exercise No. 6: A program to draw a circle using Bresenham's Circle Algorithm.
Exercise No. 7: A program to draw a circle using MidPoint Circle Algorithm
Exercise No. 8: A program to draw a circle using Trigonometric Method.
Exercise No. 9: A program to draw a circle using Polynomial Method.
Exercise No. 10: A program to draw an ellipse using MidPoint Ellipse Algorithm.
Exercise No. 11: A program to draw an ellipse using Trigonometric Method.
Exercise No. 12: A program to draw an ellipse using Polynomial Method.
Exercise No. 13: A program to fill different types of geometric shapes using Flood Fill.Algo.
Exercise No.14: A program to fill different types of geometric shapes using Boundary Fill Algo.
Exercise No. 15: A program to draw a C-Curve of nth order.

Text Book:
1. Donald Hearn and M. Pauline Baker, “Computer Graphics C Version”, Pearson

Education,2003.
2. Andleigh, P. K and Kiran Thakrar, “Multimedia Systems and Design”, PHI, 2003.

Recommended Systems/Software Requirements:
1. Turbo c for compile and run program.



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Programming Lab (Data Structure with C) Course Code: BCA392
L-T-P scheme: 0-0-3 Course Credit: 2

Objectives:
1. Develop problem solving ability using Programming.
2. Develop ability to design and analyse algorithms.
3. Introduce students to data abstraction and fundamental data structures.
4. Develop ability to design and evaluate Abstract Data Types and data structures.
5. Apply data structure concepts to various examples and real life applications

Learning Outcomes:
The course will use hands on practice and applying the knowledge gained in theory course to
different day to day real world applications..Upon the completion of data structure and algorithm
practical course, the student will be able to:
 Understand and implement different type of data structure techniques
 Analyze the hashing method.
 Implement different type of sorting searching techniques.

Course Contents:
Exercises that must be done in this course are listed below:
Exercise No.1: Implementation of array operations
Exercise No. 2: Implementation of linked lists: inserting, deleting a linked list.
Exercise No. 3: Stacks and Queues: adding, deleting elements
Exercise No. 4: Evaluation Problem:Evaluation of infix to postfix expressions on stack.
Exercise No. 5: Circular Queue: Adding & deleting elements
Exercise No. 6: Implementation of stacks using linked lists, Polynomial addition, Polynomial
multiplication
Exercise No. 7: Sparse Matrices: Multiplication, addition.
Exercise No. 8: Recursive and Non-recursive traversal of Trees
Exercise No. 9: Threaded binary tree traversal. AVL tree implementation
Exercise No. 10: Application of sorting and searching algorithms

Text Book:
1. Yashavant Kanetkar, Abduln A.P.J. Kalam,” Data Structure Through C”,2nd edition, BPB

Publications
2. Seymour Lipschutz,“Data Structures”,Revised First edition,McGraw Hill Education.

Recommended Systems/Software Requirements:
1. Intel based desktop PC with minimum of 166 MHZ or faster processor with at least 64 MB RAM

and 100 MB free disk space.
2. Turbo C or TC3 complier in Windows XP or Linux Operating System.

Exercise No.1: Implementation of array operations
Description:
An array is a collection of similar data elements. These data elements have the same data type.The
elements of the array are stored in consecutive memory locations and are referenced by an
index(also known as the subscript). The subscript is an ordinal number which is used to identify an
element of the array.There are a number of operations that can be performed on arrays. These
operations include:
Traversing an array
2) Inserting an element in an array

Searching an element in an array
Deleting an element from an array
Merging two arrays
Sorting an array in ascending or descending order
Aim: Write a program to insert a number at a given location in an array.



Algorithm:
The algorithm INSERT will be declared as INSERT(A,N,POS,VAL). The arguments are
Step1: A, the array in which the element has to be inserted
Step2: N, the number of elements in the array
Step3: POS, the position at which the element has to be inserted
Step4: VAL, the value that has to be inserted

Program:
#include <stdio.h>
#include <conio.h>
int main()
{
int i, n, num, pos, arr[10];
clrscr();
printf("\n Enter the number of elements in the array : ");
scanf("%d", &n);
for(i=0;i<n;i++)
{
printf("\n arr[%d] = ", i);
scanf("%d", &arr[i]);

}
printf("\n Enter the number to be inserted : ");
scanf("%d", &num);
printf("\n Enter the position at which the number has to be added : scanf("%d", &pos);
for(i=n–1;i>=pos;i––)
arr[i+1] = arr[i];

arr[pos] = num;
n = n+1;
printf("\n The array after insertion of %d is : ", num);
for(i=0;i<n;i++)
printf("\n arr[%d] = %d", i, arr[i]);
getch();
return 0;

}
Input:
Enter the number of elements in the array : 5
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5
Enter the number to be inserted : 0
Enter the position at which the number has to be added : 3

Output:
The array after insertion of 0 is :
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 0
arr[4] = 4
arr[5] = 5

Aim:Write a program to delete a number from a given location in an array.
Algorithm:
The algorithm DELETE will be declared as DELETE(A, N,POS). The arguments are:
Step1:A, the array from which the element has to be deleted
Step2: N, the number of elements in the array
Step3: POS, the position from which the element has to be deleted



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Program
#include <stdio.h>
#include <conio.h>
int main()
{
int i, n, pos, arr[10];
clrscr();
printf("\n Enter the number of elements in the array : ");
scanf("%d", &n);
for(i=0;i<n;i++)
{
printf("\n arr[%d] = ", i);
scanf("%d", &arr[i]);

}
printf("\nEnter the position from which the number has to be deleted : ");
scanf("%d", &pos);
for(i=pos; i<n–1;i++)
arr[i] = arr[i+1];

n––;
printf("\n The array after deletion is : ");
for(i=0;i<n;i++)
printf("\n arr[%d] = %d", i, arr[i]);

getch();
return 0;

}
Input:
Enter the number of elements in the array : 5
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5
Enter the position from which the number has to be deleted : 3
Output:
The array after deletion is :
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 5

Lab assignment:
1) Merging two arrays
2) Sorting an array in ascending or descending order

Exercise No. 2: Implementation of linked lists: inserting, deleting a linked list.

Description:
A singly linked list is the simplest type of linked list in which every node contains some data anda
pointer to the next node of the same data type. By saying that the node contains a pointer to the next
node, we mean that the node stores the address of the next node in sequence.
A new node is added into an already existing linked list like
Case 1: The new node is inserted at the beginning.
Case 2: The new node is inserted at the end.
Case 3: The new node is inserted after a given node.
Case 4: The new node is inserted before a given node.
Before we describe the algorithms to perform insertions in all these four cases, let us first discuss an
important term called OVERFLOW. Overflow is a condition that occurs when AVAIL = NULL or



no free memory cell is present in the system. When this condition occurs, the program must give an
appropriate message.
A node is deleted from an already existing linked list like
Case 1: The first node is deleted.
Case 2: The last node is deleted.
Case 3: The node after a given node is deleted.
Before we describe the algorithms in all these three cases, let us first discuss an important
termCalled UNDERFLOW. Underflow is a condition that occurs when we try to delete a node from
a linked list that is empty. This happens when START = NULL or when there are no more nodes to
delete.
Note that when we delete a node from a linked list, we actually have to free the memory occupied by
that node. The memory is returned to the free pool so that it can be used to store other programs and
data. Whatever be the case of deletion, we always change the AVAIL pointer so that it points to the
address that has been recently vacated.
Algorithm:
Insertion(A) Inserting a Node Before a Given Node in a Linked List

Step 1: IF AVAIL=NULL
Write OVERFLOWGo to Step 12
[END OF IF]
NEW_NODE
Step 2: SET = AVAIL
Step 3: SET AVAIL=AVAIL NEXT
Step 4: SET NEW_NODE ->DATA=VAL
Step 5: SET PTR=START
Step 6: SET PREPTR=PTR
Step 7: Repeat Steps8and9while PTR DATA != NUM
Step 8: SET PREPTR=PTR
Step 9: SET PTR=PTR->NEXT
[END OF LOOP]
Step 10:PREPTR->NEXT = NEW_NODE
Step 11: SET NEW_NODE-> NEXT=PTR
Step 12: EXIT
Insertion(B) Inserting a Node After a Given Node in a Linked List
Step 1: IF AVAIL=NULL
Write OVERFLOW Go to Step 12
[END OF IF]
Step 2: SET = AVAIL->NEW_NODE
Step 3: SET AVAIL=AVAIL->NEXT
Step 4: SET DATA=VAL->NEW_NODE
Step 5: SET PTR=START
Step 6: SET PREPTR=PTR
Step 7: Repeat Steps8and9while PREPTR->DATA!= NUM
Step 8: SET PREPTR=PTR
Step 9: SET PTR=PTR->NEXT
[END OF LOOP]
Step 10: PREPTR->NEXT =NEW_NODE
Step 11: SET NEW_NODE->NEXT=PTR
Step 12: EXIT

Deletion
Step 1: IF START=NULL
Write UNDERFLOW
Go to Step 10
[END OF IF]
Step 2: SET PTR=START
Step 3: SET PREPTR=PTR
Step 4: Repeat Steps5and6while PREPTR DATA != NUM
Step 5: SET PREPTR=PTR
Step 6: SET PTR=PTR->NEXT
[END OF LOOP]
Step 7: SET TEMP=PTR



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Step 8: SET PREPTR->NEXT=PTR->NEXT
Step 9: FREE TEMP
Step 10:EXIT

Aim:Write a program to create a linked list and perform insertions and deletions Write
functions to sort and finally delete the entire list at once.
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <malloc.h>
struct node
{
int data;
struct node *next;

};
struct node *start = NULL;
struct node *create_ll(struct node *);
struct node *display(struct node *);
struct node *insert_beg(struct node *);
struct node *insert_end(struct node *);
struct node *insert_before(struct node *);
struct node *insert_after(struct node *);
struct node *delete_beg(struct node *);
struct node *delete_end(struct node *);
struct node *delete_node(struct node *);
struct node *delete_after(struct node *);
struct node *delete_list(struct node *);
struct node *sort_list(struct node *);
int main(int argc, char *argv[]) {
int option;
do
{
printf(“\n\n *****MAIN MENU *****”);
printf(“\n 1:  Create a list”);
printf(“\n 2:  Display the list”);
printf(“\n 3:  Add a node at the beginning”);
printf(“\n 4:  Add a node at the end”);
printf(“\n 5:  Add a node before a given node”);
printf(“\n 6:  Add a node after a given node”);
printf(“\n 7:  Delete a node from the beginning”);

printf(“\n 8:  Delete a node from the end”);
printf(“\n 9:  Delete a given node”);
printf(“\n 10: Delete a node after a given node”);
printf(“\n 11: Delete the entire list”);
printf(“\n 12: Sort the list”);
printf(“\n 13: EXIT”);
printf(“\n\n Enter your option : “);

scanf(“%d”, &option);
switch(option)
{

case 1: start = create_ll(start);
printf(“\n LINKED LIST CREATED”);

break;
case 2: start = display(start);

break;
case 3: start = insert_beg(start);



break;
case 4: start = insert_end(start);

break;
case 5: start = insert_before(start);

break;
case 6: start = insert_after(start);

break;
case 7: start = delete_beg(start);

break;
case 8: start = delete_end(start);

break;
case 9: start = delete_node(start);

break;
case 10: start = delete_after(start);

break;
case 11: start = delete_list(start);
printf(“\n LINKED LIST DELETED”);

break;
case 12: start = sort_list(start);

break;
}

}while(option !=13);
return 0;
struct node *create_ll(struct node *start)
struct node *new_node, *ptr;
printf(“\n Enter -1 to end”);
printf(“\n Enter the data : “);
scanf(“%d”, &num);
while(num!=-1)
new_node = (struct node*)malloc(sizeof(struct node));
new_node -> data=num;

if(start==NULL)
{

new_node -> next = NULL;
start =

new_node;
}
else
{
ptr=start;
while(ptr->next!=NULL)
ptr=ptr->next;
ptr->next =

new_node;
new_node->next=NULL;

}
printf(“\n Enter the data : “);
scanf(“%d”, &num);

}
return start;

}
struct node *display(struct node *start)
{
struct node *ptr;
ptr = start;
while(ptr != NULL)
{
printf(“\t %d”, ptr -> data);



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

ptr = ptr -> next;
}
return start;

}
struct node *insert_beg(struct node *start)
{
struct node *new_node;
int num;
printf(“\n Enter the data : “);
scanf(“%d”, &num);
new_node = (struct node *)malloc(sizeof(struct node));
new_node -> data = num;
new_node -> next = start;
start = new_node;
return start;

}
struct node *insert_end(struct node *start)
{
struct node *ptr, *new_node;
int num;
printf(“\n Enter the data : “);
scanf(“%d”, &num);
new_node = (struct node *)malloc(sizeof(struct node));
new_node -> data = num;
new_node -> next = NULL;
ptr = start;
while(ptr -> next != NULL)
ptr = ptr -> next;
ptr -> next = new_node;
return start;

}
struct node *insert_before(struct node *start)
{
struct node *new_node, *ptr, *preptr;
int num, val;
printf(“\n Enter the data : “);
scanf(“%d”, &num);
printf(“\n Enter the value before which the data has to be inserted : “);
scanf(“%d”, &val);
new_node = (struct node *)malloc(sizeof(struct node));
new_node -> data = num;
ptr = start;
while(ptr -> data != val)
{
preptr = ptr;
ptr = ptr -> next;

}
preptr -> next = new_node;
new_node -> next = ptr;
return start;

}
struct node *insert_after(struct node *start)
{
struct node *new_node, *ptr, *preptr;
int num, val;
printf(“\n Enter the data : “);
scanf(“%d”, &num);



printf(“\n Enter the value after which the data has to be inserted : “);
scanf(“%d”, &val);
new_node = (struct node *)malloc(sizeof(struct node));
new_node -> data = num;
ptr = start;
preptr = ptr;
while(preptr -> data != val)
{
preptr = ptr;
ptr = ptr -> next;
}

preptr -> next=new_node;
new_node -> next = ptr;
return start;
struct node *delete_beg(struct node *start)
struct node *ptr;
ptr = start;
start = start -> next;
free(ptr);

return start;
struct node *delete_end(struct node *start)
struct node *ptr, *preptr;
ptr = start;
while(ptr -> next != NULL)
{
preptr = ptr;
ptr = ptr -> next;
}

preptr -> next = NULL;
free(ptr);

return start;
struct node *delete_node(struct node *start)
struct node *ptr, *preptr;
int val;
printf(“\n Enter the value of the node which has to be deleted : “);
scanf(“%d”, &val);
ptr = start;
if(ptr -> data == val)
{

start = delete_beg(start);
return start;
}
else
{

while(ptr -> data != val)
{
preptr = ptr;
ptr = ptr -> next;

}
preptr -> next = ptr -> next;
free(ptr);
return start;

}
}
struct node *delete_after(struct node *start)
{
struct node *ptr, *preptr;
int val;



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

printf(“\n Enter the value after which the node has to deleted : “);
scanf(“%d”, &val);
ptr = start;
preptr = ptr;
while(preptr -> data != val)
{
preptr = ptr;
ptr = ptr -> next;

}
preptr -> next=ptr -> next;
free(ptr);
return start;

}
struct node *delete_list(struct node *start)
{

struct
node *ptr;

if(start!=NULL){
ptr=start;
while(ptr != NULL)
{
printf(“\n %d is to be deleted next”, ptr -> data);
start =

delete_beg(ptr);
ptr =

start;
}

}

return start;
}
struct node *sort_list(struct node *start)
{
struct node *ptr1, *ptr2;
int temp;
ptr1 = start;
while(ptr1 -> next != NULL)
{
ptr2 = ptr1 -> next;
while(ptr2 != NULL)
{
if(ptr1 -> data > ptr2 -> data)
{

temp = ptr1 -> data;
ptr1 -> data = ptr2 -> data;
ptr2 -> data = temp;

}
ptr2 = ptr2 -> next;

}
ptr1 = ptr1 -> next;
}

return start;  // Had to be added
}
Input:
3
4
5



Output:
*****MAIN MENU *****
1: Create a list
2: Display the list
3: Add a node at the beginning
4: Add the node at the end
5: Add the node before a given node
6: Add the node after a given node
7: Delete a node from the beginning
8: Delete a node from the end
9: Delete a given node
10: Delete a node after a given node
11: Delete the entire list
12: Sort the list
13: Exit

Enter your option : 1
Enter the data :3
Enter your option : 2
3
Enter your option : 3
Enter the data : 4
Enter your option : 6
Add after given node:4
Enter the data : 5
Enter your option : 2
4 5 3
Enter your option : 10
Delete after a given node:5
Enter your option : 2
4 5

Lab Assignment:
1) WAP to implement circular linked list.
2) WAP to insert and delete an element in a doubly linked list(all cases).

Exercise No. 3: Stacks and Queues: adding, deleting elements
Description:
A stack is a linear data structure which uses the same principle, i.e., the elements in a stack are added
and removed only from one end, which is called theTOP. Hence, a stack is called a LIFO (Last-In
First-Out) datastructure, as the element that was inserted last is the first one to be taken out.
A stack supports three basic operations: push, pop, and peek. The push operation adds an element to the
top of the stack and the pop operation removes the element from the top of the stack. The peek
operation returns the value of the topmost element of the stack.

Aim: Write a program to perform Push, Pop, and Peek operations on a stack.
Algorithm:
Insertion:
Step 1: IF TOP=MAX-1

PRINT OVERFLOW
Goto Step 4
[END OF IF]

Step 2: SET TOP=TOP+1
Step 3: SET STACK[TOP]=VALUE
Step 4: END

Deletion:



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Step 1: IF TOP=NULL
PRINT UNDERFLOW

Goto Step 4
[END OF IF]

Step 2: SET VAL=STACK[TOP]
Step 3: SET TOP=TOP-1
Step 4: END

Peek:
Step 1: IF TOP=NULL

PRINT STACK IS EMPTY
Goto Step 3

Step 2: RETURN STACK[TOP]
Step 3: END

Program:
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#define MAX 3 // Altering this value changes size of stack created
int st[MAX], top=-1;
void push(int st[], int val);
int pop(int st[]);
int peek(int st[]);
void display(int st[]);
int main(int argc, char *argv[]) {
int val, option;
do
{
printf("\n *****MAIN MENU*****");
printf("\n 1. PUSH");
printf("\n 2. POP");
printf("\n 3. PEEK");
printf("\n 4. DISPLAY");
printf("\n 5. EXIT");
printf("\n Enter your option: ");
scanf("%d", &option);
switch(option)
{
case 1:
printf("\n Enter the number to be pushed on stack: ");
scanf("%d", &val);
push(st, val);
break;

case 2:
val = pop(st);
if(val != -1)
printf("\n The value deleted from stack is: %d", val);
break;

case 3:
val = peek(st);
if(val != -1)
printf("\n The value stored at top of stack is: %d", val);
break;

case 4:
display(st);
break;



}
}while(option != 5);
return 0;

}
void push(int st[], int val)
{
if(top == MAX-1)
{
printf("\n STACK OVERFLOW");

}
else
{
top++;
st[top] = val;

}
}
int pop(int st[])
{
int val;
if(top == -1)
{
printf("\n STACK UNDERFLOW");
return -1;

}
else
{
val = st[top];
top--;
return val;

}
}
void display(int st[])
{
int i;
if(top == -1)
printf("\n STACK IS EMPTY");
else
{
for(i=top;i>=0;i--)
printf("\n %d",st[i]);
printf("\n"); // Added for formatting purposes

}
}
int peek(int st[])
{
if(top == -1)
{
printf("\n STACK IS EMPTY");
return -1;

}
else
return (st[top]);

}
Output
*****MAIN MENU*****
1. PUSH
2. POP
3. PEEK



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

4. DISPLAY
5. EXIT
Enter your option : 1
Enter the number to be pushed on stack : 500
Enter your option : 1
Enter the number to be pushed on stack : 700
Enter your option : 4
700 500
Enter your option : 3
Enter your option : 4
700
Enter your option : 2
Enter your option : 4
500
Description:
A queue is a FIFO (First-In, First-Out) data structure in which the element that is inserted first is the
first one to be taken out.The elements in a queue are added at one end called the REAR and
removed from the other end called the FRONT. Queues can be implemented by using either arrays
or linked lists.
Aim: Write a program to perform Insertion, Deletion, and Peek operations on a queue.
Algorithm:
Insertion:
Step 1: IF REAR=MAX-1

Write OVERFLOW
Goto step 4
[END OF IF]

Step 2: IF FRONT=-1 and REAR=-1
SET FRONT=REAR =ELSE
SET REAR=REAR+1

[END OF IF]
Step 3: SET QUEUE[REAR]=NUM
Step 4: EXIT
Deletion:
Step 1: IF FRONT=-1OR FRONT>REAR

Write UNDERFLOW
ELSE

SET VAL=QUEUE[FRONT]
SET FRONT=FRONT+1

[END OF IF]
Step 2: EXIT
Program:
#include <stdio.h>
#include <conio.h>
#define MAX 10 // Changing this value will change length of array
int queue[MaX];
int front = -1, rear = -1;
void insert(void);
int delete_element(void);
int peek(void);
void display(void);
int main()
{
int option, val;
do
{
printf(“\n\n ***** MAIN MENU *****”);
printf(“\n 1. Insert an element”);
printf(“\n 2. Delete an element”);
printf(“\n 3. Peek”);
printf(“\n 4. Display the queue”);



printf(“\n 5. EXIT”);
printf(“\n Enter your option : “);
scanf(“%d”, &option);
switch(option)
{
case 1:
insert();
break;

case 2:
val = delete_element();
if (val != -1)
printf(“\n The number deleted is : %d”, val);
break;

case 3:
val = peek();
if (val != -1)
printf(“\n The first value in queue is : %d”, val);
break;

case 4:
display();
break;

}
}while(option != 5);
getch();
return 0;

}
void insert()
{
int num;
printf(“\n Enter the number to be inserted in the queue : “);
scanf(“%d”, &num);
if(rear == MAX-1)
printf(“\n OVERFLOW”);
else if(front == -1 && rear == -1)
front = rear = 0;
else
rear++;
queue[rear] = num;

}
int delete_element()
{
int val;

if(front == -1 || front>rear)
{
printf(“\n UNDERFLOW”);
return -1;
}
else
{
val = queue[front];
front++;
if(front > rear)
front = rear = -1;
return val;
}

int peek()

if(front==-1 || front>rear)
{
printf(“\n QUEUE IS EMPTY”);
return -1;
}
else
{



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

return queue[front];
}

void display()
int i;
printf(“\n”);
if(front == -1 || front > rear)
printf(“\n QUEUE IS EMPTY”);
else
{
for(i = front;i <= rear;i++)
printf(“\t %d”, queue[i]);
}

Output:
***** MAIN MENU *****"
1. Insert an element
2. Delete an element
3. Peek
4. Display the queue
5. Exit
Enter your option : 1
Enter the number to be inserted in the queue : 50

Exercise No. 4: Evaluation Problem: Evaluation of infix to postfix expressions on stack.
Description:
Infix, postfix, and prefix notations are three different but equivalent notations of writing algebraic
expressions. For example, if an expression is written as A+B in infix notation, the same expression can
be written as AB+ in postfix notation. The order of evaluation of a postfix expression is always from
left to right. Even brackets cannot alter the order of evaluation. The expression (A+B)*C can be written
as: [AB+]*C =>AB+C* in the postfix notation.
Aim:Write a program to convert a given infix expression into its postfix Equivalent,
Implement the stack using an array.
Algorithm:
Step 1: Add)to the end of the infix expression
Step 2: Push(onto the stack
Step 3: Repeat until each character in the infix notation is scanned
IF a(is encountered, push it on the stack
IF an operand (whetheradigit oracharacter) is encountered, add it to thepostfix expression.
IF a)is encountered, then

a. Repeatedly pop from stack and add it to the postfix expression until a
(is encountered.

b. Discard the (.That is, remove the(from stack and do notadd it to the postfix expression
IF an operator is encountered, then

a. Repeatedly pop from stack and add each operator (popped from the stack) to thepostfix expression
which has the same precedence orahigher precedence than )

b. Push the operator to the stack
[END OF IF]
Step 4: Repeatedly pop from the stack and add it to the postfix expression until the stack is empty
Step 5: EXIT
Program:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define MAX 20
char stack[MAX];
int top=1;
char pop(); /*declaration of  pop function*/
void push(char item); /*declaration of  push function*/
int prcd(char symbol) /*checking the precedence*/
{

switch(symbol) /*assigning values for symbols*/



{
case '+':
case '-': return 2;
break;
case '*':
case '/': return 4;
break;
case '^':return 6;
break;
case '(':
case ')':
case '#':return 1;

break;
}

}
int(isoperator(char symbol)) /*assigning  operators*/
{

switch(symbol)
{

case '+':
case '*':

case '-':
case '/':
case '^':
case '(':
case ')':return 1;
break;
default:return 0;

}
}

/*converting infix to postfix*/
void convertip(char infix[],char postfix[])
{
int i,symbol,j=0;
stack[++top]='#';
for(i=0;i<strlen(infix);i++)
{
symbol=infix[i];
if(isoperator(symbol)==0)
{

postfix[j]=symbol;
j++;

}
else
{

if(symbol=='(')
push(symbol); /*function call  for pushing elements into the stack*/
else if(symbol==')')
{

while(stack[top]!='(')
{

postfix[j]=pop();
j++;

}
pop(); /*function call  for popping elements into the stack*/

}
else
{



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

if(prcd(symbol)>prcd(stack[top]))
push(symbol);
else
{

while(prcd(symbol)<=prcd(stack[top]))
{

postfix[j]=pop();
j++;

}
push(symbol);

}/*end of else loop*/
}/*end of else loop*/

} /*end of else loop*/
}/*end of for loop*/

While (stack[top]!='#')
{

postfix[j]=pop();
j++;

}
postfix[j]='\0'; /*null terminate string*/

}
/*main program*/
void main()
{

char infix[20],postfix[20];
printf("enter the valid infix string \n");
gets(infix);
convertip(infix,postfix); /*function call   for converting infix to postfix */
printf("the corresponding postfix string is:\n");

puts(postfix);
}

/*push operation*/
void push(char item)
{

top++;
stack[top]=item;

}
/*pop operation*/
char pop()
{

char a;
a=stack[top];
top--;
return a;

}
Input:
A+B*C
Output:
ABC*+
Exercise No. 5: Circular Queue: Adding & deleting elements
Description:
In the circular queue, the first index comes right after the last index.The circular queue will be

full only when FRONT=0 and REAR=Max–1. A circular queue is implemented in the same manner as a
linear queue is implemented.
Aim: Write a program to implement a circular queue using array.
Algorithm:
Insertion:



Step 1: IF FRONT = and Rear=MAX-1
Write OVERFLOW
Goto step 4

[End OF IF]

Step 2:
IF FRONT=-1 and REAR=-1

SET FRONT=REAR =0
ELSE IF REAR=MAX-1and FRONT !=0

SET REAR =0
ELSE

SET REAR=REAR+1
[END OF IF]
Step 3: SET QUEUE[REAR]=VAL
Step 4: EXIT
Deletion:
Step 1: IF FRONT=-1

Write UNDERFLOW
Goto Step 4

[END of IF]
Step 2: SET VAL=QUEUE[FRONT]
Step 3: IF FRONT=REAR

SET FRONT=REAR=-1
ELSE

IF FRONT=MAX -1
SET FRONT =0

ELSE
SET FRONT=FRONT+1

[END of IF]
[END OF IF]

Step 4: EXIT

Program:
#include <stdio.h>
#include <conio.h>
#define MAX 10
int queue[MAX];
int front=–1, rear=–1;
void insert(void);
int delete_element(void);
int peek(void);
void display(void);
int main()
{
int option, val;
clrscr();
do
{
printf("\n ***** MAIN MENU *****");
printf("\n 1. Insert an element");
printf("\n 2. Delete an element");
printf("\n 3. Peek");
printf("\n 4. Display the queue");
printf("\n 5. EXIT");
printf("\n Enter your option : ");
scanf("%d", &option);
switch(option)
{
case 1:
insert();
break;

case 2:
val = delete_element();
if(val!=–1)



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

printf("\n The number deleted is : %d", val);
break;

case 3:
val = peek();
if(val!=–1)
printf("\n The first value in queue is : %d",     break;

case 4:
display();
break;

}
}while(option!=5);
getch();
return 0;

}
void insert()
{
int num;
printf("\n Enter the number to be inserted in the queue : ");
scanf("%d", &num);
if(front==0 && rear==MAX–1)
printf("\n OVERFLOW");

else if(front==–1 && rear==–1)
{
front=rear=0;
queue[rear]=num;

}
else if(rear==MAX–1 && front!=0)
{
rear=0;
queue[rear]=num;

}
else
{
rear++;
queue[rear]=num;

}
}
int delete_element()
{
int val;
if(front==–1 && rear==–1)
{
printf("\n UNDERFLOW");
return –1;
}

val = queue[front];
if(front==rear)
front=rear=–1;

else
{
if(front==MAX–1)
front=0;

else
front++;

}
return val;

}
int peek()
{
if(front==–1 && rear==–1)
{
printf("\n QUEUE IS EMPTY");
return –1;



}
else
{
return queue[front];

}
}
void display()
{
int i;
printf("\n");
if (front ==–1 && rear= =–1)
printf ("\n QUEUE IS EMPTY");

else
{
if(front<rear)
{
for(i=front;i<=rear;i++)
printf("\t %d", queue[i]);

}
else
{
for(i=front;i<MAX;i++)
printf("\t %d", queue[i]);

for(i=0;i<=rear;i++)
printf("\t %d", queue[i]);

}
}

}
Output
***** MAIN MENU *****
1. Insert an element
2. Delete an element
3. Peek
4. Display the queue
5. EXIT
Enter your option : 1
Enter the number to be inserted in the queue : 25
Enter your option : 2
The number deleted is : 25
Enter your option : 3
QUEUE IS EMPTY
Enter your option : 5

Exercise No. 6: Implementation of Polynomial addition, Polynomial
multiplicationusing linked lists.
Description:
A polynomial is represented in the memory using a linked list. Consider a polynomial 6x3+9x2+7x+1.
Every individual term in a polynomial consists of two parts, a coefficientand a power. Here, 6, 9, 7,
and 1 are the coefficients of the terms that have 3, 2, 1, and 0 as theirpowers respectively.
Every term of a polynomial can be represented as a node of the linked list

Aim:Write a program to add two polynomials.
Program:
#include <stdio.h>
typedef struct pnode
{
float coef;
int exp;
struct pnode *next;
}p;
p *getnode();

6   3 9   2 7  1 1  0   x



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

void main()
{
p *p1,*p2,*p3;

p *getpoly(),*add(p*,p*);

void display(p*);
clrscr();
printf(“\n enter first polynomial”);
p1=getpoly();
printf(“\n enter second polynomial”);
p2=getpoly();
printf(“\nthe first polynomial is”);
display(p1);
printf(“\nthe second polynomial is”);
display(p2);
p3=add(p1,p2);
printf(“\naddition of two polynomial is :\n”);
display(p3);

}
p *getpoly()
{
p *temp,*New,*last;
int flag,exp;
char ans;
float coef;
temp=NULL;
flag=1;
printf(“\nenter the polynomial in descending order of exponent”);
do
{
printf(“\nenter the coef & exponent of a term”);
scanf(“%f%d”,&coef,&exp);
New=getnode();
if(New==NULL)
printf(“\nmemory cannot be allocated”);
New->coef=coef;
New->exp=exp;
if(flag==1)
{
temp=New;
last=temp;
flag=0;
}
else
{
last->next=New;
last=New;
}
printf(“\ndou want to more terms”);
ans=getch();
}
while(ans==’y');
return(temp);
}
p *getnode()
{
p *temp;
temp=(p*) malloc (sizeof(p));
temp->next=NULL;
return(temp);
}



void display(p*head)
{
p*temp;
temp=head;
if(temp==NULL)
printf(“\npolynomial empty”);
while(temp->next!=NULL)
{
printf(“%0.1fx^%d+”,temp->coef,temp->exp);
temp=temp->next;
}
printf(“\n%0.1fx^%d”,temp->coef,temp->exp);
getch();
}
p*add(p*first,p*second)
{
p *p1,*p2,*temp,*dummy;
char ch;
float coef;
p *append(int,float,p*);
p1=first;
p2=second;
temp=(p*)malloc(sizeof(p));
if(temp==NULL)
printf(“\nmemory cannot be allocated”);
dummy=temp;
while(p1!=NULL&&p2!=NULL)
{
if(p1->exp==p2->exp)
{
coef=p1->coef+p2->coef;
temp=append(p1->exp,coef,temp);
p1=p1->next;
p2=p2->next;
}
else
if(p1->expexp)
{
coef=p2->coef;
temp=append(p2->exp,coef,temp);
p2=p2->next;
}
else
if(p1->exp>p2->exp)
{
coef=p1->coef;
temp=append(p1->exp,coef,temp);
p1=p1->next;
}
}
while(p1!=NULL)
{
temp=append(p1->exp,p1->coef,temp);
p1=p1->next;
}
while(p2!=NULL)
{
temp=append(p2->exp,p2->coef,temp);
p2=p2->next;
}
temp->next=NULL;
temp=dummy->next;
free(dummy);
return(temp);



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

}
p*append(int Exp,float Coef,p*temp)
{
p*New,*dum;
New=(p*)malloc(sizeof(p));
if(New==NULL)
printf(“\ncannot be allocated”);
New->exp=Exp;
New->coef=Coef;
New->next=NULL;
dum=temp;
dum->next=New;
dum=New;
return(dum);
}
Input:
A^2+2A+2
A^3+3A+3
Output:
A^3+A^2+5A+5
Lab Assignment:

1) Write a program to multiply two polynomials.

Exercise No. 7: Sparse Matrices: Multiplication, addition.
Description:
Sparse matrix is a matrix that has large number of elements with a zero value. In order to efficiently
utilize the memory, specialized algorithms and data structures that take advantage of the sparse
structure should be used. If we apply the operations using standard matrix structures and algorithms
to sparse matrices, then the execution will slow down and the matrix will consume large amount of
memory. Sparse data can be easily compressed, which in turn can significantly reduce memory
usage.
Aim: Write a program to multiply sparse matrices.
Program:
#include<stdio.h>
#include<conio.h>
#include<alloc.h>
#define MAX1 3
#define MAX2 3
#define MAXSIZE 20
#define TRUE 1
#define FALSE 2
struct sparse
{
int *sp ;
int row ;
int *result ;
} ;
void initsparse ( struct sparse * ) ;
void create_array ( struct sparse * ) ;
int count ( struct sparse ) ;
void display ( struct sparse ) ;
void create_tuple ( struct sparse*, struct sparse ) ;
void display_tuple ( struct sparse ) ;
void prodmat ( struct sparse *, struct sparse, struct sparse ) ;
void searchina ( int *sp, int ii, int*p, int*flag ) ;
void searchinb ( int *sp, int jj, int colofa, int*p, int*flag ) ;
void display_result ( struct sparse ) ;



void delsparse ( struct sparse * ) ;
void main( )
{
struct sparse s[5] ;
int i ;
clrscr( ) ;
for ( i = 0 ; i<= 3 ; i++ )
initsparse ( &s[i] ) ;
create_array ( &s[0] ) ;
create_tuple ( &s[1], s[0] ) ;
display_tuple ( s[1] ) ;
create_array ( &s[2] ) ;
create_tuple ( &s[3], s[2] ) ;
display_tuple ( s[3] ) ;
prodmat ( &s[4], s[1], s[3] ) ;
printf ( "\nResult of multiplication of two matrices: " ) ;
display_result ( s[4] ) ;
for ( i = 0 ; i<= 3 ; i++ )
delsparse ( &s[i] ) ;
getch( ) ;
}
/* initialises elements of structure */
void initsparse ( struct sparse *p )
{
p -> sp = NULL ;
p -> result = NULL ;
}
/* dynamically creates the matrix */
void create_array ( struct sparse *p )
{
int n, i ;
/* allocate memory */
p -> sp = ( int * ) malloc ( MAX1 * MAX2 * sizeof ( int ) ) ;
/* add elements to the array */
for ( i = 0 ; i< MAX1 * MAX2 ; i++ )
{
printf ( "Enter element no. %d: ", i ) ;
scanf ( "%d", &n ) ;
* ( p -> sp + i ) = n ;
}
}
/* displays the contents of the matrix */
void display ( struct sparse s )
{
int i ;
/* traverses the entire matrix */
for ( i = 0 ; i< MAX1 * MAX2 ; i++ )
{
/* positions the cursor to the new line for every new row */
if ( i % 3 == 0 )
printf ( "\n" ) ;
printf ( "%d\t", * ( s.sp + i ) ) ;
}
}
/* counts the number of non-zero elements */



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

int count ( struct sparse s )
{
int cnt = 0, i ;
for ( i = 0 ; i< MAX1 * MAX2 ; i++ )
{
if ( * ( s.sp + i ) != 0 )
cnt++ ;
}
return cnt ;
}
/* creates an array that stores information about non-zero elements */
void create_tuple ( struct sparse *p, struct sparse s )
{
int r = 0 , c = -1, l = -1, i ;
/* get the total number of non-zero elements */
p -> row = count ( s ) + 1 ;
/* allocate memory */
p -> sp = ( int * ) malloc ( p -> row * 3 * sizeof ( int ) ) ;
/* store information about total no. of rows, cols, and non-zero values */
* ( p -> sp + 0 ) = MAX1 ;
* ( p -> sp + 1 ) = MAX2 ;
* ( p -> sp + 2 ) = p -> row - 1 ;
l = 2 ;
/* scan the array and store info. about non-zero values in the 3-tuple */
for ( i = 0 ; i< MAX1 * MAX2 ; i++ )
{
c++ ;
/* sets the row and column values */
if ( ( ( i % 3 ) == 0 ) && ( i != 0 ) )
{
r++ ;
c = 0 ;
}
/* checks for non-zero element, row, column and non-zero value is assigned to the matrix */
if ( * ( s.sp + i ) != 0 )
{
l++ ;
* ( p -> sp + l ) = r ;
l++ ;
* ( p -> sp + l ) = c ;
l++ ;
* ( p -> sp + l ) = * ( s.sp + i ) ;
}
}
}
/* displays the contents of the matrix */
void display_tuple ( struct sparse s )
{
int i, j ;
/* traverses the entire matrix */
printf ( "\nElements in a 3-tuple: " ) ;
j = ( * ( s.sp + 2 ) * 3 ) + 3 ;
for ( i = 0 ; i< j ; i++ )
{



/* positions the cursor to the new line for every new row */
if ( i % 3 == 0 )
printf ( "\n" ) ;
printf ( "%d\t", * ( s.sp + i ) ) ;
}
printf ( "\n" ) ;
}
/* performs multiplication of sparse matrices */
void prodmat ( struct sparse *p, struct sparse a, struct sparse b )
{
int sum, k, position, posi, flaga, flagb, i , j ;
k = 1 ;
p -> result = ( int * ) malloc ( MAXSIZE * 3 * sizeof ( int ) ) ;
for ( i = 0 ; i< * ( a.sp + 0 * 3 + 0 ) ; i++ )
{
for ( j = 0 ; j< * ( b.sp + 0 * 3 + 1 ) ; j++ )
{
/* search if an element present at ith row */
searchina ( a.sp, i, &position, &flaga ) ;
if ( flaga == TRUE )
{
sum = 0 ;
/* run loop till there are element at ith row in first 3-tuple */
while ( * ( a.sp + position * 3 + 0 ) == i )
{
/* search if an element present at ith col. in second 3-tuple */
searchinb ( b.sp, j, * ( a.sp + position * 3 + 1 ), &posi, &flagb ) ;
/* if found then multiply */
if ( flagb == TRUE )
sum = sum + * ( a.sp + position * 3 + 2 ) * * ( b.sp + posi * 3 + 2 ) ;
position = position + 1 ;
}
/* add result */
if ( sum != 0 )
{
* ( p -> result + k * 3 + 0 ) = i ;
* ( p -> result + k * 3 + 1 ) = j ;
* ( p -> result + k * 3 + 2 ) = sum ;
k = k + 1 ;
}
}
}
}
/* add total no. of rows, cols and non-zero values */
* ( p -> result + 0 * 3 + 0 ) = * ( a.sp + 0 * 3 + 0 ) ;
* ( p -> result + 0 * 3 + 1 ) = * ( b.sp + 0 * 3 + 1 ) ;
* ( p -> result + 0 * 3 + 2 ) = k - 1 ;
}
/* searches if an element present at iith row */
void searchina ( int *sp, int ii, int *p, int *flag )
{
int j ;
*flag = FALSE ;
for ( j = 1 ; j<= * ( sp + 0 * 3 + 2 ) ; j++ )
{



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

if ( * ( sp + j * 3 + 0 ) == ii )
{
*p = j ;
*flag = TRUE ;
return ;
}
}
}
/* searches if an element where col. of first 3-tuple is equal to row of second 3-tuple */
void searchinb ( int *sp, int jj, int colofa, int *p, int *flag )
{
int j ;
*flag = FALSE ;
for ( j = 1 ; j<= * ( sp + 0 * 3 + 2 ) ; j++ )
{
if ( * ( sp + j * 3 + 1 ) == jj && * ( sp + j * 3 + 0 ) == colofa )
{
*p = j ;
*flag = TRUE ;
return ;
}
}
}
/* displays the contents of the matrix */
void display_result ( struct sparse s )
{
int i ;
/* traverses the entire matrix */
for ( i = 0 ; i< ( * ( s.result + 0 + 2 ) + 1 ) * 3 ; i++ )
{
/* positions the cursor to the new line for every new row */
if ( i % 3 == 0 )
printf ( "\n" ) ;
printf ( "%d\t", * ( s.result + i ) ) ;
}
}
/* deallocates memory */
void delsparse ( struct sparse *s )
{
if ( s -> sp != NULL )
free ( s -> sp ) ;
if ( s -> result != NULL )
free ( s -> result ) ;
}
Input:
First matrices
[0 2 3]
[4 0 0]
[0 0 5]
Second matrices
[0 0 7]
[0 8 0]
[0 9 6]
Output:
[0 43 18]



[0  0 28]
[0 45 30]
Lab assignment:

1) Write a program to add two sparse matrices.

Exercise No. 8: Recursive and Non-recursive traversal of Trees
Description:
A binary tree is a data structure that is defined as a collection of elements called nodes. In a binary
tree, the topmost element is called the root node, and each node has 0, 1, or at the most 2 children.
A node that has zero children is called a leaf node or a terminal node. Every node contains a data
element, a left pointer which points to the left child, and a right pointer which points to the right
child. The root element is pointed by a'root' pointer. If root = NULL, then it means the tree is empty.
Aim: Write a program to implement a binary tree using recursion.
Program:
#include<stdio.h>
#include<conio.h>
#include<alloc.h>
struct node
{
int data;
struct node *left,*right;
};
struct node *root;
void insert(int x)
{

struct node *p,*previous,*current;
p=(struct node *)malloc(sizeof(struct node));
if(p==NULL)
{

printf("\n Out of memory");
}
p->data=x;
p->left=NULL;
p->right=NULL;
if(root=NULL)
{

root=p;
return;

}
previous=NULL;
current=root;
while(current!=NULL)
{

previous=current;
if(p->data<current->data)

current=current->left;
else

current=current->right;
}

if(p->data<previous->data)
previous->left=p;

else
previous->right=p;

}
void inorder(struct node *t)
{

if (t!=NULL)
{
inorder(t->left);
printf("\n %5d",t->data);
inorder (t->right);
}

}



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

void del(int x)
{

int tright=0,tleft=0;
struct node *ptr=root;
struct node *parent=root;
struct node *t1=root;
struct node *temp=root;
while(ptr!=NULL&& ptr->data!=x)
{

parent=ptr;
if (x<ptr->data)

ptr=ptr->left;
else

ptr=ptr->right;
}
if (ptr==NULL)
{

printf("\n Delete element not found");
return ;

}
else if(t1->data==x && (t1->left ==NULL || t1->right==NULL))

if(t1->left==NULL)
t1=t1->right;

else
t1=t1->left;

else if (ptr->left==NULL)
if (x<parent->data)

parent->left=ptr->right;
else

parent->right=ptr->right;
else if (ptr->right==NULL)

if (x<parent->data)
parent->left=ptr->left;

else
parent->right=ptr->left;

else
{
temp=ptr;
parent=ptr;
if((ptr->left)>=(ptr->right))
{

ptr=ptr->left;
while(ptr->right!=NULL)
{

tright=1;
parent=ptr;
ptr=ptr->right;

}
temp->data=ptr->data;
if(tright)

parent->right=ptr->left;
else

parent->left=ptr->left;
}

else
{
ptr=ptr->right;
while (ptr->left!=NULL)
{

tleft=1;
parent=ptr;
ptr=ptr->left;

}



temp->data=ptr->data;
if(tleft)

parent->left=ptr->right;
else

parent->right=ptr->right;
}
free(ptr);

}
}

void main()
{
int op,n,srchno;
root=(struct node *)malloc(sizeof(struct node));
root->data=30;
root->right=root->left=NULL;
clrscr();
do
{

printf("\n 1.Insertion");
printf("\n 2.Deletion");
printf("\n 3.Inorder");
printf("\n 4.Quit");
printf("\n Enter your choice\n");
scanf("%d",&op);

switch (op)
{
case 1: printf("\n Enter the element to insert\n");

scanf("%d",&n);
insert(n);
break;

case 2: printf("\n Enter the element to be deleted\n");
scanf("%d",&srchno);
del(srchno);
break;

case 3: printf("\n The inorder elements are\n");
inorder(root);
getch();
break;

default: exit(0);
}

}while(op<4);
getch();

}
Input:
1 2 3
Output:
Enter the element to insert1
Enter the element to insert2
Enter the element to insert3
The inorder elements are
2 1 3
Lab assignment:

1) Write a program to implement a binary tree without using recursion

Exercise No. 9: AVL tree implementation
Description:
An AVL tree is the same as that of a binary search tree but with a little difference.
In its structure, it stores an additional variable called theBalance Factor. Thus, every node has a
balance factor associated with it. The balance factor of a node is calculated by subtracting the height
of its right sub-tree from the height of its left sub-tree. A binary search tree in which every node has



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

a balance factor of –1, 0, or 1 is said to be height balanced. A node with any other balance factor is
considered to be unbalanced and requires rebalancing of the tree.
Balance factor = Height (left sub-tree) – Height (right sub-tree)

Aim: Write a program to implement AVL tree
Program:
#include <stdio.h>
typedef enum { FALSE ,TRUE } bool;
struct node
{
int val;
int balance;
struct node *left_child;
struct node *right_child;

};
struct node* search(struct node *ptr, int data)
{
if(ptr!=NULL)

if(data < ptr -> val)
ptr = search(ptr -> left_child,data);
else if( data > ptr -> val)
ptr = search(ptr -> right_child, data);

return(ptr);
}
struct node *insert (int data, struct node *ptr, int *ht_inc)
{
struct node *aptr;

struct node *bptr;
if(ptr==NULL)
{
ptr = (struct node *) malloc(sizeof(struct node));
ptr -> val = data;
ptr -> left_child = NULL;
ptr -> right_child = NULL;
ptr -> balance = 0;
*ht_inc = TRUE;
return (ptr);
}

if(data < ptr -> val)
{
ptr -> left_child = insert(data, ptr -> left_child, ht_inc);
if(*ht_inc==TRUE)
{
switch(ptr -> balance)
{

case -1: /* Right heavy */

ptr -> balance = 0;
*ht_inc = FALSE;
break;

case 0: /* Balanced */

ptr -> balance = 1;

break;
case 1: /* Left heavy */



aptr = ptr -> left_child;
if(aptr -> balance == 1)
{

printf(“Left to Left Rotation\n”);

ptr -> left_child= aptr -> right_child;

aptr -> right_child = ptr;

ptr -> balance = 0;

aptr -> balance=0;
ptr = aptr;
}

else
{
printf(“Left to right rotation\n”);

bptr = aptr -> right_child;
aptr -> right_child = bptr -> left_child;

bptr -> left_child = aptr;

ptr -> left_child = bptr -> right_child;

bptr -> right_child = ptr;

if(bptr -> balance == 1 )

pt
r -> balance = -1;

else

pt
r -> balance = 0;

if(bptr -> balance == -1)

aptr -> balance = 1;

else

aptr -> balance = 0;



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

bptr -> balance=0;

ptr = bptr;
}

*ht_inc = FALSE;
}

}
}

if(data > ptr -> val)
{

ptr -> right_child = insert(info, ptr -> right_child, ht_inc);
if(*ht_inc==TRUE)
{
switch(ptr -> balance)
{

case 1: /* Left heavy */
ptr -> balance = 0;
*ht_inc = FALSE;
break;

case 0: /* Balanced */
ptr -> balance = -1;
break;

case -1: /* Right heavy */

aptr = ptr -> right_child;
if(aptr -> balance == -1)

{
printf(“Right to Right Rotation\n”);

ptr -> right_child= aptr -> left_child;
aptr -> left_child = ptr;

ptr -> balance = 0;
aptr -> balance=0;

ptr = aptr;
}

else
{

printf(“Right to Left Rotation\n”);
bptr = aptr -> left_child;

aptr -> left_child = bptr -> right_child;
bptr -> right_child = aptr;
ptr -> right_child = bptr -> left_child;

bptr -> left_child = pptr;
if(bptr -> balance == -1)
ptr -> balance = 1;

else
ptr -> balance = 0;

if(bptr -> balance == 1)
aptr -> balance = -1;

else
aptr -> balance = 0;

bptr -> balance=0;
ptr = bptr;

}/*End of else*/
*ht_inc = FALSE;

}
}



}
return(ptr);

}
void display(struct node *ptr, int level)
{
int i;
if ( ptr!=NULL )
{
display(ptr -> right_child, level+1);
printf(“\n”);
for (i = 0; i < level; i++)
printf(“ “);

printf(“%d”, ptr -> val);
display(ptr -> left_child, level+1);

}
}
void inorder(struct node *ptr)
{
if(ptr!=NULL)
{
inorder(ptr -> left_child);
printf(“%d “,ptr -> val);
inorder(ptr -> right_child);

}
}
main()
{
bool ht_inc;
int data ;
int option;
struct node *root = (struct node *)malloc(sizeof(struct node));

root = NULL;
while(1)
{
printf(“1.Insert\n”);
printf(“2.Display\n”);
printf(“3.Quit\n”);
printf(“Enter your option : “);
scanf(“%d”,&option);
switch(choice)

{
case 1:
printf(“Enter the value to be inserted : “);
scanf(“%d”, &data);
if( search(root,data) == NULL )
root = insert(data, root, &ht_inc);

else
printf(“Duplicate value ignored\n”);
break;

case 2:
if(root==NULL)
{

printf(“Tree is empty\n”);
continue;
}

printf(“Tree is :\n”);
display(root, 1);

printf(“\n\n”);
printf(“Inorder Traversal is: “);
inorder(root);

printf(“\n”);
break;

case 3:
exit(1);



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

default:
printf(“Wrong option\n”);

}
}

}
Input:
6 11 2 4 3 5
Output:
2 3 5 4 6 11

Lab Assignment:
1) Write a program to implement AVL tree

Exercise No. 10: Application of sorting and searching algorithms
Description:
To search an element in an array is known as searching and to sort the element in an ascending and
descending order is known as sorting.Two type of searching linear and binary. Mainly five type of
sorting like bubble ,insertion ,selection, merge and quick sort.here we mainly focus on binary search
and merge and quick sort.
Aim:Implement Binary search without using recursion
Program:

#include<stdio.h>

int main(){

int a[10],i,n,m,c=0,l,u,mid;

printf("Enter the size of an array: ");
scanf("%d",&n);

printf("Enter the elements in ascending order: ");
for(i=0;i<n;i++){

scanf("%d",&a[i]);
}

printf("Enter the number to be search: ");
scanf("%d",&m);

l=0,u=n-1;
while(l<=u){

mid=(l+u)/2;
if(m==a[mid]){

c=1;
break;

}
else if(m<a[mid]){

u=mid-1;
}
else

l=mid+1;
}
if(c==0)

printf("The number is not found.");
else

printf("The number is found.");

return 0;
}

OUTPUT:
Enter the size of an array: 5



Enter the element in ascending order: 2  4  8  9  12
Enter the number to be  search: 3
The number is not found.

Aim: Implement Merge Sort using Divide and Conquer approach
Program:
#include<stdio.h>
#include<conio.h>
void merge(int [],int ,int ,int );
void part(int [],int ,int );
int main()
{
int arr[30];
int i,size;
printf("\n\t------- Merge sorting method -------\n\n");
printf("Enter total no. of elements : ");
scanf("%d",&size);
for(i=0; i<size; i++)
{

printf("Enter %d element : ",i+1);
scanf("%d",&arr[i]);

}
part(arr,0,size-1);
printf("\n\t------- Merge sorted elements -------\n\n");
for(i=0; i<size; i++)
printf("%d ",arr[i]);
getch();
return 0;

}

void part(int arr[],int min,int max)
{
int mid;
if(min<max)
{

mid=(min+max)/2;
part(arr,min,mid);
part(arr,mid+1,max);
merge(arr,min,mid,max);

}
}

void merge(int arr[],int min,int mid,int max)
{

int tmp[30];
int i,j,k,m;
j=min;
m=mid+1;
for(i=min; j<=mid && m<=max ; i++)
{

if(arr[j]<=arr[m])



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

{
tmp[i]=arr[j];
j++;

}
else
{

tmp[i]=arr[m];
m++;

}
}
if(j>mid)
{

for(k=m; k<=max; k++)
{

tmp[i]=arr[k];
i++;

}
}
else
{

for(k=j; k<=mid; k++)
{

tmp[i]=arr[k];
i++;

}
}
for(k=min; k<=max; k++)

arr[k]=tmp[k];
}
Output:
Enter the no of elements:7
7 8 9 4 5 3 1
The unsorted list is: 7 8 9 4 5 3 1
The sorted list is
1 3 4 5 7 8 9
Aim:Implement Quick Sort using Divide and Conquer approach
Program:
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#define MAX 6000

void quick(int x[],int lb,int ub);
int partition(int x[],int lb,int ub);

void main()
{

int i,n,x[MAX];
time_t start,end;
clrscr();



printf("Enter the number of elements: ");
scanf("%d",&n);

for(i=0;i<n;i++)
x[i]=rand();

printf("\nEntered array is \n");
for(i=0;i<n;i++)

printf("%d ",x[i]);

start=time(NULL);
quick(x,0,n-1);
end=time(NULL);
printf("Sorted array is as shown:\n");
for(i=0;i<n;i++)

printf("%d ",x[i]);
printf("\nTIME for %d elements : %f", n, difftime(end,start));
getch();

}

void quick(int x[],int lb,int ub)
{

int j;
if(lb<ub)
{

printf("\n");
j=partition(x,lb,ub);
quick(x,lb,j-1);
quick(x,j+1,ub);

}
}

int partition(int x[],int lb,int ub)
{

int a,down,up,temp;
a=x[lb];
up=ub;
down=lb;
while(down<up)
{

while(x[down]<=a&&down<ub)
down++;

while(x[up]>a)
up--;

if(down<up)
{

temp=x[down];
x[down]=x[up];
x[up]=temp;

}



UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

}
x[lb]=x[up];
x[up]=a;
return up;

}
Output:
Enter the number of elements:5

Entered array is
41   18467     6334     26500     19169

Sorted array is as shown
41   6334       18467     19169     26500


	1.BCA301_OS_LP.pdf
	2.BCA302_DSA_LP.pdf
	3.BCA303_GI_LP.pdf
	4.BCA_BM301_MATH COMPUTING_LP.pdf
	5.BBA301_FA_LP.pdf
	6.BCA393_IC_Lab_LM.pdf
	7.CS392_DSA_Lab_LM.pdf

