
UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Economics for Engineers Subject Code: HU501
Year: 3rd Year Semester: Fifth
Module
Number

Topics Number of
Lectures

1

1. Economic Decisions Making – Overview, Problems, Role, Decision
making process.

2.EngineeringCosts&Estimation– Fixed, Variable, Marginal & Average
Costs, Sunk Costs ,Opportunity Costs, Recurring And Non recurring Costs,
Incremental Costs, Cash Costs vs Book Costs, Life-Cycle Costs; Types Of
Estimate, Estimating Models-Per-Unit Model, Segmenting Model, Cost
Indexes, Power-Sizing Model, Improvement &Learning Curve, Benefits.

2L

5L

3L

2

3. Cash Flow, Interest and Equivalence: Cash Flow Diagrams, Categories &
Computation, Time Value of Money, Debtre payment, Nominal & Effective
Interest.

4. Cash Flow & Rate Of Return Analysis–Calculations, Treatment of Salvage
Value, Annual Cash Flow Analysis, Analysis Periods; Internal Rate Of
Return, Calculating Rate of Return, Incremental Analysis; Best Alternative
Choosing An Analysis Method, Future Worth Analysis, Benefit-Cost Ratio
Analysis, Sensitivity And Break even Analysis. Economic Analysis In The
Public Sector – Quantifying And Valuing Benefits & drawbacks.

2L
2L
2L

3

5.Inflation And Price Change Definition, Effects, Causes, Price Change with

Indexes, Types of Index, Composite vs Commodity Indexes, Use of Price

Indexes In Engineering Economic Analysis, Cash Flows that inflate at

different Rates.

6. Present Worth Analysis: End-Of Year Convention, View point Of

Economic Analysis Studies, Borrowed Money View point, Effect Of Inflation

& Deflation, Taxes, Economic Criteria, Applying Present Worth Techniques,

Multiple Alternatives.

7. Uncertainty In Future Events-Estimates and Their Use in Economic

Analysis, Range Of Estimates, Probability, Joint Probability Distributions,

Expected Value, Economic Decision Trees, Risk, Risk vs Return, Simulation,

Real Options.

2L

4L

4

8. Depreciation - Basic Aspects, Deterioration & Obsolescence, Depreciation

And Expenses, Types Of Property, Depreciation Calculation Fundamentals,

Depreciation And Capital Allowance Methods, Straight-Line Depreciation

Declining Balance Depreciation, Common Elements Of Tax Regulations For

Depreciation And Capital Allowances.

9. Replacement Analysis- Replacement Analysis Decision Map, Minimum

Cost Life of a New Asset, Marginal Cost, Minimum Cost Life Problems.

4L
4L

10. Accounting–Function, Balance Sheet, Income Statement, Financial Ratios

Capital Transactions, Cost Accounting, Direct and Indirect Costs, Indirect

Cost Allocation.

TOTAL NO. OF HOURS= 36L

UNIVERSITY OF ENGINEERING & MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: Design & Analysis of Algorithm Subject Code-CS501
Year: 3rd Year Semester: Fifth

Module
Number

Topics Number of Lectures

1

Complexity Analysis: 5L

1. Time and Space Complexity, Different
Asymptotic notations – their mathematical
significance,.

2

2. Solve recursive function with different
methods

3

2

Recursion Techniques: 2L
1. Recursion – definition, use and limitations 1
2. Examples – Tower of Hanoi problem, Tail

recursion 1
Algorithm Design Techniques:

3.

Divide and Conquer: 3L
1. Basic method, use, Examples – Binary

Search, Merge Sort and their complexities 2
2. Quick Sort and itscomplexity 1

4
Priority Queue: 1L

1. Definition, Heap Sort and its complexity. 1

5
Dynamic Programming: 4L

1. Basic method, use, Examples – Matrix
Chain Manipulation it’s complexity 1

2. All pair shortest paths(Floyd-Warshall
algorithm), single source shortest
path(Bellman-ford algorithm), Travelling
Salesman Problemand their complexities

3

6
Backtracking: 2L

1. Basic method, use, Examples – 8 queens
problem 1

1. Graph colouring problem. 1

7

Greedy Method: 6L
1. Basic method, use, Examples – Knapsack

problem, Job sequencing with deadlines,
Activity selection problem

3

2. single source shortest path (Dijkstra
algorithm), Minimum cost spanning tree
by Prim’s and Kruskal’s algorithm, their
complexities

3

8 Lower Bound Theory: 1L
1. O(nlgn) bound for comparison sort 1

9
Disjoint set manipulation: 1L

1. Set manipulation algorithm like UNION-
FIND, union by rank, path compression 1

Graph traversal algorithm: 2L

10 1. Breadth First Search (BFS) and Depth
First Search (DFS) – complexity and
comparison with different edges

2

11
Network Flow: 2L

1. Ford Fulkerson algorithm, Max-Flow
Min-Cut theorem (Statement and
Illustration)

2

12

String matching problem: 3L

1. Different techniques of string matching
problem Naïve, String matching using
finite automata, Knuth Morris and Pratt
algorithm,their complexities.

3

13
Amortized Analysis: 1L

1. Aggregate, Accounting, and Potential
Method. 1

14

Matrix Manipulation Algorithm: 3L

1. Strassen’s matrix manipulation algorithm
and its application to solution os
simultaneous linear equations using LUP
decomposition.

2

2. Inversion of matrix and Boolean matrix
multiplication.

1

15

Notion of NP-completeness: 4L

1. P class, NP class, NP hard class, NP
complete class

1

2. Their interrelationship, Satisfiability
problem, Cook’s theorem (Statement
only), Clique decision problem, vertex
cover problem, Hamiltonian cycle
problem

3

16

Approximation Algorithms: 3L

1. Necessity of approximation scheme,
performance guarantee, polynomial time
approximation schemes,

2

2. Vertex Cover problem, travelling
salesman problem

1

Total Number Of Hours = 42

Faculty In-Charge HOD, CSE Dept.

UNIVERSITY OF ENGINEERING & MANAGEMENT,JAIPUR
Lecture-wise Plan

Assignment:
Module-1(Complexity analysis):

1. Distinguish between big oh and small oh, big omega and small omega.
2. Solve the recurrence relation:

a)T(n)=T(n-1)+root(n)
b)T(n)=2T(n-1)+nlogn

Module-2 (Recursion technique):
1. Write a function of fibbonacci series using tail recursion.
2. Write down the time complexity of tower of hanoi

Module-3(Divide and conquer):
1. Write down the algorithm ofunsuccessful binary search and find out the time

complexity.
2. ModifytheMerge sortalgorithmsothattheinput array AisdividedintoKparts instead

of2.Analyzeyouralgorithm.AssumeK>1.
Module-4(Priority queue):

1. Write analgorithmtosortanelementinadescendingorder using heapsort.
2. Findoutthetimecomplexityofheapsort.

Module-5(Dynamic programming):
1.Explain bellman ford algorithm with example.

2. Considerthefollowingfivematrices:
A1=2X3,A2=3X4,A3=4X6,A4=6X2,A5=2X7.
(i) How manyparenthesizationarepossibletomultiplythese matrices?
(ii) Give aparenthesizedexpressionfor the order in which this optimalnumberof

multiplicationsisachieved.
(iii) Findtheoptimalcostofthesolution

Module-6(Backtracking):
1. Write down the complexity of N queens problem.
2. Write down the algorithm of graph coloring problem.

Module-7(Greedy approach):
1. Find out the time complexity of prime algorithm and dijkstra algorithm
2. What are the features are present in any greedy algorithm?

Module-8(Lower bound theory):
1. Prove that for any comparison sort the lower bound is O(nlogn)
2. Construct the decision tree for binary search

Module-9(Disjoint set manipulation):
1. Define union and find algorithm
2. How kruskal algorithm follow this method explain with example

Module-10(Graph traversal algorithm):
1. Find out the time complexity of BFS.
2. Write an algorithm to find the graph contain any back edge or not

Module-11(Network flow):
1. Define max flow min cut theorem
2. Explain Ford Fulkerson algorithm with example

Module-12(String matching problem):
1. Explain KMP algorithm with example.
2. Why KMP is better than Naïve and string matching with finite automata.

Module-13(Amortize analysis):

1. Define Aggregate Method Accounting Method and Potential Method.
Module-14(Matrix manipulation algorithm):

1. “Strassens’matrix multiplicationisbetter than thenormalmatrix multiplication”-Justify
youranswer.

2. Discuss the procedure for strassen’s matrix multiplication to evaluate the product of
n matrices find the recurrence relation for the same and analyse its time complexity.
Is this method an improvement over the conventional matrix multiplication method.

Module-15(Notion of NP completeness):
1. Define P,NP,NP hard, NP complete.
2. Show all NPC problem are solvable in polynomial time

Module-16(Approximation algorithm):
1. What is vertex-cover?
2. Prove that approx-vertex-cover is 2-approximation algorithm

UNIVERSITY OF ENGINEERING & MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: Microprocessors & Microcontrollers Subject Code- CS502
Year: 3rd Year Semester: Fifth
Module Number Topics Number of

Lectures

1

INTRODUCTION OF: 2L
1. Review of Digital Electronics

1L
2. Applications and basic concept of MP

and MP based system
1L

2 8085 ARCHITECTURE & PINS &
SIGNALS:

4L

1. 8085 MP Architecture 1L
2. Registers# Flags# Stack and Stack

pointer
1L

3. Timing and control unit 1L
4. 8085 Pins & Signals 1L

3

ADDRESSING MODES, TIMING
DIAGRAMS, INSTRUCTION SET OF
8085:

5L

1. Sample one byte, two bytes and three
byte Instructions and their timing
diagram

1L

2. I/O mapped I/ O & Memory mapped I/
O and Timing diagram of IN and OUT
instruction

1L

3. 8085 Addressing Modes with examples 1L
4. 8085 Instructions set (data transfer and

arithmetic group)
1L

5. 8085 Instructions set (Logical, jump
and machine control)

1L

4

8085 PROGRAMMING: 4L
1. Arithmetic programming 1L
2. Logical programming 1L

3. Branching and shifting programming 1L
4. Stack and subroutine 1L

5
COUNTER AND TIME
DELAYCALCULATION OF 8085:

3L

1. Introduction of counter and time delay 1L

2. Programming for counter 1L
3. Programming for delay 1L

6

8085 INTERRUPTS: 3L
1. Introduction of various type of

Interrupts
1L

2. Concept of EI, DI, SIM, RIM
instructions and examples

1L

3. Hardware Interrupts including INTR 1L

(Handshake Interrupt) and INA

7

MEMORY INTERFACING: 2L
1. Memory Chips (27 series and RAM

chips) 1L
2. Memory interfacing 3L

8
INTERFACING CHIPS: 3L

1. Programmable peripheral Interface
8255

1L

2. Programmable peripheral Interface
8259

1L

3. Programmable peripheral Interface
8237

1L

9

16-bit PROCESSOR 8086: 5L
1. Architecture of 8086

1L
2. Pinout diagram of 8086 1L
3. Addressing mode with examples 1L
4. Instruction sets with examples 1L
5. Interrupts of 8086 1L

10
8051 FAMILY OF
MICROCONTROLLER:

6L

1. Introduction and Overview of 8051
family 1L

2. Architecture, Register Banks & SFRs 1L
3. Pins & signals of 8051 1L
4. Memory organization & External

memory access
1L

5. Overview of 8051 instructions &
sample programs

1L

6. Timers and counters 1L
Faculty In-Charge HOD, ECE Dept.

Assignment:

Module-1:
1. What is a difference between microprocessor and microcontroller?
2. What is a difference between latch and flipflop?
3. Discuss the evolution tree of general purpose processor.
4. What is a tri state buffer? Explain briefly.
5. Why microprocessor is called a “Micro” processor?
6. Discuss the operation of RAM and ROM with proper diagram.

7. Describe the general architecture of microprocessor.

Module-2:

UNIVERSITY OF ENGINEERING & MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: Microprocessors & Microcontrollers Subject Code- CS502
Year: 3rd Year Semester: Fifth

1. Discuss about the Flag register of 8085 microprocessors.
2. Describe each function of every general-purpose register.
3. Draw the architectureof 8085 microprocessors and explain?
4. Using 74LS138 draw and explain the interfacing of memory and I/O device.
5. What are the function of ALE, HOLD, READY, s0, s1 and Interruptpin?

Module-3:

1. Draw the timing diagram of IN and OUT instruction and explain.
2. What is a difference between memory mapped I/O and peripheral mapped I/O?
3. What is a difference between absolute and partial decoding?
4. Describe the addressing mode of 8085 microprocessors.
5. How to optimize the instruction format of 8085?

Module-4:

1. Write an assembly language program to add two 8-bit numbers.
2. Write an assembly language program to add two 8-bit BCD number.
3. Write an assembly language program to add two 8-bit BCD Number without using

DAA instruction.
4. Write an assembly language program to subtraction two 8-bit number without using

SUB instruction.
5. Write an assembly language program to add two 16 bit numbers.
6. Write an ALP of 8085 to arrange the six 8 bits random numbers in ascending order by

using subroutine.

Module-5:

1. Write an ALP to generate 1 sec delay.
2. Write an ALP to generate a 20 khz square wave.
3. Write an ALP to generate a 20 khz triangular wave.
4. The following sequences of instructions are executed by 8085 microprocessor:

C000 LXI SP, D050H
C003 POP H
C004 XRA A
C005 MOV A, H
C006 ADD L
C007 MOV H, A
C008 PUSH H
C009 PUSH PSW
C00A HLT

D050 05
D051 40
D052 52
D053 03

D054 XX

What are the contents of Stack Pointer, Program Counter, Accumulator and HL pair?

5. The following sequence of instructions are executed by an 8085 microprocessor:
C000 LXI SP, D7FFH
C003 CALL C008H
C006 POP D
C008 POP H

What are the contents of the SP and HL register pair after execution the above
program?

Module-6:

1. What is interrupt? Why interrupt is very important in 8085 microprocessors?
2. What is a different between maskable and non maskable interrupt?
3. Draw the timing diagram of RESTART instruction.
4. Explain the operation of RIM and SIM instruction.
5. What is the vector and non-vector interrupt?
6. Describe the interrupt process of 8085 up.

Module-8:

1. What do you mean by Mode 0, Mode 1 and Mode 2 operation of 8255 PPI?
2. Discuss the control word format in the BSR Mode of 8255 PPI.
3. In Mode 1 operation of 8255 PPI, what are the control signals when port A and B acts

as output ports? Discuss the control signals.
4. Discuss about the DMA data transfer scheme of 8085.
5. What is pulling device? Why it is very important?
6. Explain the function of 8259 programable interrupt controller.

Module-9:

1. What are the main functions of BIU and EU of 8086? How does the separation in
units speed up the processing?

2. Discuss the addressing mode of 8086 microprocessors.
3. Draw the architecture of 8086 and explain the function of it’s all registers.
4. How does 8086 follow the pipeline architecture?
5. How does 8086 generate physical address?

Module-10:

1. Draw the architecture of 8051microcontroller and explain it.

UNIVERSITY OF ENGINEERING & MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: Microprocessors & Microcontrollers Subject Code- CS502
Year: 3rd Year Semester: Fifth

2. Discuss the addressing mode of 8051.
3. Explain the Flag register of 8051 microcontroller with example.
4. What is difference between shot jump and long jump of 8051?
5. What is difference between ACALL and SCALL instruction?
6. Write an assembly language program to add two 8-bit numbers.
7. Write an assembly language program to subtraction two 8-bit numbers.

UNIVERSITY OF ENGINEERING & MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: Discrete Mathematics Subject Code-CS503
Year: 3rd Year Semester: Fifth

Module
Number

Topics Number of Lectures

1. Introduction to Propositional Calculus: 10L

Propositions, Logical Connectives,Conjunction,
Disjunction, Negation and their truth table

2

Conditional Connectives, Implication, Converse,
Contrapositive, Inverse, Biconditional statements with
truth table

2

Logical. Equivalence, Tautology, Normal forms-CNF,
DNF; Predicates and Logical Quantifications of
Propositions and related examples.

6

2. Theory of Numbers: 10L
Well Ordering Principle, Divisibilitytheory and
properties of divisibility

2

Fundamental theorem of Arithmetic;Euclidean Algorithm
for finding G.C.D and some basic properties of G.C.D
with simple examples

2

Order, Relation and Lattices: POSET, Hasse Diagram,
Minimal , Maximal, Greatest and Least elements in a
POSET, Lattices and its properties, Principle of Duality,
Distributive and Complemented Lattices

6

3. Counting Techniques: 10L
Permutations, Combinations, Binomial coefficients,
Pigeon- hole Principle

2

Principles of inclusion and exclusions; Generating
functions, Recurrence Relations and their solutions using
generating function, Recurrence relation of Fibonacci
numbers and it’s solution

4

Divide-and-Conquer algorithm and its recurrence relation
and its simple application in computer.

4

4. Graph Coloring: 6L
Chromatic Numbers and its bounds, Independence and
Clique Numbers

1

Perfect Graphs-Definition and examples, Chromatic
polynomial and its determination, Applications of Graph
Coloring.

2

Matchings: Definitions and Examples of Perfect
Matching, Maximal and Maximum Matching, Hall’s
Marriage Theorem (Statement only) and related problems

3

Assignment:
Module-1:

1. Represent as propositional expressions:
Tom is a math major but not computer science major
P: Tom is a math major
Q: Tom is a computer science major

Use De Morgan's Laws to write the negation of the expression, and translate the negation in
English

2. Let
P = "John is healthy"
Q = "John is wealthy"
R = "John is wise"
Represent:
John is healthy and wealthy but not wise: P Λ Q Λ ¬ R
John is not wealthy but he is healthy and wise: ¬ Q Λ P Λ R
John is neither healthy nor wealthy nor wise: ¬ P Λ ¬ Q Λ ¬R
.

3. Translate the sentences into propositional expressions:
"Neither the fox nor the lynx can catch the hare if the hare is alert and quick."

4. Given a conditional statement in English,
i. translate the sentence into a logical expression

ii. write the negation of the logical expression and translate the negation into English
iii. write the converse of the logical expression and translate the converse into English

Module-2:

1. Prove that 3 n> n 2 for n = 1, n = 2 and use the mathematical induction to prove that 3 n> n 2 for
n a positive integer greater than 2.

2. Prove that for any positive integer number n , n 3 + 2 n is divisible by 3

3. Use mathematical induction to prove that

1 3 + 2 3 + 3 3 + ... + n 3 = n 2 (n + 1) 2 / 4

for all positive integers n.
4. In a room of 50 people whose dresses have either red or white color, 30 are wearing red dress,

16 are wearing a combination of red and white. How many are wearing dresses that have only
white color?

Module-3:

1. Out of 7 consonants and 4 vowels, how many words of 3 consonants and 2 vowels can be
formed?

2. In a group of 6 boys and 4 girls, four children are to be selected. In how many different ways
can they be selected such that at least one boy should be there?

3. From a group of 7 men and 6 women, five persons are to be selected to form a committee so
that at least 3 men are there on the committee. In how many ways can it be done?

4. In how many different ways can the letters of the word 'OPTICAL' be arranged so that the
vowels always come together?

5. In how many different ways can the letters of the word 'CORPORATION' be arranged so that
the vowels always come together?

Module-4:

1. Prove that any planar graph has an edge coloring of at most three colors in which adjacent
edges of the same color are allowed but cycles of edges of the same color are not.

2. If G is a graph and H is any subgraph of G, χ(G) ≥ χ(H).
3. State and prove four coloring theorem.

UNIVERSITY OF ENGINEERING & MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: Circuit Theory & Network Subject Code- CS504A
Year: 3rd Year Semester: Fifth

Module
Number

Topics Number of
Lectures

1

Introduction: 4L

1. Introduction todifferent types of signals-
continuous and discrete, different types
of systems

.

1

2. Introduction to linear , non -linear,
lumped, distributed, passive, active,
lateral, bi-lateral elements , networks

1

3. Assumptions made circuit theory and
network and general explanation of
KCL, KVL

1

4. Explaining current divider, voltage
divider rule, method of solving network
using KCL, KVL

1

2

Magnetically coupled circuits 3L
1. Magnetic coupling, Polarity of coils,

Polarity of inducedvoltage, Concept of
Self and Mutual inductance, Coefficient
of coupling.
Modeling of coupled circuits,

1

2. Concept of self and mutual inductance,
co-efficient of coupling 1

3. Modelling of coupled circuits 1

3.

Laplace transform: 5L
1. Significance of Laplace transform.
2. Analysis of Impulse, Step & Sinusoidal

response of RL, RC, and RLC circuits
with respect to Laplace transform.

2

3. Transient analysis of different electrical
circuits with and without
initialconditions.

3

4
Fourier method and waveform analysis 8L

1. Significance of Fourier series and
Fourier transform

1

2. Difference of Fourier and Laplace
transform

1

3. Application of Fourier series in different
types signals.

3

4. Application of Fourier transform to solve
circuit theory problems

3

5
Network theorems 9L

1. Formulation of network equations,
Source transformation,Loop variable
analysis, Node variable analysis.
Assumptions made in solving Network
problems

1

2. Problems with DC & AC sources
involving:

A. Superposition Theorem 1

B. Thevenin and Norton theorem. 2

C. Maximum Power transfer theorem. 1
D. Millman theorem 1

E. Tellegen theorem 1

Additional problem solving involving
Network theorems

2

6

Graph theory: 5L
1. Concept of Tree, Branch, Tree link 1

2. Incidence matrix, Tie-set matrix and
loop currents

2

3. Cut set matrix and node pair
Potentials, network equilibrium
equations

2

7

Two port network analysis: 5L
1. Open circuit Impedance & Short circuit

Admittance parameter, Z-parameter, Y-
parameter

1

2. Transmission line parameters 1

3. Hybrid parameters 1
4. Inter-relations between the parameters,

Driving point impedance and admittance
2

8

Filter Circuits 6L
1. Analysis and synthesis of filters, general

properties and types of filters.
2

1. Low pass, High pass, Band pass, Band
2. reject,

2

3. Active filters 2

Total Number Of Hours = 45

Faculty In-Charge HOD, EE Dept.

UNIVERSITY OF ENGINEERING & MANAGEMENT,JAIPUR
Lecture-wise Plan

Assignment:1
Module-1

1. In the circuit of Figure 1, find the current io using nodal analysis.

2. Explain invertible system. Why it is important to have an inverse of a system?
3. What are the conditions for a system to be a linear system?

Module-2:
1. In the following circuit as shown in Fig.2, k=1 find I1 and I2

Figure 2
2. For the three coupled coils (Figure 3) calculate the total inductance

Figure 3

Module-3:

1. Find the Laplace transform of the given function , Fig.4

Figure 1

2 A
io

4 Ω

30 V

2 Ω

3io 3 Ω
+

_

v1 v2

2. The circuit was initially in steady state with the switch in position ‘a’. At t=0+ it goes
from ‘a’ to ‘b’, find the expression for voltage Vo(t) at t>0.

Fig.5

Module-4:
1. Find the Fourier for a train of pulses given by the equation

V(t) = V; 0<t<T/2
=0; T/2<t<T

2. When a complex wave is applied to a pure inductor, the current wave has lesser
harmonics than the applied voltage . Explain, why?

Module-5:
1. Explain the applications and limitations of Millmans’ theorem.
2. Mention the salient features of Tellegens’ theorem.

Module-6:
1. Draw the directed graph from the following incidence matrix

2. Determine the tie-set matrix of the following graph. Also find the equation of
the branch current and voltages.

Module-7:
1. Evaluate the condition of reciprocity for a two port network in terms of

(a) Z- parameters
(b) Y-parameters
(c) ABCD parameters
(d) Hybrid parameters

Module-8:
1. Design a band pass filter with cut off frequencies of 160 Hz and 8 kHz. The

load for the circuit is 1 MΩ.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Data Communication Subject Code-CS504B
Year: 3rd Year Semester: Fifth
Module Number Topics Number of Lectures

1

Data Communication Fundamentals: 10L
Layered Network Architecture; Data
and Signal; Guided Transmission
Media; Unguided Transmission Media;
Transmission Impairments and Channel
Capacity; Transmission of Digital
Signal; Analog Data to Analog Signal;
Digital Data to Analog Signal;
Multiplexing of Signals: The telephone
system and DSL technology; Cable
MODEM and SONET

10

2

Data Link control: 6L
Interfacing to the media and
synchronization; Error Detection and
Correction; Flow and Error control;
Data Link Control.

6

3

Switching Communication Networks: 8L
Circuit switching; Packet switching;
Routing in packet switched networks;
Congestion control in packet switched
networks; X.25; Frame Relay;
Asynchronous Transfer Mode Switching
(ATM).

8

4

Broadcast communication networks: 13L
Network Topology; Medium Access
Control Techniques; IEEE CSMA/CD
based LANs; IEEE Ring LANs; High
Speed LANs – Token Ring Based; High
Speed LANs – CSMA/CD based;
Wireless LANs; Bluetooth; Cellular
Telephone Networks; Satellite
Networks.

10

Network Security: Cryptography;
Secured Communication; Firewalls.

3

Total Number Of Hours =37

Assignments:
Module-1:
1. Write down the functions of OSI Layers
2. What will be SNR value in case of noiseless channel?
3. Define Bandwidth? Create the relationship between Bit Rate and Baud Rate?
4. Write down the names of network impairments?
5. Write down the features and basic components of a computer network

6. What kind of topology is well suited for university or college environment?
7. Why we need layered architecture?
8. What will be the channel capacity of a noisy channel having SNR value= 20dB and

Bandwidth=3 KHz?

Module-2:
1. What is the significance of sequence number in Stop & Wait ARQ protocol?
2. Discuss Stop & Wait ARQ with 010101 bit sequence?
3. In Selective-Repeat ARQ, sender window size > 2m–1." Is it correct? Justify.
4. Suppose a sender is using sliding window protocol of window size 15. What will be the

window status for the following occurrence? Sender has sent packets 0 to 11 and has
received NAK 6.

Module-3:
1. Differentiate between circuit switching and packet switching.
2. Write short notes on the following topic:

A. Frame Relay
B. X.25
C. ATM

3. Why packet switching is connection less?

Module-4:
1. Discuss CSMA/CA with the help of a flowchart.
2. Why CSMA/CD is not implemented in WLAN?
3. Describe 802.3 header formats. Why padding is required?
4. Describe Bluetooth Architecture.
5. Differentiate between Token Ring and Token Bus.
6. What do you understand by data privacy? How can authentication, integrity and non-
repudiation be implemented by Digital Signature?
7. Define Firewall? Discuss all types of Firewall.

UNIVERSITY OF ENGINEERING & MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: Digital Signal Processing Subject Code-CS504C
Year: 3rdYear, Semester: Fifth

Module
Number

Topics Number of
Lectures

1.

Discrete-time signals: 6L

1. Concept of discrete-time signal, basic idea of sampling
and reconstruction of signal

2

2. sampling theorem, sequences – periodic, energy, power 2
3. unit-sample, unit-step, unit-ramp, real & complex
exponentials, arithmetic operations on sequences.

2

2.

LTI Systems: 6L
1. Definition, representation, impulse response, derivation
for the output sequence, concept of convolution

2

2. graphical, analytical and overlap-add methods to
compute convolution supported with examples and
exercises

2

3. properties of convolution, interconnections of LTI
systems with physical interpretations, stability and
causality conditions, recursive and non-recursive systems

2

3.

Z-Transform 6L
1. Definition, mapping between s-plane and z-plane, unit
circle, convergence and ROC, properties of Z-transform

2

2. Z-transform on sequences with examples and exercises,
characteristic families of signals along with ROCs,
convolution, correlation and multiplication using
Z-transform, initial value theorem, Perseval’s relation,

2

3. inverse Z-transform by contour integration, power series
& partial-fraction expansions with examples and exercises

2

4.
Discrete Fourier Transform: 6L
1. Concept and relations for DFT/IDFT, Twiddle factors
and their properties, computational burden on direct

DFT, DFT/IDFT as linear transformations, DFT/IDFT
matrices

2

2. computation of DFT/IDFT by matrix method,
multiplication of DFTs, circular convolution,
computation of circular convolution by graphical,
DFT/IDFT and matrix methods,

2

3. linear filtering using DFT, aliasing error, filtering of long
data sequences – Overlap-Save and Overlap-Add
methods with examples and exercises

2

5.
Fast Fourier Transform: 6L

1. Radix-2 algorithm, decimation-in-time, decimation-in-
frequency algorithms

2

2. signal flow graphs, Butterflies, computations in one
place, bit reversal,

2

3. examples for DIT & DIF FFT Butterfly computations
and exercises

2

6. Filter Design 6L
1. Basic concepts of IIR and FIR filters, difference
equations

2

2. design of Butterworth IIR analog filter using impulse
invariant and bilinear transforms,

2

3. design of linear phase FIR filters, no. of taps,
rectangular, Hamming and Blackman windows.

2

7.

Digital Signal Processor 6L

1. Elementary idea about the architecture and important
instruction sets of TMS320C 5416/6713 processor

2

2. writing of small programs in Assembly Language,
FPGA:Architecture, different sub-systems,

2

3. design flow for DSP system design, mapping of DSP
algorithms onto FPGA

2

Total Number Of Hours = 42

Faculty In-Charge HOD, CSE Dept.

Assignment :

Module -1 (Discrete-time signals)

Module -2 (LTI Systems)

Module -3 (Z-Transform)

Module -4 (Discrete Fourier Transform)

Module -5 (Fast Fourier Transform)

Module -6 (Filter Design)

Module -7 (Digital Signal Processor)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Object Oriented Programming Using Java Subject Code-CS504D
Year: 3rd Year Semester: Fifth

Module
Number

Topics Number of Lectures

1

Introduction: 6L

1. Concepts of object oriented programming
language, Major and minor elements,
Object, Class.

2

2. Relationships among objects, aggregation,
links.

2

3. Relationships among classes association,
aggregation, using, instantiation, meta-
class, grouping constructs.

2

2

Object oriented concepts: 3L
1. Difference between OOP and other

conventional programming – advantages
and disadvantages.

1

2. Class, object, message passing,
inheritance, encapsulation, polymorphism. 2

3.

Class & Object proprieties: 11L
1. Basic concepts of java programming –

advantages of java, byte-code & JVM.
2

2. Data types, access specifiers, operators,
control statements & loops, array, creation
of class, object, constructor, finalize and
garbage collection.

2

3. Use of method overloading, this
keyword, use of objects as parameter &
methods returning objects, call by value &
call by reference

2

4. Static variables & methods,
garbage collection, nested & inner classes

2

5. Basic String handling concepts- String
(discuss charAt() , compareTo(), equals(),
equalsIgnoreCase(), indexOf(), length() ,
substring(), toCharArray() ,
toLowerCase(), toString(), toUpperCase()
, trim() , valueOf() methods) &
StringBuffer classes (discuss append(),
capacity(), charAt(), delete(),
deleteCharAt(), ensureCapacity(),
getChars(), indexOf(), insert(), length(),
setCharAt(), setLength(), substring(),
toString() methods).

2

6. Concept of mutable and immutable string,
command line arguments, basics of I/O
operations – keyboard input using
BufferedReader & Scanner classes.

1

Reusability properties 4L

4 1. Super class & subclasses including
multilevel hierarchy, process of
constructor calling in inheritance.

1

2. Use of super and final keywords with
super() method, dynamic method
dispatch.

1

3. Use of abstract classes & methods,
interfaces.

1

4. Creation of packages, importing packages,
member access for packages.

1

5
Exception handling & Multithreading 10L

1. Exception handling basics. 1

2. Different types of exception classes, use
of try & catch with throw, throws &
finally, creation of user defined exception
classes.

3

3. Basics of multithreading, main thread,
thread life cycle, creation of multiple
threads, thread priorities.

3

4. Thread synchronization, inter-thread
communication, deadlocks for threads,
suspending & resuming threads.

3

6
Applet Programming (using swing) 7L

1. Basics of applet programming, applet life
cycle, difference between application &
applet programming

1

2. Parameter passing in applets, I/O in
applets, use of repaint(),
getDocumentBase(), getCodeBase()
methods.

1

3. Concept of delegation event model and
listener, layout manager (basic concept),
creation of buttons (JButton class only) &
text fields.

5

Faculty In-Charge HOD, CSE Dept.

Assignment:
Module-1(Introduction):

1. Explain different properties of object oriented programming language.

Module-2 (Object oriented concepts):
1. Advantages and disadvantages of java over C and C++.
2. Explain with examples: encapsulation, polymorphism.

Module-3(Class & Object proprieties):

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

1. Explain different steps of java source code compilation and execution.
2. Why java is called platform independent programming language.
3. Explain with examples different access specifiers of java.
4. Explain finalize and garbage collection of java.
5. Explain the significant of static keyword.
6. String vs StringBuffer class.

Module-4(Reusability properties):
1. Explain different inheritance with examples.
2. Explain uses of this, this(), super, super().
3. Abstract class vs interface.
4. Member access for packages.

Module-5(Exception handling & Multithreading):
1. Different ways of exception handling.
2. Different ways of implementing concept of multithreading.
3. Discus problems in multithreading and their solutions.

Module-3(Applet Programming (using swing)):
1. Benefits of applet.
2. Different programs with applet.
3. Different components of swing.
4. Different event handling and layouts in swing.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Design & Analysis of Algorithm Lab
Course Code: CS591
L-T-P scheme: 0-0-3 Course Credit: 2

Objectives:
1. To learn Evaluation ofalgorithm: Computational complexity, order notations, recurrences.
2. To learn Sorting:Insertion sort, merge sort, Quick sort, Linearsort, priority queue.
3. To learn greedy method: Single-source shortest path problem and minimum spanning tree.
4. To learn dynamic programming techniques: Fibonacci, single and all pair shortest paths, knapsack.
5. To learn Graph: representation and algorithms, Breadth-first search(BFS), Depth-first search(DFS),

topological sorting.

Learning Outcomes: The students will have a detailed knowledge of the concepts of different type of
algorithm techniques, and the analysis of algorithm. Upon the completion of design and analysis of algorithm
practical course, the student will be able to:

 Understand which algorithm is used in an applicationto Job scheduling in OS, applicationto Online
gamesChess, Sudoku and application to string matching in word processor etc.

 Analyse which algorithm is used to Routing in network,to Range assignment, TSP.

Course Contents:
Exercises that must be done in this course are listed below:
Exercise No.1:
>Implement Binary Search using Divide and Conquer approach
> Implement Merge Sort using Divide and Conquer approach
Exercise No.2:
>Implement Quick Sort using Divide and Conquer approach
> Find Maximum and Minimum element from an array of integer using Divide and Conquer approach
Exercise No.3:
>Find the minimum number of scalar multiplication needed for chain of matrix
Exercise No.4:
>Implement all pair of Shortest path for a graph (Floyed- WarshallAlgorithm)
>Implement Single Source shortest Path for a graph (Bellman Ford Algorithm)
Exercise No.5:
>Implement 15 Puzzle Problem
Exercise No.6:
>Implement 8 Queen problem
>Graph Coloring Problem
Exercise No.7:
>Knapsack Problem orJob sequencing with deadlines
>Implement Single Source shortest Path for a graph (Dijkstra Algorithm)
Exercise No.8: (implement any one of the following problem):
>Minimum Cost Spanning Tree by Prim's Algorithm
>Minimum Cost Spanning Tree by Kruskal's Algorithm
Exercise No.9: (implement any one of the following problem):
>Implement Breadth First Search (BFS)
>Implement Depth First Search (DFS)
Exercise No.10:
>Implement Naïve algorithm for string matching.

Text Book:

1. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, “Introduction to Algorithms”, 3 rd edition,
PHI.

2. E.Horowitz and Shani “Fundamentals of Computer Algorithms”, 2nd edition, Orient Black Swan.

Recommended Systems/Software Requirements:

1. Intel based desktop PC with minimum of 166 MHZ or faster processor with at least 64 MB RAM and 100
MB free disk space.

2. Turbo C or TC3 complier in Windows XP or Linux Operating System.

Exercise No.1:
>Implement Binary Search using Divide and Conquer approach
> Implement Merge Sort using Divide and Conquer approach

Description:

Divide and Conquer Method: Divide-and-conquer paradigm consists of following major phases:

 Breaking the problem into several sub-problems that are similar to the original problem but smaller in
size,

 Solve the sub-problem recursively (successively and independently), and then combine these
solutions into sub problems to create a solution to the original problem.

Aim: Implement Binary Search with using recursion

Algorithm:

BinarySearch_Right(A[0..N-1], value, low, high) {
// invariants: value >= A[i] for all i < low

value< A[i] forall i > high
if(high < low)

returnlow
mid = low +((high – low) / 2)
if(A[mid] > value)

returnBinarySearch_Right(A, value, low, mid-1)
else

returnBinarySearch_Right(A, value, mid+1, high)
}

Program:
#include<stdio.h>

#include<conio.h>

voidbinarysearch(int x[],intlb,intub,a);

void main()

{

int x[20],n,i,a;

clrscr();

printf("Enter the value of n and enter the no of elements in sorted manner:\n");

scanf("%d",&n);

for(i=0;i <n;i++)

{

scanf(“%d”,&x[i]);
}

printf("The sorted list is:");

for(i=0;i <n;i++)

{

printf("%d ", x[i]);

}

printf("Enter the searching element:\n");

scanf("%d",&a);

binarysearch(x,0,n-1,a);

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

getch();

}

voidbinarysearch(int x[20],intlb,intub,a)

{

int mid=(lb+ub)/2;

if(lb<=ub)

{

if(x[mid]==a)

{

printf(“Elements is found at position %d”,(mid+1));
}

else if(x[mid]<a)

{

return(binarysearch(x,mid+1,ub,a);

}

else

{

return(binarysearch(x,lb,mid-1,a);

}

}

else

{

printf(“Elements is not found”);
}

}

Output:
Enter the value of n and enter the no of elements in sorted manner:

4

1 2 3 4

The sorted list is:

1 2 3 4

Enter the searching element:

4

Elements is found at position 4

Explanation:
The worst-case and average-case time complexity for binary search is O(log n). The best-case is O(1).

Aim:Implement Merge Sort using Divide and Conquer approach

Algorithm:
MERGE-SORT (A, p, r)
1. IF p < r // Check for base case
2. THEN q = FLOOR[(p + r)/2] // Divide step
3. MERGE (A, p, q) // Conquer step.
4. MERGE (A, q + 1, r) // Conquer step.
5. MERGE (A, p, q, r) // Conquer step.

Program:

#include<stdio.h>

#include<conio.h>

void merge(int [],int ,int ,int);

void part(int [],int ,int);

int main()

{

int arr[30];

int i,size;

printf("\n\t------- Merge sorting method -------\n\n");

printf("Enter total no. of elements : ");

scanf("%d",&size);

for(i=0; i<size; i++)

{

printf("Enter %d element : ",i+1);

scanf("%d",&arr[i]);

}

part(arr,0,size-1);

printf("\n\t------- Merge sorted elements -------\n\n");

for(i=0; i<size; i++)

printf("%d ",arr[i]);

getch();

return 0;

}

void part(int arr[],int min,int max)

{

int mid;

if(min<max)

{

mid=(min+max)/2;

part(arr,min,mid);

part(arr,mid+1,max);

merge(arr,min,mid,max);

}

}

void merge(int arr[],int min,int mid,int max)

{

int tmp[30];

int i,j,k,m;

j=min;

m=mid+1;

for(i=min; j<=mid && m<=max ; i++)

{

if(arr[j]<=arr[m])

{

tmp[i]=arr[j];

j++;

}

else

{

tmp[i]=arr[m];

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

m++;

}

}

if(j>mid)

{

for(k=m; k<=max; k++)

{

tmp[i]=arr[k];

i++;

}

}

else

{

for(k=j; k<=mid; k++)

{

tmp[i]=arr[k];

i++;

}

}

for(k=min; k<=max; k++)

arr[k]=tmp[k];

}

OUTPUT:
Enter the no of elements:7

7 8 9 4 5 3 1

The unsorted list is: 7 8 9 4 5 3 1

The sorted list is

1 3 4 5 7 8 9

EXPLANATION:

Merge sort is based on Divide and conquer method. It takes the list to be sorted and divide it in half to create

two unsorted lists. The two unsorted lists are then sorted and merged to get a sorted list. The two unsorted lists

are sorted by continually calling the merge-sort algorithm; we eventually get a list of size 1 which is already

sorted. The two lists of size 1 are then merged.

Best case – When the array is already sorted O(nlogn) .

Worst case – When the array is sorted in reverse order O(nlogn).

Average case – O(nlogn).Extra space is required, so space complexity is O(n) for arrays and O(logn) for

linked lists.

Exercise No.2:
>Implement Quick Sort using Divide and Conquer approach
> Find Maximum and Minimum element from an array of integer using Divide and
Conquer approach

Aim:Implement Quick Sort using Divide and Conquer approach

Algorithm:

quick(x, lb,ub)

{

if(lb<ub)

{

j=partition(x,lb,ub);

quick(x,lb,j-1);

quick(x,j+1,ub);

}

}

Program:
#include<stdio.h>

#include<stdlib.h>

#include<time.h>

#define MAX 6000

void quick(int x[],intlb,intub);

int partition(int x[],intlb,intub);

void main()

{

inti,n,x[MAX];

time_tstart,end;

clrscr();

printf("Enter the number of elements: ");

scanf("%d",&n);

for(i=0;i<n;i++)

x[i]=rand();

printf("\nEntered array is \n");

for(i=0;i<n;i++)

printf("%d ",x[i]);

start=time(NULL);

quick(x,0,n-1);

end=time(NULL);

printf("Sorted array is as shown:\n");

for(i=0;i<n;i++)

printf("%d ",x[i]);

printf("\nTIME for %d elements : %f", n, difftime(end,start));

getch();

}

void quick(int x[],intlb,intub)

{

int j;

if(lb<ub)

{

printf("\n");

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

j=partition(x,lb,ub);

quick(x,lb,j-1);

quick(x,j+1,ub);

}

}

int partition(int x[],intlb,intub)

{

inta,down,up,temp;

a=x[lb];

up=ub;

down=lb;

while(down<up)

{

while(x[down]<=a&&down<ub)

down++;

while(x[up]>a)

up--;

if(down<up)

{

temp=x[down];

x[down]=x[up];

x[up]=temp;

}

}

x[lb]=x[up];

x[up]=a;

return up;

}

OUTPUT:
Enter the number of elements:5

Entered array is

41 18467 6334 26500 19169

Sorted array is as shown

41 6334 18467 19169 26500

Time for 5 elements : 0.000000

EXPLANATION:
Worst-case: O(N2)

This happens when the pivot is the smallest (or the largest) element.
Then one of the partitions is empty, and we repeat recursively the procedure for N-1 elements.
Best-case: O(NlogN)

The best case is when the pivot is the median of the array, and then the left and the right part will have same
size.There are logN partitions, and to obtain each partitions we do N comparisons
(and not more than N/2 swaps). Hence the complexity is O(NlogN)

Average-case : O(NlogN).

Aim:Find Maximum and Minimum element from a array of integer using Divide and Conquer
approach

Algorithm:

Minmax()

{
if (i == j)

{

min = a[i];

max = a[j];

}

else if (j == i + 1)

{

if (a[i] > a[j])

{

min = a[j];

max = a[i];

}

else

{

min = a[i];

max = a[j];

}

}

else

{

mid = (i + j) / 2;

minmax(a, i, mid, &lmin, &lmax);

minmax(a, mid + 1, j, &rmin, &rmax);

min = (lmin>rmin) ? rmin :lmin;

max = (lmax>rmax) ? lmax :rmax;

}

}

Program:
#include<stdio.h>

voidminmax (int* a, int i, int j, int* min, int* max) {

intlmin, lmax, rmin, rmax, mid;

if (i == j)

{

*min = a[i];

*max = a[j];

}

else if (j == i + 1)

{

if (a[i] > a[j])

{

*min = a[j];

*max = a[i];

}

else

{

*min = a[i];

*max = a[j];

}

}

else

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

{

mid = (i + j) / 2;

minmax(a, i, mid, &lmin, &lmax);

minmax(a, mid + 1, j, &rmin, &rmax);

*min = (lmin>rmin) ?rmin :lmin;

*max = (lmax>rmax) ?lmax :rmax;

}

}

void main ()

{

int a [] = {3, 4, 2, 6, 8, 1, 9, 12, 15, 11};

int min, max;

minmax (a, 0, 9, &min, &max);

printf ("Min : %d, Max: %d\n", min, max);

getch();

}

OUTPUT
Min : 1,Max : 15

EXPLANATION:
To find the maximum and minimum element using divide and conquer method, we divide the array into two

sub array. Every time we search the maximum and minimum element within both sub array. Atlast we

combine the array and find out the maximum and minimum element.

Exercise No.3:
>Find the minimum number of scalar multiplication needed for chain of matrix

Description:

Dynamic Programming:
A dynamic programming algorithm will examine the previously solved sub problems and will combine their

solutions to give the best solution for the given problem.

Aim: Write a program to find optimal solution for matrix multiplication

Algorithm:

for (L=2; L<n; L++)
{

for (i=1; i<n-L+1; i++)
{

j = i+L-1;
m[i][j] = INT_MAX;
for (k=i; k<=j-1; k++)
{

// q = cost/scalar multiplications
q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];
if (q < m[i][j])

m[i][j] = q;
}

}
}

Program:

#include<stdio>
#include<conio>
#define INFY 999999999
longint m[20][20];
int s[20][20];
int p[20],i,j,n;

voidprint_optimal(inti,int j)
{

if (i == j)
printf(" A%d ",i);

else
{

printf(" (");
print_optimal(i, s[i][j]);
print_optimal(s[i][j] + 1, j);
printf(") ");

}
}

intMatrixChainOrder(int p[], int n)
{

/* For simplicity of the program, one extra row and one
extra column are allocated in m[][]. 0th row and 0th
column of m[][] are not used */

int m[n][n];

int i, j, k, L, q;

/* m[i,j] = Minimum number of scalar multiplications needed
to compute the matrix A[i]A[i+1]...A[j] = A[i..j] where
dimension of A[i] is p[i-1] x p[i] */

// cost is zero when multiplying one matrix.
for (i=1; i<n; i++)

m[i][i] = 0;

// L is chain length.
for (L=2; L<n; L++)
{

for (i=1; i<n-L+1; i++)
{

j = i+L-1;
m[i][j] = INT_MAX;
for (k=i; k<=j-1; k++)
{

// q = cost/scalar multiplications
q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];
if (q < m[i][j])

m[i][j] = q;
}

}
}

return m[1][n-1];
}
}
int main()
{

intarr[] = {1, 2, 3, 4};
int size = sizeof(arr)/sizeof(arr[0]);

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

printf("Minimum number of multiplications is %d ",
MatrixChainOrder(arr, size));

getchar();
return 0;

}
Output:
Minimum number of multiplications is 18

Exercise No.4:
>Implement all pair of Shortest path for a graph (Floyed- WarshallAlgorithm)
>Implement Single Source shortest Path for a graph (Bellman Ford Algorithm or
dijkstraalgorithm)

Aim:Implement Single Source shortest Path for a graph (Bellman Ford Algorithm using dynamic

method) or Implement all pair of Shortest path for a graph (Floyd- Warshall Algorithm)

ALL PAIR SHORTEST PATH:
The all pairs shortest path can be formulated informally as: If you have a weighted graph find for all pairs of
vertices in the graph, the shortest path between these vertices. Formally, let G = (V, E) be a graph of vertices
(V) and edges (E).

PROGRAM:
#include<stdio.h>
#include<conio.h>
#include<math.h>
int max(int,int);
voidwarshal(int p[10][10],int n)
{
inti,j,k;
for(k=1;k<=n;k++)
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
p[i][j]=max(p[i][j],p[i][k]&&p[k][j]);
}
int max(inta,int b)
{ ;
if(a>b)
return(a);
else
return(b);
}
int main()
{
int p[10][10]={0},n,e,u,v,i,j;
printf("\n Enter the number of vertices:");
scanf("%d",&n);
printf("\n Enter the number of edges:");
scanf("%d",&e);
for(i=1;i<=e;i++)
{

printf("\n Enter the end vertices of edge %d:",i);
scanf("%d%d",&u,&v);
p[u][v]=1;
}

printf("\n Matrix of input data: \n");
for(i=1;i<=n;i++)
{

for(j=1;j<=n;j++)
printf("%d\t",p[i][j]);

printf("\n");
}

warshal(p,n);
printf("\n Transitive closure: \n");
for(i=1;i<=n;i++)
{

for(j=1;j<=n;j++)
printf("%d\t",p[i][j]);
printf("\n");
}

getch();
return 0;
}

EXPLANATION:
Using all pair shortest path we find the minimum distance from every node to another node.The time

complexity of all pair shortest path is o(n^3).

Exercise No.5:
>Implement 15 Puzzle Problem
Description:

Branch and Bound method:
Branch and Bound is a general method for finding optimal solutions to problems, typically discrete problems.

A branch-and-bound algorithm searches the entire space of candidate solutions, with one extra trick: it throws

out large parts of the search space by using previous estimates on the quantity being optimized.

Aim:Implement 15 Puzzle Problem using Branch and Bound method
15 Puzzle Problem:

PROGRAM
#include<stdio.h>

#include<conio.h>

int m=0,n=4;

intcal(int temp[10][10],int t[10][10])

{

inti,j,m=0;

for(i=0;i<n;i++)

for(j=0;j<n;j++)

{

if(temp[i][j]!=t[i][j])

m++;

}

return m;

}

int check(int a[10][10],int t[10][10])

{

inti,j,f=1;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

for(i=0;i<n;i++)

for(j=0;j<n;j++)

if(a[i][j]!=t[i][j])

f=0;

return f;

}

void main()

{

intp,i,j,n=4,a[10][10],t[10][10],temp[10][10],r[10][10];

int m=0,x=0,y=0,d=1000,dmin=0,l=0;

clrscr();

printf("\nEnter the matrix to be solved,space with zero :\n");

for(i=0;i<n;i++)

for(j=0;j<n;j++)

scanf("%d",&a[i][j]);

printf("\nEnter the target matrix,space with zero :\n");

for(i=0;i<n;i++)

for(j=0;j<n;j++)

scanf("%d",&t[i][j]);

printf("\nEntered Matrix is :\n");

for(i=0;i<n;i++)

{

for(j=0;j<n;j++)

printf("%d\t",a[i][j]);

printf("\n");

}

printf("\nTarget Matrix is :\n");

for(i=0;i<n;i++)

{

for(j=0;j<n;j++)

printf("%d\t",t[i][j]);

printf("\n");

}

while(!(check(a,t)))

{

l++;

d=1000;

for(i=0;i<n;i++)

for(j=0;j<n;j++)

{

if(a[i][j]==0)

{

x=i;

y=j;

}

}

//To move upwards

for(i=0;i<n;i++)

for(j=0;j<n;j++)

temp[i][j]=a[i][j];

if(x!=0)

{

p=temp[x][y];

temp[x][y]=temp[x-1][y];

temp[x-1][y]=p;

}

m=cal(temp,t);

dmin=l+m;

if(dmin<d)

{

d=dmin;

for(i=0;i<n;i++)

for(j=0;j<n;j++)

r[i][j]=temp[i][j];

}

//To move downwards

for(i=0;i<n;i++)

for(j=0;j<n;j++)

temp[i][j]=a[i][j];

if(x!=n-1)

{

p=temp[x][y];

temp[x][y]=temp[x+1][y];

temp[x+1][y]=p;

}

m=cal(temp,t);

dmin=l+m;

if(dmin<d)

{

d=dmin;

for(i=0;i<n;i++)

for(j=0;j<n;j++)

r[i][j]=temp[i][j];

}

//To move right side

for(i=0;i<n;i++)

for(j=0;j<n;j++)

temp[i][j]=a[i][j];

if(y!=n-1)

{

p=temp[x][y];

temp[x][y]=temp[x][y+1];

temp[x][y+1]=p;

}

m=cal(temp,t);

dmin=l+m;

if(dmin<d)

{

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

d=dmin;

for(i=0;i<n;i++)

for(j=0;j<n;j++)

r[i][j]=temp[i][j];

}

//To move left

for(i=0;i<n;i++)

for(j=0;j<n;j++)

temp[i][j]=a[i][j];

if(y!=0)

{

p=temp[x][y];

temp[x][y]=temp[x][y-1];

temp[x][y-1]=p;

}

m=cal(temp,t);

dmin=l+m;

if(dmin<d)

{

d=dmin;

for(i=0;i<n;i++)

for(j=0;j<n;j++)

r[i][j]=temp[i][j];

}

printf("\nCalculated Intermediate Matrix Value :\n");

for(i=0;i<n;i++)

{

for(j=0;j<n;j++)

printf("%d\t",r[i][j]);

printf("\n");

}

for(i=0;i<n;i++)

for(j=0;j<n;j++)

{

a[i][j]=r[i][j];

temp[i][j]=0;

}

printf("Minimum cost : %d\n",d);

}

getch();

}

OUPUT:
Enter the matrix to be solved,space with zero:

1

2

3

4

5

6

0

8

9

10

7

11

13

14

15

12

Enter the target matrix,space with zero :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

Entered Matrix is :

1 2 3 4

5 6 0 8

9 10 7 11

13 14 15 12

Target Matrix is :

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 0

Calculated Intermediate Matrix Value :

1 2 3 4

5 6 7 8

9 10 0 11

13 14 15 12

Minimum cost : 4

Calculated Intermediate Matrix Value :

1 2 3 4

5 6 7 8

9 10 11 0

13 14 15 12

Minimum cost : 4

Calculated Intermediate Matrix Value :

1 2 3 4

5 6 7 8

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

9 10 11 12

13 14 15 0

Minimum cost : 3

EXPLANATION:

Found

Exercise No.6:
>Implement 8 Queen problem
>Graph Coloring Problem

Description:

BACKTRACKING:
Backtracking is a technique used to solve problems with a large search space, by systematically trying and

eliminating possibilities.

A standard example of backtracking would be going through a maze.

Implement N queens problem using back tracking method

Nqueens problem
Program:
#include<conio.h>

#include<stdio.h>

#include<math.h>

int board[10];

int n;

voidPrintBoard()

{

int i, k;

staticintsolno=1;

printf("\nSolution %d:\n", solno++);

for (i = 0; i < n; i++)

{

for (k = 0; k < board[i]; k++)

printf(" ");

printf("%2d\n", board[i]+1);

}

}

intIsPlaceSafe(int row, int col)

{

int i;

for(i=0; i<row; i++)

{

if((board[i] == col) || (abs(board[i]-col) == abs(i-row)))

return 0;

}

return 1;

}

voidNQueens(int row)

{

int col;

for(col=0; col<n; col++)

{

if(IsPlaceSafe(row, col))

{

board[row] = col;

if(row == n-1)

PrintBoard();

else

NQueens(row+1);

}

}

}

int main()

{

int i;

clrscr();

printf("Enter board size: ");

scanf("%d", &n);

if(n>10) exit(1);

NQueens(0);

getch();

return 0;

}

Output:

2 4 1 3

EXPANATION:
Complexity of backtracking algorithm for 8 queens problem will be O(n!).

Aim:ImplementGraph coloring problem using back tracking method

Program:
#include<conio.h>

#include<stdio.h>

#include<math.h>

int board[10];

int n;

intadj[3][3]={0,1,1

1,0,1

1,1,0}

voidPrintBoard()

{

int i, k;

staticintsolno=1;

printf("\nSolution %d:\n", solno++);

for (i = 0; i < n; i++)

{

for (k = 0; k < board[i]; k++)

printf(" ");

printf("%2d\n", board[i]+1);

}

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

}

intIsPlaceSafe(int row, int col)

{

int i;

for(i=0; i<row; i++)

{

if((board[i] == col) || adj[i]==1)

return 0;

}

return 1;

}

voidcolorgraph(int row)

{

int col;

for(col=0; col<n; col++)

{

if(IsPlaceSafe(row, col))

{

board[row] = col;

if(row == n-1)

PrintBoard();

else

colorgraph(row+1);

}

}

}

int main()

{

int i;

clrscr();

printf("Enter board size: ");

scanf("%d", &n);

if(n>10) exit(1);

NQueens(0);

getch();

return 0;

}

Output:
Enter board size 3

1 2 3

Exercise No.7:
>Knapsack Problem
>Job sequencing with deadlines
Description:

GREEDY METHOD:
A greedy algorithm is an algorithm that follows the problem solving heuristic of making the locally optimal
choice at each stage with the hope of finding a global optimum.

Aim:Knapsack Problem,Job sequencing with deadlines using greedy method
Knapsack Problem
PROGRAM
include <stdio.h>

#include <conio.h>
void knapsack(int n, float weight[], float profit[], float capacity)

{
float x[20], tp = 0;
int i, j, u;
u = capacity;

for (i = 0; i < n; i++)
x[i] = 0.0;

for (i = 0; i < n; i++)
{

if (weight[i] > u)
break;
else {

x[i] = 1.0;
tp = tp + profit[i];
u = u - weight[i];

}
}

if (i < n)
x[i] = u / weight[i];

tp = tp + (x[i] * profit[i]);

printf("\nThe result vector is:- ");
for (i = 0; i < n; i++)

printf("%f\t", x[i]);

printf("\nMaximum profit is:- %f", tp);

}

int main()
{

float weight[20], profit[20], capacity;
intnum, i, j;
float ratio[20], temp;

printf("\nEnter the no. of objects:- ");
scanf("%d", &num);

printf("\nEnter the wts and profits of each object:- ");
for (i = 0; i <num; i++) {

scanf("%f %f", &weight[i], &profit[i]);
}

printf("\nEnter the capacityacity of knapsack:- ");
scanf("%f", &capacity);

for (i = 0; i <num; i++)
{

ratio[i] = profit[i] / weight[i];
}

for (i = 0; i <num; i++)
{

for (j = i + 1; j <num; j++)
{

if (ratio[i] < ratio[j])
{

temp = ratio[j];
ratio[j] = ratio[i];

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

ratio[i] = temp;

temp = weight[j];
weight[j] = weight[i];
weight[i] = temp;

temp = profit[j];
profit[j] = profit[i];
profit[i] = temp;

}
}

}

knapsack(num, weight, profit, capacity);
getch();

return(0);
}

OUTPUT :
Enter the no of objects :- 7
Enter the weights and profits of each object:

2 10
3 5
5 15
7 7

1 6
4 18
1 3

Enter the capacity of knapsack: 15

The result vector is:- 1.000000 1.000000 1.000000 1.000000

1.000000 0.666667 0.000000

Maximum profit is:- 55.333332

EXPLANATION :

If the items are already sorted into decreasing order of vi / wi, then
the while-loop takes a time in O(n);

Therefore, the total time including the sort is in O(n log n).

If we keep the items in heap with largest vi/wi at the root. Then

creating the heap takes O(n) time

while-loop now takes O(log n) time .

Implement Single Source shortest Path for a graph (Dijkstra using greedy method)

Single Source shortest Path:

Dijkstra Algorithm

PROGRAM:
#include<stdio.h>

#include<conio.h>

int cost[8][8],dist[8][8],n;

void main()

{

inti,j,k,m,u,INF=100;

printf("\nEnter the no. of vertices: ");

scanf("%d",&n);

printf("\nEnter the adjacency matrix(Enter 100 if there is no edge present)\n");

for(i=1;i <= n;i++)

for(j=1;j <= n;j++)

{

scanf("%d",&cost[i][j]);

}

for(i=1;i <= n;i++)

dist[i][1]=0;

printf("\nDistance Matrix:\n");

for(i=2;i <= n;i++)

{

dist[1][i]=cost[1][i];

printf("%d ",dist[1][i]);

}

printf("\n");

printf("\n");

for(k=2;k <n;k++)

{

for(u=2;u <= n;u++)

{

m=min(k,u);

if(dist[k-1][u] > m)

dist[k][u]=m;

else

dist[k][u]=dist[k-1][u];

printf("%d ",dist[k][u]);

}

printf("\n");

printf("\n");

}

for(i=1;i <= n;i++)

{

printf("\nDistance of 1 to %d is ",i);

printf("%d ",dist[n-1][i]);

}

getch();

}

int min(intk,int u)

{

int min1,i;

min1=dist[k-1][1]+cost[1][u];

for(i=2;i <= n;i++)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

if(min1 > (dist[k-1][i]+cost[i][u]))

min1=dist[k-1][i]+cost[i][u];

return min1;

}

OUTPUT:
Enter the no. of vertices: 7

Enter the adjacency matrix(Enter 100 if there is no edge present)

0 6 5 5 100 100 100

100 0 100 100 -1 100 100

100 -2 0 100 1 100 100

100 100 -2 0 100 -1 100

100 100 100 100 0 100 3

100 100 100 100 100 0 3

100 100 100 100 100 100 0

Distance Matrix:

6 5 5 100 100 100

3 3 5 5 4 100

1 3 5 2 4 7

1 3 5 0 4 5

1 3 5 0 4 3

1 3 5 0 4 3

Distance of 1 to 1 is 0

Distance of 1 to 2 is 1

Distance of 1 to 3 is 3

Distance of 1 to 4 is 5

Distance of 1 to 5 is 0

Distance of 1 to 6 is 4

Distance of 1 to 7 is 3

EXPLANATION:
Dijkstraalgorithm is used for finding the single-source shortest paths in a graph.It also can work with negative edge.

Complexity is O(|v|.|e|).

Exercise No.8: (implement any one of the following problem):
>Minimum Cost Spanning Tree by Prim's Algorithm
>Minimum Cost Spanning Tree by Kruskal's Algorithm

Minimum Cost Spanning Tree:
A minimum spanning tree is a spanning tree of a connected, undirected graph. It connects all the vertices
together with the minimal total weighting for its edges. A single graph can have many different spanning trees.

Aim:Minimum Cost Spanning Tree by Prim's Algorithm,Minimum Cost Spanning Tree by Kruskal's
Algorithm using greedy method(any one)

Prims algorithm:
PROGRAM
#include<stdio.h>
#include<conio.h>

int n, cost[10][10];
void prim()
{

inti,j,k,l,x,nr[10],temp,min_cost=0,tree[10][3];
/* For first smallest edge */
temp=cost[0][0];
for(i=0;i <n;i++)
{

for(j=0;j <n;j++)
{

if(temp > cost[i][j])
{

temp=cost[i][j];
k=i;
l=j;

}
}

}
/* Now we have fist smallest edge in graph */
tree[0][0]=k;
tree[0][1]=l;
tree[0][2]=temp;
min_cost=temp;
/* Now we have to find min dis of each

vertex from either k or l
by initialising nr[] array

*/
for(i=0;i<n;i++)
{

if(cost[i][k]< cost[i][l])
nr[i]=k;

else
nr[i]=l;

}
/* To indicate visited vertex initialise nr[] for them to 100 */
nr[k]=100;
nr[l]=100;
/* Now find out remaining n-2 edges */
temp=99;
for(i=1;i< n-1;i++)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

{
for(j=0;j<n;j++)
{
if(nr[j]!=100 && cost[j][nr[j]] < temp)

{
temp=cost[j][nr[j]];

x=j;
}

}
/* Now i have got next vertex */
tree[i][0]=x;
tree[i][1]=nr[x];
tree[i][2]=cost[x][nr[x]];
min_cost=min_cost+cost[x][nr[x]];
nr[x]=100;
/* Now find if x is nearest to any vertex
than its previous near value */
for(j=0;j<n;j++)
{

if(nr[j]!=100 && cost[j][nr[j]] > cost[j][x])
nr[j]=x;

}
temp=99;

}
/* Now i have the answer, just going to print it */
printf("\n The min spanning tree is:- \n");
for(i=0;i< n-1;i++)
{

for(j=0;j < 3;j++)
printf("%d\t", tree[i][j]);
printf("\n");

}
printf("\n Min cost:- %d", min_cost);

}

void main()
{

inti,j;
clrscr();
printf("\n Enter the no. of vertices:- ");
scanf("%d", &n);
printf ("\n Enter the costs of edges in matrix form:- ");
for(i=0;i<n;i++)

for(j=0;j<n;j++)
scanf("%d",&cost[i][j]);

printf("\n The matrix is:- \n");
for(i=0;i<n;i++)
{

for(j=0;j<n;j++)
printf("%d\t",cost[i][j]);

printf("\n");
}
prim();
getch();

}

Output:

Enter the no. of vertices:- 3

Enter the costs of edges in matrix form:-

99 2 3

2 99 5

3 5 99

The matrix is:-

99 2 3

2 99 5

3 5 99

The min spanning tree is:-

0 1 2

2 0 3

Min cost:- 5

EXPLANATION:

The time complexity of prim’s algorithm is O(VlogV + ElogV) = O(ElogV).

Kruskal Algorithm:
PROGRAM

#include<stdio.h>
#include<conio.h>
#define INF 1000
char vertex[10];
intwght[10][10];
intspan_wght[10][10];
int source;
struct Sort
{

int v1,v2;
int weight;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

}que[20];

intn,ed,f,r;
int cycle(ints,int d)
{

intj,k;
if(source==d)
return 1;
for(j=0;j <n;j++)
if(span_wght[d][j]!=INF && s!=j)
{

if(cycle(d,j))
return 1;

}
return 0;

}
voidbuild_tree()
{

inti,j,w,k,count=0;
for(count=0;count <n;f++)
{

i=que[f].v1;
j=que[f].v2;
w=que[f].weight;
span_wght[i][j]=span_wght[j][i]=w;
source=i;
k=cycle(i,j);
if(k)

span_wght[i][j]=span_wght[j][i]=INF;
else

count++;
}

}
void swap(int *i,int *j)
{

int t;
t=*i;
*i=*j;
*j=t;

}
int main()
{

inti,j,k=0,temp;
int sum=0;
clrscr();
printf("*** SPANNING TREE USING KRUSKAL'S ***\n");
printf("Enter the No. of Nodes : ");
scanf("%d",&n);
for(i=0;i <n;i++)
{

printf("Enter %d value : ",i+1);
scanf("%c",&vertex[i]);
for(j=0;j <n;j++)
{

wght[i][j]=INF;
span_wght[i][j]=INF;

}
}

printf("Getting Weight\n");
for(i=0;i <n;i++)

for(j=i+1;j <n;j++)
{

printf("Enter 0 if path Doesn't exist between %c to %c :", vertex[i],vertex[j]);

scanf("%d",&ed);
if(ed>= 1)
{

wght[i][j]=wght[j][i]=ed;
que[r].v1=i;
que[r].v2=j;
que[r].weight=wght[i][j];
if(r)
{

for(k=0;k <r;k++)
if(que[k].weight >que[r].weight)
{

swap(&que[k].weight,&que[r].weight);
swap(&que[k].v1,&que[r].v1);
swap(&que[k].v2,&que[r].v2);

}
}
r++;

}
}

printf("\nORIGINAL GRAPH WEIGHT MATRIX");
printf("\nweight matrix\n");
for(i=0;i <n;i++,printf("\n"))

for(j=0;j <n;j++,printf("\t"))
printf("%d",wght[i][j]);

build_tree();
printf("\nMINIMUM SPANNING TREE");
printf("\nLIST OF EDGES");
for(i=0;i <n;i++)

for(j=i+1;j <n;j++)
if(span_wght[i][j]!=INF)
{

printf("\n%c ------ %c = %d ",vertex[i],vertex[j],span_wght[i][j]);
sum+=span_wght[i][j];

}
printf("\nTotal Weight : %d ",sum);
getch();

}

Output:
KRUSKAL’S ALGORITHM TO FIND THE ALGORITHM

Enter the no of nodes:5
Enter 1 value 1
Enter 2 value 2
Enter 3 value 3
Enter 4 value 4
Enter 5 value 5
Enter 0 if path does not exist between 1 and 2: 5
Enter 0 if path does not exist between 1 and 3: 0
Enter 0 if path does not exist between 1 and 4: 2
Enter 0 if path does not exist between 1 and 5: 4
Enter 0 if path does not exist between 2 and 3: 1
Enter 0 if path does not exist between 2 and 4: 0
Enter 0 if path does not exist between 2 and 5: 9
Enter 0 if path does not exist between 3 and 4: 0
Enter 0 if path does not exist between 3 and 5: 1
Enter 0 if path does not exist between 4 and 5: 8

ORIGINAL GRAPH WEIGHT MATRIX
Weight matrix:
1000 5 1000 2 4
5 1000 1 1000 9

1000 1 1000 1000 1
2 1000 1000 1000 8

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

4 9 1 8 1000
MINIMUM SPANNING TREE

LIST OG EDGES
1-----4=2
1-----5=4
2-----3=1
3-----5=1

Total weight : 8

EXPLANATION:

Time Complexity:
O(ElogE) or O(ElogV). Sorting of edges takes O(ELogE) time. After sorting, we iterate through all edges and

apply find-union algorithm. The find and union operations can take atmostO(LogV) time. So overall
complexity is O(ELogE+ ELogV) time. The value of E can be atmost V^2, so O(LogV) are O(LogE) same.
Therefore, overall time complexity is O(ElogE) or O(ElogV).

Exercise No.9: (implement any one of the following problem):
>Implement Breadth First Search (BFS)
>Implement Depth First Search (DFS)

Graph traversal algorithm(BFS and DFS)
Some algorithms require that every vertex of a graph be visited exactly once. The order in which the vertices
are visited may be important, and may depend upon the particular algorithm. The two common traversals: -
depth-first - breadth-first.

Implement Breadth First Search (BFS):

include<stdio.h>

#include<conio.h>
int a[20][20],q[20],visited[20],n,i,j,f=0,r=-1;
voidbfs(int v)
{
for(i=1;i<=n;i++)
if(a[v][i] && !visited[i])
q[++r]=i;

if(f<=r)
{
visited[q[f]]=1;
bfs(q[f++]);

}
}
void main()
{
int v;
clrscr();
printf("\n Enter the number of vertices:");
scanf("%d",&n);
for(i=1;i<=n;i++)
{
q[i]=0;
visited[i]=0;

}
printf("\n Enter graph data in matrix form:\n");
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
scanf("%d",&a[i][j]);

printf("\n Enter the starting vertex:");

scanf("%d",&v);
bfs(v);
printf("\n The node which are reachable are:\n");
for(i=1;i<=n;i++)
if(visited[i])
printf("%d\t",i);

else
printf("\n Bfs is not possible");

getch();
}

OUTPUT:
Enter the number of vertices: 4
Enter graph data in matrix form:

2 4 5 7
2 5 8 9
1 4 7 5
3 6 9 1

Enter the starting vertex : 2
The node which are reachable are:

1 2 3 4
EXPLANATION:
Time complexity to go over each adjacent edges of a vertex is say O(N), where N is number of adjacent edges.
So for V number of vertices time complexity becomes O(V*N) = O(E), where E is the total number of edges in
the graph. Since removing and adding a vertex from/to Queue is O(1), why it is added to the overall time
complexity of BFS as O(V+E).

Implement Depth First Search (DFS)

#include<stdio.h>

#include<conio.h>

int a[20][20],reach[20],n;
voiddfs(int v)
{
int i;
reach[v]=1;
for(i=1;i<=n;i++)
if(a[v][i] && !reach[i])
{
printf("\n %d->%d",v,i);
dfs(i);

}
}
void main()
{
inti,j,count=0;
clrscr();
printf("\n Enter number of vertices:");
scanf("%d",&n);
for(i=1;i<=n;i++)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

{
reach[i]=0;
for(j=1;j<=n;j++)
a[i][j]=0;

}
printf("\n Enter the adjacency matrix:\n");
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
scanf("%d",&a[i][j]);

dfs(1);
printf("\n");
for(i=1;i<=n;i++)
{
if(reach[i])
count++;

}
if(count==n)
printf("\n Graph is connected");

else
printf("\n Graph is not connected");

getch();
}

OUTPUT:
Enter number of vertices :4
Enter the adjacency matrix:

5 5 6 1
2 3 4 1
1 5 7 9
4 2 8 4

1->2
2->3
3->4

Graph is connected.

EXPLANATION:

The maximum number of possible edges in the graph G if it does not have cycle is |V| − 1. If G has a cycles,
then the number of edges exceeds this number. Hence, the algorithm will detects a cycle at the most at the
Vth edge if not before it. Therefore, the algorithm will run in O(V) time.

Exercise No.10:
>Implement Naïve algorithm for string matching.

Description:
String Matching Problem:Naive algorithm,

The problem of finding occurrence(s) of a pattern string within another string or body of text. There are many
different algorithms for efficient searching.
Example:Naive algorithm,

Naive algorithm:

PROGRAM:

#include<stdio.h>

#include<conio.h>

#include<string.h>

int match(char st[100],char pat[100]);

void main()

{

charst[100],pat[100];

int status;

clrscr();

printf("*** Naive String Matching Algorithm ***\n");

printf("Enter the String.\n");

gets(st);

printf("Enter the pattern to match.\n");

gets(pat);

status=match(st,pat);

if(status==-1)

printf("\nNo match found");

else

printf("Match has been found on %d position.",status);

getch();

}

int match(char st[100],char pat[100])

{

intn,m,i,j,count=0,temp=0;

n=strlen(st);

m=strlen(pat);

for(i=0;i<=n-m;i++)

{

temp++;

for(j=0;j<m;j++)

{

if(st[i+j]==pat[j])

count++;

}

if(count==m)

return temp;

count=0;

}

return -1;
}

OUTPUT:
Enter the string.
UEM JAIPUR

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Enter the pattern to match
JAI
match has been found in 5 position.

Explanation:
Required time is O(n).

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Microprocessors & Microcontrollers Lab
Course Code: CS592
L-T-P scheme: 0-0-3 Course Credit: 2

Objectives:
The course is intended to create an appreciation for contemporary concepts in high performance
mutli core super scalar architectures and appreciate their implementation in modern multi
processors.

Learning Outcomes:
Upon successful completion of the course, a student will have:
1. An ability to define and explain the principles of computer architecture and the interfacing
between its Hardware and software components
2. An ability to write assembly programs and understand its machine code equivalent
3. An in-depth understanding of architectural blocks involved in computer arithmetic, both integer
and Floating point.
4. An in-depth understanding of the data path inside a processor, its control and handling of
exceptions
5. An in depth understanding of pipelining for 32-bit architectures
6. An ability to understand and analyze computer memory hierarchy, at all levels of its organization,
and the interaction between caches and main memory
7. An ability to understand multi-processor architectures

Course Contents:
Exercises that must be done in this course are listed below:
Exercise No.1: Introduction to 8085 Microprocessor.
Exercise No.2: a) Addition of 2 - 8 bit numbers

b) Subtraction of 2 - 8 bit numbers
Exercise No.3: a) Addition of 2 - 16 bit numbers

b) Subtraction of 2 – 16 bit numbers
Exercise No.4: a) Multiplication of 2 - 8 numbers

b) Division of 2 - 8 bit numbers
Exercise No.5: a) Ascending order

b) Descending order
Exercise No.6: Factorial of Given Numbers
Exercise No.7: To write an assembly language program to displace Fibanocci Series.

Text Book:

Recommended Systems/Software Requirements:

1. 8085 kit.

.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Experiment 1:-
Aim
To study the microprocessor 8085

Architecture of 8085 Microprocessor
a) General purpose register
It is an 8 bit register i.e. B,C,D,E,H,L. The combination of 8 bit register is known as register pair,
which can hold 16 bit data. The HL pair is used to act as memory pointer is accessible to program.
b) Accumulator
It is an 8 bit register which hold one of the data to be processed by ALU and stored the result of the
operation.
c) Program counter (PC)
It is a 16 bit pointer which maintain the address of a byte entered to line stack.
d) Stack pointer (Sp)
It is a 16 bit special purpose register which is used to hold line memory address for line next
instruction to be executed.
e) Arithmetic and logical unit
It carries out arithmetic and logical operation by 8 bit address it uses the accumulator content as
input the ALU result is stored back into accumulator.
f) Temporary register
It is an 8 bit register associated with ALU hold data, entering an operation, used by the
microprocessor and not accessible to programs.
g) Flags
Flag register is a group of fire, individual flip flops line content of line flag register will change after
execution of arithmetic and logic operation. The line states flags are
i) Carry flag (C)
ii) Parity flag (P)
iii) Zero flag (Z)
iv) Auxiliary carry flag (AC)
v) Sign flag (S)

h) Timing and control unit
Synchronous all microprocessor, operation with the clock and generator and control signal from it
necessary to communicate between controller and peripherals.
i) Instruction register and decoder
Instruction is fetched from line memory and stored in line instruction register decoder the stored
information.
j) Register Array

These are used to store 8 bit data during execution of some instruction.

PIN Description
Address Bus
1. The pins Ao – A15 denote the address bus.
2. They are used for most significant bit

Address / Data Bus
1. AD0 – AD7 constitutes the address / Data bus
2. These pins are used for least significant bit

ALE : (Address Latch Enable)
1. The signal goes high during the first clock cycle and enables the lower order address bits.

IO / M
1. This distinguishes whether the address is for memory or input.
2. When this pins go high, the address is for an I/O device.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

S0 – S1
S0 and S1 are status signal which provides different status and functions.
RD
1. This is an active low signal
2. This signal is used to control READ operation of the microprocessor.

WR
1. WR is also an active low signal
2. Controls the write operation of the microprocessor.

HOLD
1. This indicates if any other device is requesting the use of address and data bus.

HLDA
1. HLDA is the acknowledgement signal for HOLD
2. It indicates whether the hold signal is received or not.

INTR
1. INTE is an interrupt request signal
2. IT can be enabled or disabled by using software

INTA
1. Whenever the microprocessor receives interrupt signal
2. It has to be acknowledged.

RST 5.5, 6.5, 7.5
1. These are nothing but the restart interrupts
2. They insert an internal restart junction automatically.

TRAP
1. Trap is the only non-maskable interrupt
2. It cannot be enabled (or) disabled using program.

RESET IN
1. This pin resets the program counter to 0 to 1 and results interrupt enable and HLDA flip flops.

X1, X2
These are the terminals which are connected to external oscillator to produce the necessary and
suitable clock operation.
SID
This pin provides serial input data
SOD
This pin provides serial output data
VCC and VSS
1. VCC is +5V supply pin
2. VSS is ground pin

Specifications
1. Processors
Intel 8085 at E144 MHz clock
2. Memory
Monitor RAM: 0000 – IFFF
EPROM Expansion: 2000 – 3FFF’s
0000 – FFF
System RAM: 4000 – 5FFF
Monitor data area 4100 – 5FFF

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

RAM Expansion 6000 – BFFF
3. Input / Output
Parallel: A8 TTL input timer with 2 number of 32-55 only input timer available in -85 EBI.
Serial: Only one number RS 232-C, Compatible, crucial interface using 8281A
Timer: 3 channel -16 bit programmable units, using 8253 channel ‘0’ used for no band late. Clock
generator. Channel ‘1’ is used for single stopping used program.
Display: 6 digit – 7 segment LED display with filter 4 digit for adder display and 2 digit for data
display.
Key board: 21 keys, soft keyboard including common keys and hexa decimal keys.

RES: Reset keys allow to terminate any present activity and retain to - 85 its on initialize
state.

INT: Maskable interrupt connect to CPU’s RST 7.5 interrupt
DEC: Decrement the adder by 1
EXEC: Execute line particular value after selecting address through go command.
NEXT: Increment the address by 1 and then display its content.
Key Functions:
i. Hex entry key ‘0’
ii. Substituting memory content where “next” key is paused immediately after 1, take used to st
cutting address.
iii. Register key ‘E’

i) Hex code entry (1)
ii) Register key ‘D’

i) Hex code entry ‘2’
ii) Retricre data from data ‘memory’ to data top
iii) Register key ‘C’

i) Hex code entry ‘3’
ii) Retricre data from memory to top
iii) Register key ‘B’

i) Hex key entry ‘C’
ii) Block search from byte
iii) Register key ‘F’

i) Hex key entry ‘5’
ii) Fill block of RAM memory with desired data
iii) Register key ‘A’

i) Hex key entry ‘6’
ii) TN/Tl used for sending (or) receiving
iii) Register key ‘H’

i) Hex key entry ‘7’
ii) Register key ‘H’

i) Register key ‘S’
ii) Register key ‘I’

i) Hex key entry ‘A’
ii) Function key F3
iii) Register key “ph”

i) Hex key entry “y”

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

ii) Signal step program (instruction by instruction)

i) Hex key entry “c”
ii) Much a block of memory from a linear block
iii) Register key “SH”

i) Hex key D
ii) Compare 2 memory block

i) Hex key entry ‘B’
ii) Check a block from flame
iii) Register key “SPL”

i) Hex key ‘E’
ii) Insert by test into memory (RAM)

i) Hex key ‘F’
ii) Delete byte from memory RAM

System Power Consumption
Micro BSEB2 MICRO SSEB
+5V @ 1Amp +5V@ 800 mA
+12V @ 200 mA

- 12V @ 100 mA

Power Supply Specification
MICRO SSEM
230V, AC @ 80 Hz

+5V @ 600 mA

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

IC’s Used
8085 - 8 bit p
8253 - programmable internal timer
8255 - programmable peripheral interface
8279 - programmable key boards / display interface
8251 - programmable communication interface
2764 - 8 KV VV EPROM
6264 - 8K STATIC PROM
7414 - Hex inverter
7432 - Quad 21/p OR GATE
7409 - Quad 21/p AND GATE
7400 - NAND Gate
7404 - Dual D-FF
74373 - Octal ‘D’ Latch
74139 - Dual 2 to 4 line decoder
74138 - 3 to 8 line decoder

In Enter Program into Trainer Kit
1. Press ‘RESET’ key
2. Sub (key processor represent address field)
3. Enter the address (16 bit) and digit in hex
4. Press ‘NEXT’ key
5. Enter the data
6. Again press “NEXT”
7. Again after taking the program, are use HLT instruction its Hex code

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

8. Press “NEXT”

How to executive program
1. Press “RESET”
2. Press “GO”
3. Enter the address location in which line program was executed
4. Press “Execute” key

Result:
Thus 8085 microprocessor was studied successfully.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Experiment 2(a) :-

Aim:
To write an assembly language for adding two 8 bit numbers by using micro processor kit.
Apparatus required:
8085 micro processor kit
(0-5V) DC battery
Algorithm:
Step 1 : Start the microprocessor
Step 2 : Intialize the carry as ‘Zero’
Step 3 : Load the first 8 bit data into the accumulator
Step 4 : Copy the contents of accumulator into the register ‘B’
Step 5 : Load the second 8 bit data into the accumulator.
Step 6 : Add the 2 - 8 bit datas and check for carry.
Step 7 : Jump on if no carry
Step 8 : Increment carry if there is
Step 9 : Store the added request in accumulator
Step 10 : More the carry value to accumulator
Step 11 : Store the carry value in accumulator
Step 12 : Stop the program execution.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Calculation 1111 1111
1111 1111

(1) 1111 1110
=========
F E
Result:
The assembly language program for 8 bit addition of two numbers was executed successfully by
using 8085 micro processing kit.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Experiment 2 (b): -

Aim:
To write a assembly language program for subtracting 2 bit (8) numbers by using- 8085 micro
processor kit.
Apparatus required:
8085 micro processor kit
(0-5V) DC battery
Algorithm:
Step 1 : Start the microprocessor
Step 2 : Intialize the carry as ‘Zero’
Step 3 : Load the first 8 bit data into the accumulator
Step 4 : Copy the contents of contents into the register ‘B’
Step 5 : Load the second 8 bit data into the accumulator.
Step 6 : Subtract the 2 8 bit datas and check for borrow.
Step 7 : Jump on if no borrow
Step 8 : Increment borrow if there is
Step 9 : 2’s compliment of accumulator is found out
Step 10 : Store the result in the accumulator
Step 11 : More the borrow value from ‘c’ to accumulator
Step 12 : Store the borrow value in the accumulator
Step 13 : Stop program execution

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Calculation 05 – 07
07 – 0111
CMA 1000
ADJ 0.1 0001

1001
05 - 0101

1110 (-2)

Result:
The assembly language program subtraction of two 8 bit numbers was executed successfully by
using 8085 micro processing kit.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Experiment 3(a) :-

Aim:
To write an assembly language program for adding two 16 bit numbers using 8085 micro processor
kit.
Apparatus required:
8085 micro processor kit
(0-5V) DC battery
Algorithm:
Step 1 : Start the microprocessor
Step 2 : Get the 1st 8 bit in ‘C’ register (LSB) and 2nd 8 bit in ‘H’ register (MSB) of 16 bit number.
Step 3 : Save the 1st 16 bit in ‘DE’ register pair
Step 4 : Similarly get the 2nd 16 bit number and store it in ‘HL’ register pair.
Step 5 : Get the lower byte of 1st number into ‘L’ register
Step 6 : Add it with lower byte of 2nd number
Step 7 : tore the result in ‘L’ register
Step 8 : Get the higher byte of 1st number into accumulator
Step 9 : Add it with higher byte of 2nd number and carry of the lower bit addition.
Step 10 : Store the result in ‘H’ register
Step 11 : Store 16 bit addition value in ‘HL’ register pair
Step 12 : Stop program execution

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Calculation 0000 0100 0000 0001
0000 0011 0000 0010

0000 0111 0000 0011
0 7 0 3

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Result:
The assembly language program for addition of two 16 bit numbers was executed using 8085 micro
processing kit.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment 3(b) :-

Aim:
To write an assembly language program for subtracting two 16 bit numbers using 8085
microprocessor kit.
Apparatus required:
8085 microprocessor kit
(0-5V) DC battery
Algorithm:
Step 1 : Start the microprocessor
Step 2 : Get the 1st 16 bit in ‘HL’ register pair
Step 3 : Save the 1st 16 bit in ‘DE’ register pair
Step 4 : Get the 2nd 16 bit number in ‘HL’ register pair
Step 5 : Get the lower byte of 1st number
Step 6 : Get the subtracted value of 2nd number of lower byte by subtracting it with lower byte of 1st
number
Step 7 : Store the result in ‘L’ register
Step 8 : Get the higher byte of 2nd number
Step 9 : Subtract the higher byte of 1st number from 2nd number with borrow
Step 10 : Store the result in ‘HL’ register
Step 11 : Stop the program execution

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Result:
The assembly language program for subtraction of two 16 bit numbers was executed by using 8085
micro processing kit.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment 4(a) :-

Aim:
To write an assembly language for multiplying two 8 bit numbers by using 8085 micro processor kit.
Apparatus required:
8085 microprocessor kit
(0-5V) DC battery
Algorithm:
Step 1 : Start the microprocessor
Step 2 : Get the 1st 8 bit numbers
Step 3 : Move the 1st 8it number to register ‘B’
Step 4 : Get the 2nd 8 bit number
Step 5 : Move the 2nd 8 bit number to register ‘C’
Step 6 : Intialise the accumulator as zero
Step 7 : Intialise the carry as zero
Step 8 : Add both register ‘B’ value as accumulator
Step 9 : Jump on if no carry
Step 10 : Increment carry by 1 if there is
Step 11 : Decrement the 2nd value and repeat from step 8, till the 2nd value becomes zero.
Step 12 : Store the multiplied value in accumulator
Step 13 : Move the carry value to accumulator
Step 14 : Store the carry value in accumulator

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment 4(b) :-

Aim:
To write an assembly language program for dividing two 8 bit numbers using microprocessor kit.
Apparatus required:
8085 microprocessor kit
(0-5V) DC battery
Algorithm:
Step 1 : Start the microprocessor
Step 2 : Intialise the Quotient as zero
Step 3 : Load the 1st 8 bit data
Step 4 : Copy the contents of accumulator into register ‘B’
Step 5 : Load the 2nd 8 bit data
Step 6 : Compare both the values
Step 7 : Jump if divisor is greater than dividend
Step 8 : Subtract the dividend value by divisor value
Step 9 : Increment Quotient
Step 10 : Jump to step 7, till the dividend becomes zero
Step 11 : Store the result (Quotient) value in accumulator
Step 12 : Move the remainder value to accumulator
Step 13 : Store the result in accumulator
Step 14 : Stop the program execution

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Result:
The assembly language program for division of two 8 bit numbers was executed using 8085 micro
processing kit.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment 5(a) :-

Aim:
To write a program to sort given ‘n’ numbers in ascending order
Apparatus required:
8085 microprocessor kit
(0-5V) DC battery
Algorithm:
Step 1 : Start the microprocessor
Step 2 : Accumulator is loaded with number of values to sorted and it is saved
Step 3 : Decrement 8 register (N-1) Repetitions)
Step 4 : Set ‘HL’ register pair as data array
Step 5 : Set ‘C’ register as counter for (N-1) repetitions
Step 6 : Load a data of the array in accumulator
Step 7 : Compare the data pointed in ‘HL’ pair
Step 8 : If the value of accumulator is smaller than memory, then jump to step 10.
Step 9 : Otherwise exchange the contents of ‘HL’ pair and accumulator
Step 10 : Decrement ‘C’ register, if the of ‘C’ is not zero go to step 6
Step 11 : Decrement ‘B’ register, if value of ‘B’ is not zero, go step 3
Step 12 : Stop the program execution

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment 5(b):-

Aim:
To write a program to sort given ‘n’ numbers in descending order
Apparatus required:
8085 microprocessor kit
(0-5V) DC battery
Algorithm:
Step 1 : Start the microprocessor
Step 2 : Load the number of values into accumulator and save the number of values in register ‘B’
Step 3 : Decrement register ‘B’ for (N-1) Repetitions
Step 4 : Set ‘HL’ register pair as data array address pointer and load the data of array in accumulator
Step 5 : Set ‘C’ register as counter for (N-1) repetitions
Step 6 : Increment ‘HL’ pair (data address pointer)
Step 7 : Compare the data pointed by ‘HL’ with accumulator
Step 8 : If the value of accumulator is larger than memory, then jump to step 10, otherwise next step.
Step 9 : Exchange the contents of memory pointed by ‘HL’ and accumulator
Step 10 : Decrement ‘C’ register, if the of ‘C’ is not zero go to step 6, otherwise next step.
Step 11 : Decrement ‘B’ register, if ‘B’ is not zero, go step 3, otherwise next step.
Step 12 : Stop the program execution

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment 6:-

Aim:
To write an program to calculate the factorial of a number (between 0 to 8)
Apparatus required:
8085 microprocessor kit
(0-5V) power supply
Algorithm:
Step 1 : Intialize the stack pointer
Step 2 : Get the number in accumulator
Step 3 : Check for if the number is greater than 1. If no store the result otherwise go to next step.
Step 4 : Load the counter and initialize result
Step 5 : Now factorial program in sub-routine is called.
Step 6 : In factorial, initialize HL RP with 0. Move the count value to B Add HL content with Rp.
Decrement count (for multiplication)
Step 7 : Exchange content of Rp (DE) with HL.
Step 8 : Decrement counter (for factorial) till zero flag is set.
Step 9 : Store the result
Step 10 : Hault

Memory address Content
4250 05
4251 (12010)

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Experiment 7:-

Aim:
To write an assembly language program to displace Fibanocci Series.

Apparatus required:
8085 microprocessor kit
(0-5V) DC battery

Algorithm:
Step 1 : Start the microprocessor
Step 2 : Load the length of series in the accumulator and decrement it by 2
Step 3 : Move the value to register ‘D’
Step 4 : Load the starting value of data value address
Step 5 : Intialise the 1st number as 00
Step 6 : Move the pointer to 2nd data and intialise them as ‘01’
Step 7 : Move the pointer to next position for next data
Step 8 : Intialise B as ‘00’ and C as ‘01’ for calculations
Step 9 : Copy the contents of ‘B’ to accumulator
Step 10 : Add the content of ‘C’ register to accumulator
Step 11 : Move the content ‘C’ to ‘B’ and ‘A’ to C
Step 12 : Now store the result to memory pointed by ‘HL’ pair
Step 13 : Move the pointer to next pointer
Step 14 : Decrement 0 by 1 for counter
Step 15 : If ‘D’ is not zero, go to step 9
Step 16 : if ‘D’ is zero, end the program

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

00 + 01 = 01
01+ 01 = 02
02 + 01 = 03
Result:
The assembly language for Fibonaci series was executed successfully using 8085 microprocessor kit.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: PHP, .NET Lab
Course Code: CS593
L-T-P scheme: 1-0-2 Course Credit: 2

Objectives:

 Understand the importance of the web as a medium of communication.
 Understand the principles of creating an effective web page, including an in-depth consideration

of information architecture.
 Become familiar with graphic design principles that relate to web design and learn how to

implement these theories into practice.
 Develop skills in analyzing the usability of a web site.
 Learn the language of the web:Sql, .net, PHP, HTML and CSS.

Learning Outcomes:

 Apply critical thinking and problem solving skills required to successfully design and implement
a web site.

 Demonstrate the ability to analyse, identify and define the technology required to build and
implement a web site.

 Demonstrate knowledge of artistic and design components that are used in the creation of a
web site.

 Utilize and apply the technical, ethical and interpersonal skills needed to function in a
cooperative environment.

 Apply critical thinking and problem solving skills required to successfully design and implement
a web site.

 Demonstrate the ability to analyze, identify and define the technology required to build and
implement a web site.

Course Contents:
Exercises that must be done in this course are listed below:
Exercise No.1: Create a form in HTML for entering value for some specific fields. (Registration
Page)
Exercise No.2: Create table in SQL for storing data of registration page. (Using sql query)
Exercise No.3: Create a webpage to show the data which is entered in sql tables through registration
page.
Exercise No. 4: Create a web page to file upload option, so user can upload document on website.
Exercise No. 5: Create a webpage to show the uploaded document.
Exercise No. 6: assemble all the web page to create a website for a specific organization and set
authentication for user (Minor Project).
Exercise No. 7: Create master page for previous developed pages.
Exercise No. 8: Apply validators for all fields which are used in previous developed pages.
Exercise No. 9: Major project.
Text Book:
1. Maurice J. Bach, Design of the UNIX Operating System, PHI.

Recommended Systems/Software Requirements:
1. Desktop PC with minimum of 166 MHZ or faster processor with at least 1 GB RAM and 160 GB

disk space.
2. Visual studio 2012, Microsoft sql server 2008 R2

Experiment No 1: Registration Page
Aim: Create a form in HTML for entering value for some specific fields.

Description:
Here a registration page will be developed which have the following fields.
Name, Father Name, Mother name, Course name, Semester, Address, Contact number, Comment,
and submit button

INPUT 1:
Name: Subrat
Father name: Gautam
Mother name: Gautam
Course: B.tech
Semester: 5th

Address: Jaipur
Contact: 0123456789

OUTPUT 1:

Experiment No 2: Using sql query
Aim: Create table in SQL for storing data of registration page.
Description:
Here student have to develop a Sql table in which the following should be cover:
Name, Father Name, Mother name, Course, Semester, Address, Contact, Comment

OUTPUT 1:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment No: 3 Grid View
Aim: Create a webpage to show the data which is entered in sql tables through registration
page.

Description:
Here student have to show the data which is stored in sql table with the help of grid view.

Output 1:

Experiment No:4 File upload
Aim: Create a web page to file upload option, so user can upload document on website.

Description:
Here student have to develop a web page from where user can upload any file.

OUTPUT 1:

Experiment No: 5Grid view with hyperlink option.
AIM: Create a webpage to show the uploaded document.

Description:
Here student have to develop a grid view so user can see the list of file which is uploaded on
website.

OUTPUT 1:

Experiment No: 6 Authentications (Login)
AIM: Develop login page.

Description:
Here student have to develop a webpage where user can enter registered id and password to access
system.

OUTPUT 1:

Experiment No 7: Master pages
AIM: Create master page for previous developed pages.

Description:
Here student have to develop master page to provide good look and strong functionality to website.

OUTPUT 1:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment No: 8 Validators.
AIM: Apply validators for all fields which are used in previous developed pages

Description:
Here student have to set validators for fields in registration page.

OUTPUT 1:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Circuit Theory & Network Lab
Course Code: CS504A
L-T-P scheme: 0-0-3 Course Credit: 2

Objectives:
1. To learn and understand to design electrical circuit practically or through any simulation

software.
2. To provide an understanding of the circuit designing aspects in bread board.
3. To provide a window to investigate and verify various laws, theories, and concepts regarding

electrical circuits practically or virtually by simulation software.

Learning Outcomes: The students will have a detailed knowledge of electrical circuit design using
different electrical elements and sources through bread board or by any simulation software. The
students will also get the opportunity & better understanding of various concepts, laws, & theories
applicable in any electrical circuit by investigating and verifying them in the practically designed
circuit.Upon the completion of Operating Systems practical course, the student will be able to:

 Understand and implement electrical circuit design knowledge to realize any electrical
circuit practically

 Use modern simulation software to recreate any practical circuit virtually.
 Understand the benefits of circuit design in bread board.
 Analyze designed circuit to see weather various laws, theories, and concepts regarding

electrical circuits holds or not.
 Simulateelectrical circuits through any simulation software to check weather various laws,

theories, and concepts regarding electrical circuits they studied holds or not.

Course Contents:
Exercises that must be done in this course are listed below:
Exercise No.1: Verification of Thevenin’s Theorem: Hardware/Simulation
Exercise No. 2: Verification of Norton’s Theorem: Hardware/Simulation
Exercise No. 3: Verification of TheoremSuperposition Theorem: Hardware/Simulation
Exercise No. 4: Verification of Maximum Power Transfer: Hardware/Simulation
Exercise No. 5: Study of Z-parameters of any practical circuit treated as Two-port network:
Hardware/Simulation
Exercise No. 6: Study of Y-parameters of any practical circuit treated as Two-port network:
Hardware/Simulation
Exercise No. 7: Study Resonance of a series RLC circuit: Hardware

Text Book:
1. S.P.Ghosh&A.Chakraborty , “Circuit Theory & Networks”, TMH
2. Muhammad H. Rashid, “Introduction to PSpice Using Orcad for circuits and Electronics”,
Pearson Education.

Recommended Systems/Software Requirements:
1. MATLAB
2. SPICE.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment No: 1.Verification of Thevenin’s Theorem experimentally
Aim: To Verify the Thevenin’s Theorem in breadboard or through MATLAB/SPICE.

Description:

APPARATUS REQUIRED:-If Practically by circuit design
(i) Bread Board
(ii) Connecting Wire
(iii) Different values of resistances
(iv) A Dc power Source

If by any simulation software
(i) MATLAB/SPICE

THEORY:

Sometimes, we wish to determine the response in a single load resistance in a network.

Thevenin Theorem enables us to replace the remainder of the network by a simple

equivalent circuit. Determining response in the load resistance, then becomes easier. The

use of Thevenin Theorem is specially very helpful and time saving when we wish to find the

response for different values of load resistance. Thevenin Theorem states that current

through a load resistance connected across any two points of an active network can be

obtained by the formula:

IL=Vth/(Rth+RL)

Where Vth is the open circuit voltage at the terminals of RL when RL is disconnected and

Rth is the equivalent resistance viewed from the load terminals when all the sources replaced

by their internal resistance only(Deactivating all the sources).

CIRCUIT DIAGRAM:

Draw the circuit diagram as per the resistance and circuit are given in the lab.

CALCULATIONS:

Calculate the theoretical/simulation data’s of the given circuit

OBSERVATION TABLE:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Values Vth Rth IL

Theoretical Value

Practical Value

Percentage Error= [(Observed-Calculated)/Calculated]*100

RESULT:

The percentage error is found to be__%.

DISCUSSION:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment No: 2.Verification of Norton’s Theorem experimentally
Aim: To Verify the Norton’s Theorem in breadboard or through MATLAB/SPICE.

Description:

APPARATUS REQUIRED:-If Practically by circuit design
(v) Bread Board
(vi) Connecting Wire
(vii) Different values of resistances
(viii) A Dc power Source

If by any simulation software
(ii) MATLAB/SPICE

THEORY:

Sometimes, we wish to determine the response in a single load resistance in a network.

Norton’s Theorem enables us to replace the remainder of the network by a simple equivalent

circuit. Determining response in the load resistance, then becomes easier. The use of

Norton Theorem is specially very helpful and time saving when we wish to find the

response for different values of load resistance. Thevenin Theorem states that current

through a load resistance connected across any two points of an active network can be

obtained by the formula:

IL=(*)/(+)

Where is the Short circuit current at the terminals of RL when RLShort circuited and

wefind out the short circuit current through the short circuit terminal and RN is the

norton’sequivalent resistance viewed from the load terminals when all the sources are

replaced by their internal resistance only(Deactivatingall the sources).

CIRCUIT DIAGRAM:

Draw the circuit diagram as per the resistance and circuit are given in the lab.

CALCULATIONS:

Calculate the theoretical/simulation data’s of the given circuit

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

OBSERVATION TABLE:

Values IN RN IL

Theoretical Value

Practical Value

Percentage Error= [(Observed-Calculated)/Calculated]*100

RESULT:

The percentage error is found to be__%.

DISCUSSION:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment No: 3.Verification of Superposition Theorem experimentally
Aim: To Verify the Superposition Theorem in breadboard or through MATLAB/SPICE.

Description:

APPARATUS REQUIRED:-If Practically by circuit design
(i) Bread Board
(ii)Connecting Wire
(iii) Different values of resistances
(iv) A Dc power Source

If by any simulation software
(i) MATLAB/SPICE

THEORY:

Superposition theorem states that in a linear network containing several independent

sources, the overall response at any point in the network equals the sum of responses due to

each independent source considered separately with all other independently sources made

inoperative(short circuited). To make a source inoperative, it is short circuited leaving

behind its internal resistance if it is a voltage source, and it is open circuited leaving behind

its internal resistance if it is a current source.

In most electrical circuit analysis problems, a circuit is energized by a single independent

energy source. In such cases, it is quite easy to find the response (i.e., current, voltage,

power) in a particular branch of the circuit using simple network reduction techniques (i.e.,

series parallel combination, star delta transformation, etc.).

However, in the presence of more than one independent source in the circuit, the response

cannot be determined by direct application of network reduction techniques. In such a

situation, the principle of superposition may be applied to a linear network, to find the

resultant response due to all the sources acting simultaneously.

The superposition theorem is based on the principle of superposition. The principle of

Superposition states that the response (a desired current or the voltage) at any point in the

linear network having more than one independent source can be obtained as the sum of

responses caused by the separate independent sources acting alone. The validity of principle

of superposition means that the presence of one excitation sources does not affect the

response due to other excitations.

CIRCUIT DIAGRAM:

Draw the circuit diagram as per the resistance and circuit are given in the lab.

CALCULATIONS:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Calculate the theoretical/simulation data’s of the given circuit

OBSERVATION TABLE:

Values I3 I3’ I3’’

Theoretical Value

Practical Value

I3 = Current through the load terminal when we deactivate second source and consider for
first source

I3’= Current through the load terminal when we deactivate first source and consider for

second source

I3’’= I3+I3’

Percentage Error= [(Observed-Calculated)/Calculated]*100

RESULT:

The percentage error is found to be__%.

DISCUSSION:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment No: 4.Verification of Maximum Power Transfer Theorem experimentally
Aim: To Verify the Maximum Power Transfer Theorem in breadboard or through
MATLAB/SPICE.

Description:

APPARATUS REQUIRED:-If Practically by circuit design
(i) Bread Board
(ii) Connecting Wire
(iii) Different values of resistances
(iv) A Dc power Source

If by any simulation software
(i) MATLAB/SPICE

THEORY:

This theorem is applicable for analysing communication networks. According to this

theorem” a resistive load will draw the maximum power from a network when the load

resistance is equal to the resistance of the network as viewed from its output terminals, with

all energy sources removed leaving behind their internal resistances.” If RL is the load

resistance connected across terminals a and b which consist of variable DC supply and

internal resistance is RS, then according to this theorem, the load resistance will draw

maximum power when it is equal to RS i.e. RL = RS.

And the maximum power drawn= V2oc/4 RL

Where, Voc is the open circuit voltage at the terminals from which RL is disconnected.

The variable resistor taken should be larger than fixed resistor. Then only power can be

calculated.

CIRCUIT DIAGRAM:

Draw the circuit diagram as per the resistance and circuit are given in the lab.

CALCULATIONS:

Calculate the theoretical/simulation data’s of the given circuit

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

OBSERVATION TABLE:

S.No Load Resistance(RL) IL(Load Current) Power(P=IL
2*RL)

RESULT:

Plot a graph between load resistance and power and observe that the power will be

maximum when (Load resistance= Internal Resistance)

DISCUSSION:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment No: 5.Study of Z-parameters of a Two-port network experimentally
Aim: To Study Z-parameters of any practical circuit treated as Two-port network in
breadboard or through MATLAB/SPICE.

Description:

APPARATUS REQUIRED:-If Practically by circuit design
(i) Bread Board
(ii) Connecting Wire
(iii) Different values of resistances
(iv) A Dc power Source

If by any simulation software
(i) MATLAB/SPICE

THEORY
A two-Port network basically consists in isolating either a complete circuit or part of it and

finding its characteristics parameters. Once this is done, the isolated part of the circuit

becomes a “black box” with a set of distinctive properties, enabling us to abstract away its

specific build up, thus simplifying analysis.

Here,
V1 = Input voltage

V2 = Output voltage

I1 = Input current

I2 = output current

Z-model: In the Z-model or impedance model the two currents I1 & I2 are assumed to be

known and the voltage V1& V2 can be found by:12 = 11 1221 22 I1I2
Where,

Z11 = 1 1 taking I2=0 Z12 = 1 2 taking I1=0

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Z21 = 2 1 taking I2=0 Z22 = 2 2 taking I1=0

CIRCUIT DIAGRAM:

Draw the circuit diagram as per the resistance and circuit are given in the lab.

CALCULATIONS:

Calculate the theoretical/simulation data’s of the given circuit

OBSERVATION TABLE:

Sl. No. When Output is open circuited (i.e. I2 =0) When Input is open circuited (i.e. I1 =0)
V1 V2 I1 V1 V2 I2

1.
2.
3.
4.
5.

Percentage Error= [(Observed-Calculated)/Calculated]*100

RESULT:

The percentage error is found to be__%.

DISCUSSION:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment No: 6. Study of Y-parameters of a Two-port network experimentally
Aim: To Study Y-parameters of any practical circuit treated as Two-port network in
breadboard or through MATLAB/SPICE.

Description:

APPARATUS REQUIRED:-If Practically by circuit design
(i) Bread Board
(ii) Connecting Wire
(iii) Different values of resistances
(iv) A Dc power Source

If by any simulation software
(i) MATLAB/SPICE

THEORY
A two-Port network basically consists in isolating either a complete circuit or part of it and

finding its characteristics parameters. Once this is done, the isolated part of the circuit

becomes a “black box” with a set of distinctive properties, enabling us to abstract away its

specific build up, thus simplifying analysis.

Here,
V1 = Input voltage

V2 = Output voltage

I1 = Input current

I2 = output current

Y-model: In the Y-model or admittance model, the two voltages V1& V2 are assumed to be

known and the currents I1 & I2can be found by:12 = 11 1221 22 V1V2
Where,

Y11 = 1 1 taking V2=0 Y12 = 1 2 taking V1=0

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Y21 = 2 1taking V2=0 Y22 = 2 2taking V1=0

CIRCUIT DIAGRAM:

Draw the circuit diagram as per the resistance and circuit are given in the lab.

CALCULATIONS:

Calculate the theoretical/simulation data’s of the given circuit

OBSERVATION TABLE:

Sl. No. When Output is short circuited (i.e. V2 =0) When Input is short circuited (i.e. V1 =0)
V1 I1 I2 V2 I1 I2

1.
2.
3.
4.
5.

Percentage Error= [(Observed-Calculated)/Calculated]*100

RESULT:

The percentage error is found to be__%.

DISCUSSION:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment No: 7. Study of Resonance experimentally
Aim: To Study Resonance of a series RLC circuit in breadboard

Description:

APPARATUS REQUIRED:-
(i) Bread Board
(ii) Connecting Wire
(iii) Different values of resistances
(iv) A Dc power Source

THEORY
Resonance occurs in an electrical circuit excited by AC source when the net inductive

reactance (XL) and net capacitive reactance (XC) become equal either because for a fixed

frequency as circuit’s inductance (L) is equal to capacitance (C) or due to a particular

frequency where XL = XC.

A simple series RLC circuit

When stated above condition arises in a circuit as given here the net impedance (Znet)

becomes minimum or equal to only resistance (R) of the circuit and the circuit starts

operating in resonance with unity power factor. At resonance the value of net current is

maximum as the net impedance is minimum.

CIRCUIT DIAGRAM:

Draw the circuit diagram as per the resistance, inductance & capacitancevalues as given in

the lab.

CALCULATIONS:

Calculate the theoretical data’s of the given circuit to find out the value of net impedance

and current at resonance.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

OBSERVATION TABLE:

SL. No. Different frequencies Load/source current

1. f1

2. f2

3. f0

4. f3

5. f4

Here, f0 is resonance frequency and f1<f2<f0<f3<f4

Percentage Error= [(Observed-Calculated)/Calculated]*100

RESULT:

The percentage error is found to be__%.

DISCUSSION:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Digital Communication Lab
Course Code: CS594B
L-T-P scheme: 0-0-3 Course Credit: 2

Objectives:
Digital communication uses electrical signaling methods to transmit information over a physical
channel separating a transmitter and receiver with the channel properties often time varying. This
course presents the theory and practice of digital communication including signal design,
modulation methods, demodulation methods, wireless channel basics and the application of this
to the design of modern OFDM systems.

Learning Outcomes:
Upon successful completion of this course, the students will be able to;
1. Understand the basic concepts of advanced digital communication systems
2. Apply different modulation schemes to baseband signals
3. Analyze the BER characteristics of Baseband Modulated signals

Course Contents:
Exercises that must be done in this course are listed below:

1. To study different types of signal sampling and its reconstruction.
2. To study Pulse Position Modulation
3. To generate the pulse width modulated and demodulated signals.
4. Study of Time Division Multiplexing System.
5. To study delta modulation & demodulation and observe the effect of slope overload
6. To study the operation of Amplitude Shift Keying modulation and demodulation with the

help of circuit connections.
7. To study the operation of Frequency Shift Keying modulation and demodulation with the

help of kit.
8. To generate Pulse shift key (PSK) With Wave forms.
9. To study Quadri Phase Shift Keying (QPSK).10. To study Differential Phase Shift Keying (DPSK).

Text Book:
1.J. D. Proakis and M. Salehi (2008), Digital Communication,
2.McGraw HilDavid Silage (2009), Digital Communication

Recommended Kits and Equipment Requirements:
1. Digital communication,Advance Digital communication kits
2. DSO, FG, Probes

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

EXPERIMENT-1

Aim:To study different types of signal sampling and its reconstruction.

ApparatusRequired:
1. Sampling and its reconstruction Kit-DCL01
2. Digital Storage Oscilloscope(DSO)
3. Power supply
4. Patch cords

Theory:Regardless of the sampling method used, by definition it captures only pieces
of the message. So, how can the sampled signal be used to recover the whole
message? This question can be answered by considering the mathematical model that
defines the sampled signal:

Sampled message = the sampling signal × the message
As you can see, sampling is actually the multiplication of the message with the

sampling signal. And, as the sampling signal is a digital signal which is actually
made up of a DC voltage and many sinewaves (the fundamental and its harmonics)
the equation can be rewritten as:

Sampled message = (DC + fundamental + harmonics) × message

Block Diagram:

Fig. 1.1BlockDiagram for Natural Sampling

Fig. 1.2BlockDiagram for Sample and Hold

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Fig. 1.3BlockDiagram for Flat Top Sampling

Waveforms

a. Sampling b. Reconstruction

Fig. 1. Showing sampling and reconstruction waves

Conclusion:

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

EXPERIMENT-2

Aim:To study Pulse Position Modulation.

ApparatusRequired:Dual trace CRO, PPM kit, connecting leads.

THEORY:

In Pulse Position Modulation, both the pulse amplitude and pulse duration are held constant but
the position of the pulse is varied in proportional to the sampled values of the message signal.
Pulse time modulation is a class of signalling techniques that encodes the sample values of analog
signal onto the time axis of a digital signal and it is analogous to angle modulation techniques.
The two main types of PTM are PWM and PPM. In PPM the analogsample value determines the
position of a narrow pulse relative to the clocking time. In PPM rise time of pulse decides the
channel bandwidth. It has low noise interference.

CIRCUITDIAGRAMandWAVEFORM:

Fig. 1. PPM generation circuit and PPM waveform

Conclusion:

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

EXPERIMENT-3

AIM:To generate the pulse width modulated and demodulated signals.

Apparatus Required:Capacitors-0.01µF, 1µF, Resistors- 1.2kΩ, 1.5kΩ, 8.2kΩ, IC555,
Function generator, DSO.

THEORY:
Pulse Time Modulation is also known as Pulse Width Modulation or Pulse Length Modulation.
In PWM,the samples of the message signal are used to vary the duration of the individual
pulses. Width may bevaried by varying the time of occurrence of leading edge, the trailing edge
or both edges of the pulse inaccordance with modulating wave. It is also called Pulse Duration
Modulation.

CIRCUIT DIAGRAM:

Fig. 1. Pulse width modulation generator circuit

Fig. 2. Pulse width modulation demodulation circuit

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Waveforms:

Fig. 2.Showing PWM signal

Observation Table:

Sl. No. Control Voltage (Vp-p) O/P Pulse Width (m sec)

Conclusion:

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

EXPERIMENT-4

Aim:Study of Time Division Multiplexing System

Apparatusrequired: TDM Transmitter Trainer, Connecting wires, DSO.

Theory: Time Division is a technique of transmitting more than one information on the
same channel. The samples consist of short pulses followed by another pulse after a
long-time interval, this is as shown in fig.1.
This no-activity time intervals can be used to include samples from the other channels as
well. This means that several information can be transmitted over a single channel by
sending samples from different information sources at different moments in time. This
technique is known as Time Division Multiplexing or TDM. TDM is widely used in
digital communication systems to increase the efficiency of the transmitting.

Block diagram:

Fig. 1.Block diagram of TDM system.

Waveform:

Fig. 2.Showing TDM waveform with long time intervals between the samples.

Conclusion:

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

EXPERIMENT-4

Aim:To study delta modulation & demodulation and observe the effect of slope
overload.

Apparatusrequired: Delta modulation / demodulation trainer, Connecting wires, DSO.

Theory:Delta Modulation is a system of Digital Modulation scheme in which the
difference between the sample value at sampling time K and sample value at the
previous sampling time (k – 1) is encoded into just a single bit.
The baseband signal m(t) and its quantized approximation m’(t) are applied as inputs to
a comparator. A comparator simply makes a comparison between inputs. If signal
amplitude has increased, then modulators output is at logic level 1. If the signal
amplitude has decreased, the modulator output is at logic level 0. Thus the output from
the modulator is a series of 0’s and 1’s to indicate rise and fall of the waveform since the
previous value. The comparator output is then latched into a D flip-flop which is
clocked by the transmitter clock. Thus the output of the flip-flop is a latched 1 or 0
synchronous with the transmitter clock edge. The binary sequence is transmitted to
receive and is also fed to the unipolar to bipolar converter. This block converts logic 0 to
voltage level of +4V and 1 to voltage level of – 4V. The bipolar output ia applied to the
integrator whose output is : a) Rising linear ramp signal when – 4V is applied to it b)
Falling linear ramp signal when + 4V is applied to it. The integrator output is then
connected to the – ve terminal of voltage comparator.

Block Diagram:

Fig.1.: Delta Modulator

Fig.2.: Delta demodulator

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Observation:

Conclusion:

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

EXPERIMENT-6

Aim:To study the operation of Amplitude Shift Keying modulation and demodulation
with the help of circuit connections.

Apparatusrequired:

1. Resistors 1.2KΩ 3
2. Transistor BC 107 2
3. DSO 1
4. Functiongenerator 0-1MHz 1
5. Regulated PowerSupply 0-30V,1A 1
6. Probes --- 1

Theory:

The binary ASK system was one of the earliest form of digital modulation used in
wireless telegraphy. In an binary ASK system binary symbol 1 is represented by
transmitting a sinusoidal carrier wave of fixed amplitude Ac and fixed frequency fc for
the bit duration Tb whereas binary symbol 0 is represented by switching of the carrier for
Tb seconds. This signal can be generated simply by turning the carrier of a sinusoidal
oscillator ON and OFF for the prescribed periods indicated by the modulating pulse
train. For this reason, the scheme is also known as on-off shift testing. Let the sinusoidal
carrier can be represented by Ec (t) =Ac cos (2Πfct) then the binary ASK signal can be
represented by a wave s(t) given by S(t) = Accos(2Πfct), symbol 1 ASK signal can be
generated by applying the incoming binary data and the sinusoidal carrier to the two
inputs of a product modulator. The resulting output is the ASK wave. The ASK signal
which is basically product of the binary sequence and carrier signal has a same as that of
base band signal but shifted in the frequency domain by ±fc. The band width of ASK
signal is infinite but practically it is 3/Tb.
Circuit diagram:

Fig. 1.Amplitude Shift Keying and demodulation Circuit

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Waveforms:

Fig. 2.Showing Amplitude Shift Keying signal

Conclusion:

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

EXPERIMENT-7

Aim:To study the operation of Frequency Shift Keying modulation and demodulation with
the help of kit.

Apparatus Required:FSK kit, DSO and connecting probes

Theory:

Frequency Shift Keying is the process generating a modulated signal from a digital data
input. If the incoming bit is 1, a signal with frequency f1 is sent for the duration of the bit. If
the bit is 0, a signal with frequency f2 is sent for the duration of this bit. This is the basic
principle behind FSK modulation.
Basically a 555 timer is used as an Astablemultivibrator, which generates a clock pulse of
frequency determined by the values of R and C in this circuit. This is divided by 2, 4, 8 and 16
using 74163 IC, and two of these outputs are used in a NAND logic gates circuit, to generate a
FSK modulated wave. To this NAND gates’ circuit a binary data sequence is also supplied.
The circuit operation causes a frequency f1 for bit 1, and f2 for bit 0.
In the demodulator circuit, the FSK modulated signal is applied to a high Q tuned filter. This
filter is tuned to the frequency of either 0 or 1. This filter passes the selected frequency and
rejects the other. The output is then passed through a FWR (Full Wave Rectifier) circuit and
the output is now above zero volts only. It is then passed through a comparator; if the input to
the comparator is greater than threshold value, the output is 1, else it is 0. This digital output
of the comparator is the demodulated FSK output.

Circuit diagram:

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Waveforms

Fig. 1. Showing waveform of Frequency shift keying.

Conclusion:

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

EXPERIMENT No. :8

Aim:To study Phase Shift Keying (PSK).

Apparatus Used: Trainer kit, Connecting wires, DSO.

Theory:Phase shift keying (PSK) involves the phase shift change of the carrier sine
wave between 0º and 180º in accordance with the data stream to be transmitted. PSK
is also known as phase reversal keying (PSK).
Functionally, the PSK modulator is very similar to the ASK modulator . both uses
balanced modulator to multiply the carrier with the modulating signal. Bit in contrast
to ASK technique, the digital signal applied to the modulation input for PSK
generation is bipolar i.e. have equal positive and negative voltage levels. When the
modulating input is positive the output of modulator is a sine wave in phase with the
carrier input. Whereas for the negative voltage levels, the output of modulator is a
sine wave which is shifted out of phase 180º from the carrier input.

Block Diagram:

Fig. 1:Block diagram of PSK modulator

Fig. 2. Block diagram of PSK demodulator

Waveforms:

Fig. 3. PSK waveform

Conclusion:

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

EXPERIMENT No. :9

Aim:To study QuadriPhase Shift Keying (QPSK).

Apparatus Used:Trainer kit, Connecting wires, DSO.

Theory:With quadrature phase shift keying modulation (also called quaternary
PSK,Quadriphase PSK or 4-PSK), a sinusoidal waveform is varied in phase whilekeeping
the amplitude and frequency constant. The term quadrature indicatesthat there are four
possible phases.
Equation (1) shows the general expression for a QPSK waveform.() = [+ ()] (1)

Block Diagram:

Fig. 1.Block diagram of QPSK Modulator.

Waveforms and Constellation diagram:

(a) (b)

Fig. 2.Constellation diagram (a) = , , , (b) = 0, , ,

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Fig. 3.Waveform of QPSK signal

Conclusion:

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

EXPERIMENT No. :10

Aim:To study Differential Phase Shift Keying (DPSK).

Apparatus Used:Trainer kit, Connecting wires, DSO.

Theory:DPSK is noncoherent form of phase shift keying which avoids the need for a
coherent reference signal at the receiver.Input binary sequence is first differentially encoded
and then modulation using a BPSK modulator. Differentially encoded sequence {dk} is
generated from the input binary sequence {mk} by complementing the modulo-sum of mk

and dk-1. DPSK generation sequence is illustrated in Table 1.

Table 1. Illustrating DPSQ sequence

mk 1 0 0 1 0 0 1 1
dk-1 1 1 0 1 1 0 1 1
dk 1 1 0 1 1 0 1 1 1

Block diagram:

Fig. 1: Block diagram of generating DPSK signal

Fig. 2: Block diagram of demodulating DPSK signal

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Waveform:

Fig. 3:Waveform showing DPSK signal.

Conclusion:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Digital Signal Processing lab
Course Code: CS594C
L-T-P scheme: 0-0-3 Course Credit: 2

Objectives:
The main objective of this course is to introduce the architecture of DSP processor for developing real-
time applications. In this course students, will learn about the computational building blocks and the basic
architectural features of DSP. They will learn about programmable digital signal processors and
implementation details of DSP algorithms like digital filters, including basic adaptive filters and FfTs.
They will also be introduced to CODEC programming and interfacing codec and DSP as
well as several real-world applications of DSP processors.

Learning Outcomes:
1. Understand the architecture and building blocks of digital signal processor.
2. Analyze and process signals using DSP Processor.
3. Implementing FIR, IIR and basic adaptive filters to suit specific requirements for specific applications.
4. Learn codec programming and interfacing it with DSP.
5. Understand the applications of DSP processors
6. Designing and implementing a small application using DSP processor

Course Contents:
Exercises that must be done in this course are listed below:
Experiment 1: - Generate continuous and Discrete signal
Experiment 2: - Graphical representation of unit step signal
Experiment 3: - Graphical representation of unit sample signal
Experiment 4: - Graphical representation of unit ramp signal
Experiment 5: - Graphical representation of exponential signal
Experiment 6: - Graphical representation of exponential increasing- decreasing signal
Experiment 7: - Graphical representation of even signal
Experiment 8: - Graphical representation of odd signal
Experiment 9:- Determine whether given signal is periodic or not
Experiment 10: - Convolution of given sequences
Experiment 11: - Cross correlation of given sequences
Experiment 12: - Plot Magnitude and Phase Response
Experiment 13: - Impulse Response of a given System
Experiment 14: -Z Transform of the Sequence a given sequence
Experiment 15: - Inverse Z Transform of the Sequence a given sequence
Experiment 16: - DFT and IDFT of a Sequence
Experiment 17: - 8- point DFT of the Sequence
Experiment 18: - Circular convolution of following sequences

Text Book:
1. J. G. Proakis and D. G. Manolakis, “Digital Signal Processing”, Prentice Hall India, 3rd edition,

1997, ISBN: 81-203-1129-9

Recommended Systems/Software Requirements:
1. SCILAB

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment 1: -Generate continuous and Discrete signal

AIM: - To write a scilab code to sketch the continuous time signal x (t) =2∗exp(-2 t) and also its
discrete time equivalent signal with a sampling period T = 0 . 2 sec

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

Source Code: -

clear;
clc ;
close ;
t =0:0.01:2;
x1 =2* exp (-2*t);
subplot (1 ,2 ,1);
plot (t,x1);

xlabel (’ t ’);
ylabel (’ x (t) ’);
title (’CONTINUOUS TIME PLOT ’);
n =0:0.2:2;
x2 =2* exp (-2*n);

subplot (1 ,2 ,2);
plot2d3 (n, x2);
xlabel (’n ’);
ylabel (’ x (n) ’);
title (’DISCRETE TIME PLOT ’);

Output: -

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment 2: - Graphical representation of unit step signal

AIM: - To write the Scilab code to find the unit step signal and sketch the output wave form.

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

Source Code: -

clear;
clc;
close;
L = 4; // Upper limit
n = -L: L;
x = [zeros (1, L), ones (1, L +1)];
a= gca ();
a. thickness = 2;
a. y_location = "middle ";
plot2d3 (‘gnn‘, n,x)
xtitle(‘Graphical Representation of Unit Step Signal', ' n ', ' x [n] ');

Output: -

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment 3: - Graphical representation of unit sample signal

AIM: - To write the Scilab code to find the unit sample signal and sketch the output wave form.

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

Source Code: -

clear;
clc;
close;
L = 4; // Upper limit
n = -L: L;
x = [zeros (1,L) ,1, zeros (1,L)];
a= gca ();
a.thickness = 2;
a.y_location = " middle ";
plot2d3 (’ gnn ’ ,n,x)
xtitle (’ Graphical Representation of Unit Sample Sequence ’ , ’ n ’ , ’ x [n] ’);

Output: -

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment 4: - Graphical representation of unit ramp signal

AIM: - To write the Scilab code to find the unit ramp signal and sketch the output wave form.

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

Source Code: -

clear;
clc;
close;
L = 4; // Upper limit
n = -L: L;
x = [zeros (1, L) ,0: L];
a= gca ();
a.thickness = 2;
a.y_location = "middle ";
plot2d3 (‘gnn‘, n,x)
xtitle('Graphical representation of unit ramp signal, ' n ' , ' x [n] ');

Output: -

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment 5: - Graphical representation of exponential signal

AIM: - To write the Scilab code to find the exponential signal and sketch the output wave form.

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

Source Code: -

clear;
clc ;
close ;
a =1.5;
n =1:10;
x = (a)^n;
a= gca ();
a.thickness = 2;
plot2d3 (' gnn ' ,n,x)
xtitle (' Graphical representation of exponential signal', ' n ' , ' x [n] ');

Output: -

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment 6: - Graphical representation of exponential increasing- decreasing signal

AIM: - To write the Scilab code to find the exponential increasing- decreasing signal and sketch the
output wave form.

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

Source Code: -

clear;
clc;
close;
a = -1.5;
n = 0:10;
x = (a)^n;
a= gca ();
a. thickness = 2;
a. x_location = " o r i g i n ";
a. y_location = " o r i g i n ";
plot2d3 (' gnn ' ,n,x)
xtitle (' Graphical representation of exponential increasing- decreasing signal', ' n ' , ' x [n] ');

Experiment 7: - Graphical representation of even signal

AIM: - To write the Scilab code to find the even signal and sketch the output wave form.

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

Source Code: -

clear;
clc;
close;
n = -7:7;
x1 = [0 0 0 1 2 3 4];
x = [x1 ,5, x1(length (x1) : -1:1)];

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

a= gca ();
a. thickness = 2;
a. y_location = " middle ";
plot2d3 (’ gnn ’ ,n,x)
xtitle (’ Graphical representation of even signal’, ’ n ’, ’ x [n] ’);

Experiment 8: - Graphical representation of odd signal

AIM: - To write the Scilab code to find the odd signal and sketch the output wave form.

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

Source Code: -

clear ;
clc ;
close ;
n = -5:5;
x1 = [0 1 2 3 4 5];
x = [-x1($: -1:2) ,x1];
a= gca ();
a. thickness = 2;
a. y_location = " middle ";
a. x_location = " middle "
plot2d3 (’ gnn ’ ,n,x)
xtitle (’ Graphical representation of even signal’, ’ n ’, ’ x [n] ’);

Experiment 9:-Determine whether given signal is periodic or not

AIM: - To write the Scilab code to find the given signal is periodic or not

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Source Code: -

clear ;
clc ;
close ;
t =0:0.01:10;
x1=cos (2* %pi *t /3) ;
subplot (1 ,2 ,1);
plot (t,x1);
xlabel (’ t ’);
ylabel (’ x (t) ’);
title (’CONTINUOUS TIME PLOT ’);
n =0:0.2:10;
x2= cos (2* %pi *n /3) ;
subplot (1 ,2 ,2);
plot2d3 (n,x2);
xlabel (’ n ’);
ylabel (’ x (n) ’);
title (’DISCRETE TIME PLOT ’);

Experiment 10: -Convolution of given sequences

AIM: - To write the Scilab code to find the convolution of a given signal x (n) = [1 2 1 1] ,
h (n) = [1 -1 1 -1]and sketch the output wave form.

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

Source Code: -

clear;5 clc;6 close;7 x = [1 2 1 1];8 h =[1 -1 1 -1];9 y= convol (x,h);10 disp (round (y))

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Output: -

Experiment 11: - Cross correlation of given sequences

AIM: - To write the Scilab code to find the cross correlation of a given signal x (n) = [1 2 1 1] ,
h (n) = [1 1 2 1]and sketch the output wave form.

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

Source Code: -

clear;
clc;
close;
x = [1 2 1 1];
h = [1 1 2 1];
h1 = [1 2 1 1];
y= convol (x, h1);11 disp (round (y));

Output:-

1 1.5 2
0

0.5

1

1.5

2

(x)

--->

(a)n ------>
1 2 3

0

1

2

3

4

(h)

--->

(b)n ------>

Discrete Convolution

0 2 4
0

2

4

6

8

(y)

--->

(c)n ------>

0 2 4
0

1

2

3

4

(x1
) --

>

(d)n ------>
0 2 4

0

1

2

3

4
(h1

) --

>

(e)n ------>

Discrete Correlation

0 5 10
0

10

20

30

(y1
) --

>

(f)n ------>

1 1.5 2
0

0.5

1

1.5

2

(x)

--->

(a)n ------>
1 2 3

0

1

2

3

4

(h)

--->

(b)n ------>

Discrete Convolution

0 2 4
0

2

4

6

8

(y)

--->

(c)n ------>

0 2 4
0

1

2

3

4

(x1
) --

>

(d)n ------>
0 2 4

0

1

2

3

4

(h1
) --

>

(e)n ------>

Discrete Correlation

0 5 10
0

10

20

30

(y1
) --

>

(f)n ------>

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment 12: - Plot Magnitude and Phase Response

AIM: - To write the Scilab code to find the magnitude and phase plot of a given system and sketch
the output wave form.

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

Source Code: -

clear ;
clc ;
close ;
w=- %pi :0.01: %pi ;
H =1+2* cos(w) +2* cos (2* w);
[phase_H ,m]= phasemag (H);
Hm=abs(H);
a= gca ();
subplot (2 ,1 ,1);
a. y_location =" o r i g i n ";
plot2d (w/%pi ,Hm);
xlabel (’ Frequency i n Radians ’)
ylabel (’ abs (Hm) ’);
title (’MAGNITUDE RESPONSE ’);
subplot (2 ,1 ,2);
a= gca ();
a. x_location =" o r i g i n ";
a. y_location =" o r i g i n ";
plot2d (w /(2* %pi),phase_H);
xlabel (’ Frequency i n Radians ’);
ylabel (’ <(H) ’);
title (’PHASE RESPONSE ’);

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Output: -

Experiment 13: - Impulse Response of a given System

AIM: - To write the Scilab code to find the impulse response of a given system and sketch the
output wave form.

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

Source Code: -

clear;
clc;
close ;
z=%z;
a=z ^3+2*(z ^(2)) -4*(z) +1;
b=z ^3;
h = ldiv (a,b ,4) ;
disp (h,"h(n)=");

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Output:-

Experiment 14: -Z Transform of the Sequence a given sequence

AIM: - To write the Scilab code to calculate the z transform of a given sequence and sketch the
output wave form.

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

Source Code: -

clear ;
clc ;
close ;
function [za]= ztransfer (sequence ,n)
z= poly (0, ’ z ’ , ’ r ’)
za= sequence *(1/ z)^n’
endfunction
x1 =[2 -1 3 2 1 0 2 3 -1];
n = -4:4;
zz= ztransfer (x1 ,n);
disp (zz ,"Z-transform of sequence is : ");
disp (’ROC is the entire plane except z = 0 and z =%inf ’);

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment 15: - Inverse Z Transform of the Sequence a given sequence

AIM: - To write the Scilab code to calculate the inverse z transform of a given sequence and sketch
the output wave form.

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

Source Code: -

clear;
clc ;
close ;
z=%z;
a =(2+2* z+z ^2) ;
b=z ^2;
h = ldiv (b,a ,6) ;
disp (h," First six values of h (n)=");

Experiment 16: -DFT and IDFT of a Sequence

AIM: - To write the Scilab code to calculate the DFT of a given sequence x [n] = [1, 1 , 0 , 0] and
IDFT of a Sequence Y[k] = [1 , 0 , 1 , 0] and sketch the output wave form.

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

Source Code: -

x [n] = [1, 1 , 0 , 0] and IDFT of a Sequence Y[k] = [1 , 0 , 1 , 0]

clear ;
clc ;
close ;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

x = [1 ,1 ,0 ,0];//DFT Computation
X = fft (x , -1);
Y = [1 ,0 ,1 ,0];//IDFT Computation
y = fft (Y , 1);// Display sequence X[k] and y [n] in command window
disp (X,"X[k]=");
disp (y,"y [n]=");

Output: -

Experiment 17: - 8- point DFT of the Sequence

AIM: - To write the Scilab code to calculate the 8- point DFT of a given sequence x [n] = [1, 1 , 1 ,
1 , 1 , 1 , 0 , 0]and sketch the output wave form.

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Source Code: -

clear ;4 clc ;5 close ;6 x = [1 ,1 ,1 ,1 ,1 ,1 ,0 ,0];7 //DFT Computation8 X = fft (x , -1);9 // D i s p l a y s e q u e n c e X[k] i n command window10 disp (X,"X[k]= ");

Experiment 18: -Circular convolution of following sequences

AIM: - To write the Scilab code to calculate the circular convolution of a given sequence x [n] = [1
, 2 , 2 , 1 , 0] and Y[k]=exp (- j ∗4∗pi ∗k /5) . X [k] and sketch the output wave form.

Algorithm: -

Step 1: - Start the program
Step 2: - Get the input for signal generation
Step 3: - Use the appropriate library function
Step 4: - Display the output and output wave form

Source Code: -

clear ;
clc ;
close ;
x=[1 ,2 ,2 ,1 ,0];
X= fft(x , -1);
k =0:1:4;
j= sqrt (-1);
pi =22/7;
H= exp(-j *4* pi*k /5) ;
Y=H.*X;//IDFT Computation
y= fft(Y ,1) ;// D i s p l a y s e q u e n c e y [n] i n command window
disp (round (y),"y [n]= ");// P l o t s
n =0:1:4;
a = gca ();

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

a. y_location = " o r i g i n ";
a. x_location = " o r i g i n ";
plot2d3 (n, round (y) ,5);
poly1 =a. children (1) . children (1) ;
poly1 . thickness =2;
xtitle (’ P l o t o f s e q u e n c e y [n] ’ , ’ n ’ , ’ y [n] ’);

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Object Oriented Programming Using Java
Course Code: CS594D
L-T-P scheme: 0-0-3 Course Credit: 2

Objectives:
1. To strengthen their problem solving ability by applying the characteristics of an object

oriented approach.
2. To introduce object oriented concepts in Java.

Learning Outcomes:
1. Explain what constitutes an object-oriented approach to programming and identify the

potential benefits of object-oriented programming over other approaches.
2. Apply an object-oriented approach to developing applications of varying complexities.

Course Contents:
Exercises that must be done in this course are listed below:
Exercise No. 1: Class creation with main method and steps of source code compilation and
execution.
Exercise No. 2: Design a stack and a queue.
Exercise No. 3: Design different types of linked lists for different operations.
Exercise No. 4: Methods of String.
Exercise No. 5: Implement different types of polymorphism: overloading and overriding.
Exercise No. 6: Implement different types of inheritance.
Exercise No. 7: Use of package with access specifier.
Exercise No. 8: Write a program using static keyword.
Exercise No. 9: Write a program to use this, this(), super, super().
Exercise No. 10: Exception handling.
Exercise No. 11: Threading.
Exercise No. 12: Applet programming and Action Event.
Exercise No. 13: Swing programming and Layout.

Text Book:
1. E. Balagurusamy – " Programming With Java: A Primer" – 3rd Ed. – , Tata Mc Graw Hill.
2. Herbert Schildt, Java: The Complete Reference (Tata Mcgraw Hill Education Private , 7th

Ed).

Recommended Systems/Software Requirements:
Java Development Kit and Java Runtime Environment, preferable latest version.

Experiment No: 1: Class creation with main method and steps of source code compilation and
execution.

Description:
Create a file with .java extension. Write a class with main method. Then compile that source code
using javac command(java compiler) then execute generated bytecode using java command.

/* First java program First.java */
public class First {

public static void main(String args[]){
System.out.println(“Welcome”);

}
}

Steps of execution:
javac First.java //For compilation
java First //For execution

OUTPUT:
Welcome

Experiment No: 2A: Design a stack.

Aim: Write a program in java to design stack.

Description:
A stack is a container of objects that are inserted and removed according to the last-in first-

out (LIFO) principle. In the pushdown stacks only two operations are allowed: push the item into the
stack, and pop the item out of the stack. A stack is a limited access data structure - elements can be
added and removed from the stack only at the top. push adds an item to the top of the stack, pop
removes the item from the top. A helpful analogy is to think of a stack of books; you can remove
only the top book, also you can add a new book on the top.

/* Java program Stack.java */

class Stack {

//stack holds 10 values

int stack[] = new int[10];
//top of the stack
int tos;

Stack() {
//initially top of stack -1, denotes empty
tos = -1;

}

//push or add an element top of the stack
void push(int element) {

//if stack is full
if (tos == 9) {

System.out.println("Stack is full!");
} else {

stack[++tos] = element;
}

}

//pop or remove element from top of stack
int pop() {

//if no element in stack
if (tos < 0) {

System.out.println("Stack is empty");
//0 indicates operation fails
return 0;

} else {
return stack[tos--];

}
}

}

INPUT:
If push(1) is invoked, 1 will be added onto the stack. Again if push(2) is invoked then 2 will

be added onto the stack and now top of the stack is 2.
If pop() is invoked 2 will be returned as top of the stack is 2.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

OUTPUT:
If return value of pop() is printed then 2 will be printed as top of the element is 2.

Experiment No: 2B: Design a queue.

Aim: Write a program in java to design queue.

Description:
A queue is a container of objects (a linear collection) that are inserted and removed

according to the first-in first-out (FIFO) principle. An excellent example of a queue is a line of
students in the food court of the UC. New additions to a line made to the back of the queue, while
removal (or serving) happens in the front. In the queue only two operations are allowed enqueue and
dequeue. Enqueue means to insert an item into the back of the queue, dequeue means removing the
front item. The picture demonstrates the FIFO access.

/* Java program Queue.java */

public class Queue {

private static final int capacity = 3;
int arr[] = new int[capacity];
int size = 0;
int top = -1;
int rear = 0;

public void push(int pushedElement) {
if (top < capacity - 1) {

top++;
arr[top] = pushedElement;

} else {
System.out.println("Overflow !");

}
}

public int pop() {
int e = arr[rear];
if (top >= rear) {

rear++;
} else {

System.out.println("Underflow !");
}
return e;

}

public void display() {
if (top >= rear) {

System.out.println("Elements in Queue : ");
for (int i = rear; i <= top; i++) {

System.out.println(arr[i]);
}

}
}

}

INPUT:
The push() method is for inserting element in a queue, pop() to get element from the rear

position and display() to print all elements in the queue.

OUTPUT:
If display() is invoked, all the elements will be printed from the rear position to top position.

Experiment No: 3A: Design Singly Link List.

Aim: Write a program in java to design singly link list.

Description:
Singly Linked Lists are a type of data structure. It is a type of list. In a singly linked list each

node in the list stores the contents of the node and a pointer or reference to the next node in the list.
It does not store any pointer or reference to the previous node. It is called a singly linked list because
each node only has a single link to another node. To store a single linked list, you only need to store
a reference or pointer to the first node in that list. The last node has a pointer to nothingness to
indicate that it is the last node.

/* Java program SinglyLinkList.java */

public class SinglyLinkedList<T> {

private Node<T> head;
private Node<T> tail;

public void add(T element) {

Node<T> nd = new Node<T>();
nd.setValue(element);
System.out.println("Adding: " + element);
/**
* check if the list is empty
*/

if (head == null) {
//since there is only one element, both head and
//tail points to the same object.
head = nd;
tail = nd;

} else {
//set current tail next link to new node
tail.setNextRef(nd);
//set tail as newly created node
tail = nd;

}
}

public void addAfter(T element, T after) {

Node<T> tmp = head;
Node<T> refNode = null;
System.out.println("Traversing to all nodes..");
/**
* Traverse till given element
*/

while (true) {
if (tmp == null) {

break;
}
if (tmp.compareTo(after) == 0) {

//found the target node, add after this node
refNode = tmp;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

break;
}
tmp = tmp.getNextRef();

}
if (refNode != null) {

//add element after the target node
Node<T> nd = new Node<T>();
nd.setValue(element);
nd.setNextRef(tmp.getNextRef());
if (tmp == tail) {

tail = nd;
}
tmp.setNextRef(nd);

} else {
System.out.println("Unable to find the given element...");

}
}

public void deleteFront() {

if (head == null) {
System.out.println("Underflow...");

}
Node<T> tmp = head;
head = tmp.getNextRef();
if (head == null) {

tail = null;
}
System.out.println("Deleted: " + tmp.getValue());

}

public void deleteAfter(T after) {

Node<T> tmp = head;
Node<T> refNode = null;
System.out.println("Traversing to all nodes..");
/**
* Traverse till given element
*/

while (true) {
if (tmp == null) {

break;
}
if (tmp.compareTo(after) == 0) {

//found the target node, add after this node
refNode = tmp;
break;

}
tmp = tmp.getNextRef();

}
if (refNode != null) {

tmp = refNode.getNextRef();
refNode.setNextRef(tmp.getNextRef());
if (refNode.getNextRef() == null) {

tail = refNode;
}

System.out.println("Deleted: " + tmp.getValue());
} else {

System.out.println("Unable to find the given element...");
}

}

public void traverse() {

Node<T> tmp = head;
while (true) {

if (tmp == null) {
break;

}
System.out.println(tmp.getValue());
tmp = tmp.getNextRef();

}
}

public static void main(String a[]) {
SinglyLinkedList<Integer> sl = new SinglyLinkedList<Integer>();
sl.add(3);
sl.add(32);
sl.add(54);
sl.add(89);
sl.addAfter(76, 54);
sl.deleteFront();
sl.deleteAfter(76);
sl.traverse();

}
}

class Node<T> implements Comparable<T> {

private T value;
private Node<T> nextRef;

public T getValue() {
return value;

}

public void setValue(T value) {
this.value = value;

}

public Node<T> getNextRef() {
return nextRef;

}

public void setNextRef(Node<T> ref) {
this.nextRef = ref;

}

@Override
public int compareTo(T arg) {

if (arg == this.value) {
return 0;

} else {
return 1;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

}
}

}

INPUT:
Input is provided in main method.

OUTPUT:
Adding: 3
Adding: 32
Adding: 54
Adding: 89
Traversing to all nodes..
Deleted: 3
Traversing to all nodes..
Deleted: 89 32 54 76

Experiment No: 3B: Design Doubly Linked List.

Aim: Write a program in java to design doubly link list.

Description:
A doubly-linked list is a linked data structure that consists of a set of sequentially linked

records called nodes. Each node contains two fields, called links that are references to the previous
and to the next node in the sequence of nodes. The beginning and ending nodes previous and next
links, respectively, point to some kind of terminator, typically a sentinel node or null, to facilitate
traversal of the list. If there is only one sentinel node, then the list is circularly linked via the sentinel
node. It can be conceptualized as two singly linked lists formed from the same data items, but in
opposite sequential orders.

/* Java program DoublyLinkedList.java */

import java.util.NoSuchElementException;

public class DoublyLinkedList<E> {

private Node head;
private Node tail;
private int size;

public DoublyLinkedListImpl() {
size = 0;

}

/**
* this class keeps track of each element information
*
* @author java2novice
*
*/

private class Node {

E element;
Node next;
Node prev;

public Node(E element, Node next, Node prev) {

this.element = element;
this.next = next;
this.prev = prev;

}
}

/**
* returns the size of the linked list
*
* @return
*/

public int size() {
return size;

}

/**
* return whether the list is empty or not
*
* @return
*/

public boolean isEmpty() {
return size == 0;

}

/**
* adds element at the starting of the linked list
*
* @param element
*/

public void addFirst(E element) {
Node tmp = new Node(element, head, null);
if (head != null) {

head.prev = tmp;
}
head = tmp;
if (tail == null) {

tail = tmp;
}
size++;
System.out.println("adding: " + element);

}

/**
* adds element at the end of the linked list
*
* @param element
*/

public void addLast(E element) {

Node tmp = new Node(element, null, tail);
if (tail != null) {

tail.next = tmp;
}
tail = tmp;
if (head == null) {

head = tmp;
}
size++;
System.out.println("adding: " + element);

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

}

/**
* this method walks forward through the linked list
*/

public void iterateForward() {

System.out.println("iterating forward..");
Node tmp = head;
while (tmp != null) {

System.out.println(tmp.element);
tmp = tmp.next;

}
}

/**
* this method walks backward through the linked list
*/

public void iterateBackward() {

System.out.println("iterating backword..");
Node tmp = tail;
while (tmp != null) {

System.out.println(tmp.element);
tmp = tmp.prev;

}
}

/**
* this method removes element from the start of the linked list
*
* @return
*/

public E removeFirst() {
if (size == 0) {

throw new NoSuchElementException();
}
Node tmp = head;
head = head.next;
head.prev = null;
size--;
System.out.println("deleted: " + tmp.element);
return tmp.element;

}

/**
* this method removes element from the end of the linked list
*
* @return
*/

public E removeLast() {
if (size == 0) {

throw new NoSuchElementException();
}
Node tmp = tail;
tail = tail.prev;
tail.next = null;

size--;
System.out.println("deleted: " + tmp.element);
return tmp.element;

}

public static void main(String a[]) {

DoublyLinkedListImpl<Integer> dll = new DoublyLinkedListImpl<Integer>();
dll.addFirst(10);
dll.addFirst(34);
dll.addLast(56);
dll.addLast(364);
dll.iterateForward();
dll.removeFirst();
dll.removeLast();
dll.iterateBackward();

}
}

INPUT:
Input is provided in main method.

OUTPUT:
adding: 10
adding: 34
adding: 56
adding: 364
iterating forward.. 34 10 56 364
deleted: 34
deleted: 364
iterating backword.. 56 10

Experiment No: 4A: Methods of String: indexOf()

Aim: Write a program in java to implement indexOf().

Description:
The String class is immutable (constant), i.e. Strings in java, once created and initialized,

cannot be changed. The String is a final class, no other class can extend it, and you cannot change
the state of the string. String values cannot be compare with '==', for string value comparison, use
equals() method. String class supports various methods, including comparing strings, extracting
substrings, searching characters & substrings, converting into either lower case or upper case, etc.

Below method shows how to get index of a specified character or string from the given
string. By using indexOf() method you get get the position of the specified string or char from the
given string. You can also get the index strting from a specified position of the string.

/* Java program MyStringIndexOf.java */

public class MyStringIndexOf {

public static void main(String[] a) {

String str = "Use this string for testing this";
System.out.println("Basic indexOf() example");
System.out.println("Char 's' at first occurrence: " + str.indexOf('s'));
System.out.println("String \"this\" at first occurrence: " + str.indexOf("this"));
/**
* Returns the first occurrence from specified start index
*/

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

System.out.println("First occurrence of char 's' from 4th index onwards : "
+ str.indexOf('s', 4));

System.out.println("First occurrence of String \"this\" from 6th index onwards: "
+ str.indexOf("this", 6));

}
}

INPUT: Input is provided in main method.

OUTPUT:
Basic indexOf() example
Char 's' at first occurrence: 1
String "this" at first occurrence: 4
First occurrence of char 's' from 4th index onwards : 7
First occurrence of String "this" from 6th index onwards: 28

Experiment No: 4B: Methods of String: lastIndexOf()

Aim: Write a program in java to implement lastIndexOf().

Description:
Below example shows how to get index of a given character or string from a string in the

reverse order, means last occurring index. By using lastIndexOf() method you can get last
occurrence of the reference string or character.

/* Java program MyStrLastIndexOf.java */

public class MyStrLastIndexOf {

public static void main(String a[]) {

String str = "Use this string for testing this";
System.out.println("Basic lastIndexOf() example");
System.out.println("Char 's' at last occurrence: " + str.lastIndexOf('s'));
System.out.println("String \"this\" at last occurrence: " + str.lastIndexOf("this"));
/**
* Returns the last occurrence from specified start index, searching
* backward starting at the specified index.
*/

System.out.println("first occurrence of char 's' from 24th index backwards: "
+ str.lastIndexOf('s', 24));

System.out.println("First occurrence of String \"this\" from 26th index backwards: "
+ str.lastIndexOf("this", 26));

}
}

INPUT: Input is provided in main method.

OUTPUT:
Basic lastIndexOf() example
Char 's' at last occurrence: 31
String "this" at last occurrence: 28
first occurrence of char 's' from 24th index backwards: 22
First occurrence of String "this" from 26th index backwards: 4

Experiment No: 4C: Methods of String: startsWith()

Aim: Write a program in java to implement startWith().

Description:
Below example shows how to find whether a string value start with another string value. By

using startsWith() method, you can get whether the string starts with the given string or not. Also
this method tells that the string occurrence at a specific position.

/* Java program MyStrStartsWith.java */

public class MyStrStartsWith {

public static void main(String a[]) {

String str = "This is an example string.";
System.out.println("Is this string starts with \"This\"? "

+ str.startsWith("This"));
System.out.println("Is this string starts with \"is\"? "

+ str.startsWith("is"));
System.out.println("Is this string starts with \"is\" after index 5? "

+ str.startsWith("is", 5));
}

}

INPUT: Input is provided in main method.

OUTPUT:
Is this string starts with "This"? true
Is this string starts with "is"? false
Is this string starts with "is" after index 5? true

Experiment No: 4D: Methods of String: endsWith()

Aim: Write a program in java to implement endsWith().

Description:
Below example shows how to find whether a string value ends with another string value. By

using endsWith() method, you can get whether the string ends with the given string or not. Also this
method tells that the string occurrence at a specific position.

/* Java program MyStringEnd.java */

public class MyStringEnd {

public static void main(String a[]) {

String str = "This is a java string example";
if (str.endsWith("example")) {

System.out.println("This String ends with example");
} else {

System.out.println("This String is not ending with example");
}
if (str.endsWith("java")) {

System.out.println("This String ends with java");
} else {

System.out.println("This String is not ending with java");
}

}
}

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INPUT: Input is provided in main method.

OUTPUT:
This String ends with example
This String is not ending with java

Experiment No: 4E: Methods of String: split()

Aim: Write a program in java to implement split().

Description:
Below example shows how to split or brake a string. The split() method splits the string

based on the given regular expression or delimiter, and returns the tokens in the form of array.
Below example shows splitting string with space, and second split is based on any kind of spaces,
that includes tab, enter, line breaks, etc.

/* Java program MyStrSplit.java */

public class MyStrSplit {

public static void main(String a[]) {

String str = "This program splits a string based on space";
String[] tokens = str.split(" ");
for (String s : tokens) {

System.out.println(s);
}
str = "This program splits a string based on space";
tokens = str.split("\\s+");

}
}

INPUT: Input is provided in main method.

OUTPUT:
This
program
splits
a
string
based
on
space

Experiment No: 4F: Methods of String: getChars()

Aim: Write a program in java to implement getChars().

Description:
Below example shows how to copy range of characters from the given string to another

character array. By suing getChars() method, you can copy range of characters from the given string.

/* Java program MyCharArrayCopy.java */

public class MyCharArrayCopy {

public static void main(String a[]) {

String str = "Copy chars from this string";
char[] ch = new char[5];
/**
* The getChars() method accepts 4 parameters first one is the start
* index from string second one is the end index from string third one
* is the destination char array forth one is the start index to append
* in the char array.
*/

str.getChars(5, 10, ch, 0);
System.out.println(ch);

}
}

INPUT: Input is provided in main method.

OUTPUT:
chars

Experiment No: 4G: Methods of String : replace()

Aim: Write a program in java to implement replace().

Description:
Below example shows how to get replace character or a string into a string with the given

string. String provides replace() method to replace a specific character or a string which occurs first.
replaceAll() method replaces a specific character or a string at each occurrence.

/* Java program MyStringReplace.java */

public class MyStringReplace {

public static void main(String a[]) {

String str = "This is an example string";
System.out.println("Replace char 's' with 'o':" + str.replace('s', 'o'));

System.out.println("Replace first occurrence of string\"is\" with \"ui\":"
+ str.replaceFirst("is", "ui"));

System.out.println("Replacing \"is\" everywhere with \"no\":"
+ str.replaceAll("is", "no"));

}
}

INPUT: Input is provided in main method.

OUTPUT:
Replace char 's' with 'o': This is an example string
Replace first occurrence of string “is" with "ui": This is an example string Replacing "is"
everywhere with "no": This no an example string

Experiment No: 4H: Methods of String : equals()

Aim: Write a program in java to implement equals().

Description:
The below example shows how to compare two string objects in java. You can not use "=="

operator to compare two strings. String provides equals() method to compare two string objects.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Also you can ignore case during string compare by calling equalsIgnoreCase() method. '==' operator
compares the object reference but not the string value.

/* Java program MyStringEquals.java */

public class MyStringEquals {

public static void main(String a[]) {
String x = "JUNK";
String y = "junk";
/**
* We cannot use '==' operator to compare two strings. We have to use
* equals() method.
*/

if (x.equals(y)) {
System.out.println("Both strings are equal.");

} else {
System.out.println("Both strings are not equal.");

}
/**
* We can ignore case with equalsIgnoreCase() method
*/

if (x.equalsIgnoreCase(y)) {
System.out.println("Both strings are equal.");

} else {
System.out.println("Both strings are not equal.");

}
}

}

INPUT: Input is provided in main method.

OUTPUT:
Both strings are not equal.
Both strings are equal.

Experiment No: 4I: Methods of String: concat()

Aim: Write a program in java to implement concat().

Description:
Below example shows different ways of append or concat two string objects. You can

append two strings by just using "+" sign. Also you can concatinate two string objects by calling
concat() method.

/* Java program MyStringConcat.java */

public class MyStringConcat {

public static void main(String a[]) {
String b = "jump ";
String c = "No jump";
/**
* We can do string concatenation by two ways. One is by using '+'
* operator, shown below.
*/

String d = b + c;

System.out.println(d);
/**
* Another way is by using concat() method, which appends the specified
* string at the end.
*/

d = b.concat(c);
System.out.println(d);

}
}

INPUT: Input is provided in main method.

OUTPUT:
jump No jump
jump No jump

Experiment No: 4J: Methods of String: copyValueOf()

Aim: Write a program in java to implement copyValueOf().

Description:
Below example shows how to convert character array to a string object. By using

String.copyValueOf() method you can convert char array to string object. Also you can copy range
of character array to string.

/* Java program MyArrayCopy.java */

public class MyArrayCopy {

public static void main(String a[]) {
char ch[] = {'M', 'y', ' ', 'J', 'a', 'v', 'a', ' ', 'e', 'x', 'a', 'm', 'p', 'l', 'e'};
/**
* We can copy a char array to a string by using copyValueOf() method.
*/

String chStr = String.copyValueOf(ch);
System.out.println(chStr);
/**
* We can also copy only range of charactors in a char array by
* copyValueOf() method.
*/

String subStr = String.copyValueOf(ch, 3, 4);
System.out.println(subStr);

}
}

INPUT: Input is provided in main method.

OUTPUT:
My Java example
Java

Experiment No: 4K: Methods of String: getBytes()

Aim: Write a program in java to implement getBytes().

Description:
Sometimes we have to convert string object into byte array. You can use getBytes() method

to convert string object to byte array.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

/* Java program SinglyLinkList.java */

public class MyStringBytes {

public static void main(String a[]) {

String str = "core java api";
byte[] b = str.getBytes();
System.out.println("String length: " + str.length());
System.out.println("Byte array length: " + b.length);

}
}

INPUT: Input is provided in main method.

OUTPUT:
String length: 13
Byte array length: 13

Experiment No: 5A: Implement polymorphism: overloading.

Aim: Write a program in java to implement method overloading.

Description:
Polymorphism is the capability of a method to do different things based on the object that it

is acting upon. In other words, polymorphism allows you define one interface and have multiple
implementations. I know it sounds confusing. Don’t worry we will discuss this in detail. It is a
feature that allows one interface to be used for a general class of actions. An operation may exhibit
different behavior in different instances. The behavior depends on the types of data used in the
operation. It plays an important role in allowing objects having different internal structures to share
the same external interface. Polymorphism is extensively used in implementing inheritance.

Following concepts demonstrate different types of polymorphism in java.
A) Method Overloading
B) Method Overriding

In Java, it is possible to define two or more methods of same name in a class, provided that
there argument list or parameters are different. This concept is known as Method Overloading.

/* Java program Overload.java */

class OverloadDemo {

void test() {
System.out.println("No Parameters");

}

//overload test with one integer parameter
void test(int a) {

System.out.println("a : " + a);
}

//overload test with two integer parameter
void test(int a, int b) {

System.out.println("a & b : " + a + " " + b);
}

//overload test with one double parameter

double test(double a) {
return a * a;

}
}

class Overload {

public static void main(String args[]) {
//create an instance for class OverloadDemo
OverloadDemo od = new OverloadDemo();

//call all test methods
od.test();
od.test(5);
od.test(2, 3);
System.out.println("Result : " + od.test(11.1));

}
}

INPUT: Input is provided in main method

OUTPUT:
No Parameters
a : 5
a & B : 2 3
Result : 123.21

Experiment No: 5B: Implement different types of polymorphism: overriding

Aim: Write a program in java to implement method overriding.

Description:
Sub class has the same method as of super class. In such cases sub class overrides the super

class method without even touching the source code of the super class. This feature is known as
method overriding.

/* Java program OverrideTest.java */

class Surface {

int length = 2;
int width = 3;

Surface(int l, int w) {
length = l;
width = w;

}

void showArea() {
System.out.println("Area of the Surface is : " + (length * width));

}
}

class Box extends Surface {

int height = 4;

void showArea() {

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

System.out.println("Area of the Surface within Box is : " + (length * width));
}

void showVolume() {
System.out.println("Volume of the Cube is : " + (length * width * height));

}
}

class OverrideTest {

public static void main(String args[]) {

//create an instance of Superclass
Surface s = new Surface();

//access member of superclass
s.showArea();

//create an instance of subclass
Box b = new Box();

//access member of subclass & superclass
b.showArea();
b.showVolume();

}
}

INPUT: Input is provided in main method.

OUTPUT:
Area of the Surface is : 6
Area of the Surface within Box is : 6
Volume of the Cube is : 24

Experiment No: Implement inheritance.

Aim: Write a program in java to implement inheritance.

Description:
Inheritance is one of the features of Object-Oriented Programming (OOPs). Inheritance

allows a class to use the properties and methods of another class. In other words, the derived class
inherits the states and behaviors from the base class. The derived class is also called subclass and the
base class is also known as super-class. The derived class can add its own additional variables and
methods. These additional variable and methods differentiates the derived class from the base class.

/* Java program Inheritance.java */
// A class to display the attributes of the vehicle

class Vehicle {

String color;
int speed;
int size;

void attributes() {
System.out.println("Color : " + color);
System.out.println("Speed : " + speed);

System.out.println("Size : " + size);
}

}

// A subclass which extends for vehicle
class Car extends Vehicle {

int CC;
int gears;

void attributescar() {
// The subclass refers to the members of the superclass
System.out.println("Color of Car : " + color);
System.out.println("Speed of Car : " + speed);
System.out.println("Size of Car : " + size);
System.out.println("CC of Car : " + CC);
System.out.println("No of gears of Car : " + gears);

}
}

public class Test {

public static void main(String args[]) {
Car b1 = new Car();
b1.color = "Blue";
b1.speed = 200;
b1.size = 22;
b1.CC = 1000;
b1.gears = 5;
b1.attributescar();

}
}

INPUT: Input is provided in main method.

OUTPUT:
Color of Car : Blue
Speed of Car : 200
Size of Car : 22
CC of Car : 1000
No of gears of Car : 5

Experiment No: 7: Use of package with access specifier.

Aim: Write a program in java of package and access specifire.

Description:
Access Modifiers is the way of specifying the accessibility of a class and its members with

respective to other classes and members.
Packages in Java are a mechanism to encapsulate a group of classes, interfaces and sub

packages. Many implementations of Java use a hierarchical file system to manage source and class
files. It is easy to organize class files into packages. All we need to do is put related class files in the
same directory, give the directory a name that relates to the purpose of the classes, and add a line to
the top of each class file that declares the package name, which is the same as the directory name
where they reside. In java there are already many predefined packages that we use while
programming. For example: java.lang, java.io, java.util etc. However one of the most useful feature
of java is that we can define our own packages

/* Java program IPub.java */

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

// top-level interface declaration with public modifier
public interface IPub {…}

package pack1;
// top-level class declaration with default modifier
class CDef {….}
// top-level interface declaration with default modifier
interface CDef {…}

package pack1;
// another class in same package Pack1
class A1 {

// public Class is accessible within the package
CPub cPubObj;

// default Class is accessible within the package
CDef cDefObj;

}

package pack1;
// default Interface is accessible within the package
class B1 implements IDef {…}

package pack1;
// public Interface is accessible within the package
class C1 implements IPub {…}

package Pack2;
// Class in other package Pack1
class A2 {

// public Class is accessible in other package
CPub cPubObj;

// default Class is NOT accessible in other package
CDef cDefObj;
}

package pack2;
// default Interface is NOT accessible outside the package
class B2 implements IDef {…}

package pack2;
// public Interface is accessible outside the package
class C2 implements IPub {…}

INPUT: Not Applicable for this program.

OUTPUT:
public Members: If members are declared as public inside a class then such members are
accessible to the classes which are inside and outside of the package where this class is
visible. This is the least restrictive of all the accessibility modifiers.

protected Members:If members are declared as protected then these are accessible to all
classes in the package and to all subclasses of its class in any package where this class is
visible.

Default Members: When no accessibility modifier is specified for the member then
implicitly it is declared as Default. These are accessible only to the other classes in the
class’s package.

private Members:This is the most restrictive of all accessibility modifiers. These members
are accessible only with in the same class. These are not accessible from any other class
within a class’s package also.

Experiment No: 8: Write a program using static keyword.

Aim: Write a program in java to implement use of static keyword.

Description:
The static keyword in java is used for memory management mainly. We can apply java
static keyword with variables, methods, blocks and nested class. The static keyword belongs
to the class than instance of the class.

The static can be:

1. variable (also known as class variable)
2. method (also known as class method)
3. block
4. nested class

/* Java program UseStatic.java */
class UseStatic {

static int a = 3;
static int b;

static void dis(int x) {
System.out.println("x = "+x);
System.out.println("a = "+a);
System.out.println("b = "+b);

}

static {
System.out.println("Static block initialized.");
b = a * 4;

}

public static void main(String args[]) {
dis(9);

}
}

INPUT: Input is provided in main methos.

OUTPUT:
Static block initialized.
x = 9
a = 3
b = 12

Experiment No: 9A: Write a program to use this.

Aim: Write a program in java to show the use of this.

Description:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

There can be a lot of usage of java this keyword. In java, this is a reference variable that
refers to the current object.

Uses of this keyword:
1. this keyword can be used to refer current class instance variable.
2. this keyword can be used to invoke current class method (implicitly)
3. this can be passed as an argument in the method call.
4. this can be passed as argument in the constructor call.
5. this keyword can also be used to return the current class instance
6.

/* Java program Student.java */
//example of this keyword

class Student {

int id;
String name;

Student(int id, String name) {
this.id = id;
this.name = name;

}

void display() {
System.out.println(id + " " + name);

}

public static void main(String args[]) {
Student s1 = new Student(111, "Ram");
Student s2 = new Student(222, "Shan");
s1.display();
s2.display();

}
}

INPUT: Input is provided in main method.

OUTPUT:
111 Ram
222 Shan

Experiment No: 9B: Write a program to use this().

Aim: Write a program in java to show the use of this().

Description:
The this() constructor call can be used to invoke the current class constructor (constructor

chaining). This approach is better if you have many constructors in the class and want to reuse that
constructor. this() can be used to invoke current class constructor.

/* Java program Student.java */

class Student {

int id;
String name;
String city;

Student(int id, String name) {
this.id = id;
this.name = name;

}

Student(int id, String name, String city) {
this(id, name);//now no need to initialize id and name
this.city = city;

}

void display() {
System.out.println(id + " " + name + " " + city);

}

public static void main(String args[]) {
Student e1 = new Student(111, "Ram");
Student e2 = new Student(222, "Shan", "Kolkata");
e1.display();
e2.display();

}
}

INPUT: is provided in main method.

OUTPUT:
111 Ram null
222 Shan Kolkata

Experiment No: 9C: Write a program to use super.

Aim: Write a program in java to show the use of super.

Description:
The super keyword in java is a reference variable that is used to refer immediate parent class

object. Whenever you create the instance of subclass, an instance of parent class is created implicitly
i.e. referred by super reference variable. super is used to refer immediate parent class instance
variable and method.

/* Java program Bike.java */
//example of super keyword

class Vehicle {

int speed = 50;
}

class Bike extends Vehicle {

int speed = 100;

void display() {
System.out.println(super.speed);//will print speed of Vehicle now

}

public static void main(String args[]) {
Bike b = new Bike();
b.display();

}
}

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INPUT: is provided in main method.

OUTPUT: 50

Experiment No: 9D: Write a program to use super().

Aim: Write a program in java to show the use of super().

Description: super() is used to invoke parent class constructor.

/* Java program Bike.java */

class Vehicle {

Vehicle() {
System.out.println("Vehicle is created");

}
}

class Bike extends Vehicle {

Bike() {
super();//will invoke parent class constructor
System.out.println("Bike is created");

}

public static void main(String args[]) {
Bike b = new Bike();

}
}

INPUT: Input is provided in main method.

OUTPUT:
Vehicle is created
Bike is created

Experiment No: 10: Exception handling.

Aim: Write a program in java to show the use of exception handling.

Description:
An exception is an event, which occurs during the execution of a program, that interrupts the

normal flow of the program. It is an error thrown by a class or method reporting an error in code.
The 'Throwable' class is the superclass of all errors and exceptions in the Java language Exceptions
are broadly classified as 'checked exceptions' and 'unchecked exceptions'. All RuntimeExceptions
and Errors are unchecked exceptions. Rest of the exceptions are called checked exceptions. Checked
exceptions should be handled in the code to avoid compile time errors. Exceptions can be handled by
using 'try-catch' block. Try block contains the code which is under observation for exceptions. The
catch block contains the remedy for the exception. If any exception occurs in the try block then the
control jumps to catch block. If a method doesn't handle the exception, then it is mandatory to
specify the exception type in the method signature using 'throws' clause. We can explicitly throw an
exception using 'throw' clause.

/* Java program MyClass.java */

public class MyClass{

public void show(String[] str) throws ArithmeticException,
ArrayIndexOutOfBoundsException{

if(str.length<2){
throw new ArrayIndexOutOfBoundsException("Array length is "

+str.length+" It must be 2");
} else if(n2==0){

throw new ArithmeticException("Divided by 0, not possible");
}else{

int n1=Integer.parseInt(str[0]);
int n2=Integer.parseInt(str[1]);
int result=0;

result=n1/n2;
System.out.print("Result : "+result);

}
}
public static void main(String args[]) {
try {

new MyClass().show(args);
} catch(ArithmeticException aex){

System.out.println(aex);
} catch(ArrayIndexOutOfBoundsException aibex){

System.out.println(aibex);
}

}
}

INPUT-1: If java MyClass 10 2 (command is executed)

OUTPUT-1: Result : 5

INPUT-2: If java MyClass 10 0 (command is executed)

OUTPUT-2: Divided by 0, not possible

INPUT-3: If java MyClass 10 (command is executed)

OUTPUT-4: Array length is 1 It must be 2

Experiment No: 11: Threading

Aim: Write a program in java to implement threading.

Description:
Threading is a facility to allow multiple tasks to run concurrently within a single process.

Threads are independent, concurrent execution through a program, and each thread has its own
stack.

In Java threads can be implemented in two ways. One is by 'Extending Thread Class' and the
other way is by 'Implementing Runnable Interface'

Extending Thread Class is required to 'override run()' method. The run method contains the
actual logic to be executed by thread.

Creation of thread object never starts execution, we need to call 'start()' method to run a
thread. Examples gives you more details. Other methods supported by Threads are given below.

join(): It makes to wait for this thread to die. You can wait for a thread to finish by calling its
join() method.

sleep(): It makes current executing thread to sleep for a specified interval of time. Time is in
milli seconds.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

yield(): It makes current executing thread object to pause temporarily and gives control to
other thread to execute.

notify(): This method is inherited from Object class. This method wakes up a single thread
that is waiting on this object's monitor to acquire lock.

notifyAll(): This method is inherited from Object class. This method wakes up all threads
that are waiting on this object's monitor to acquire lock.

wait(): This method is inherited from Object class. This method makes current thread to wait
until another thread invokes the notify() or the notifyAll() for this object.

/* Java program ThreadTest.java */

public class ThreadTest {

public static void main(String args[]) {

System.out.println("Create ...");

MyThread th1 = new MyThread("TH : 1");
MyThread th2 = new MyThread("TH : 22");
MyThread th3 = new MyThread("TH : 333");

MyThread2 th21 = new MyThread2("TH2 : 1");
MyThread2 th22 = new MyThread2("TH2 : 22");
MyThread2 th23 = new MyThread2("TH2 : 333");

System.out.println("Start ...");

th1.start();
th2.start();
th3.start();
new Thread(th21).start();
new Thread(th22).start();
new Thread(th23).start();

}
}

class MyThread extends Thread {

public MyThread(String str) {
super(str);

}

public synchronized void access() {

for (int i = 0; i < 5; i++) {
System.out.println("Loop " + i + ": " + getName());

try {
if (getName().equals("TH : 1")) {

sleep(4000);
}

} catch (InterruptedException e) {
}

}
}

public void run() {
access();
System.out.println("-----------------");
System.out.println("End: " + getName());
System.out.println("-----------------");

}
}

class MyThread2 implements Runnable {

String str;

public MyThread2(String str) {
this.str = str;

}

public synchronized void access() {

for (int i = 0; i < 5; i++) {
System.out.println("Loop " + i + ": " + str);

try {
if (str.equals("TH : 1")) {

Thread.sleep(4000);
}

} catch (InterruptedException e) {
}

}
}

public void run() {
access();
System.out.println("-----------------");
System.out.println("End: " + str);
System.out.println("-----------------");

}
}

INPUT: Input is provided in main method.

OUTPUT: Output sequences may changes time to time.
Create ...
Start ...
Loop 0: TH : 22
Loop 0: TH2 : 22
Loop 1: TH : 22
Loop 1: TH2 : 22
Loop 0: TH : 1
Loop 2: TH2 : 22
Loop 3: TH2 : 22
Loop 4: TH2 : 22

End: TH2 : 22

Loop 2: TH : 22
Loop 3: TH : 22
Loop 4: TH : 22

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

End: TH : 22

Loop 0: TH2 : 1
Loop 1: TH2 : 1
Loop 2: TH2 : 1
Loop 3: TH2 : 1
Loop 4: TH2 : 1

End: TH2 : 1

Loop 0: TH : 333
Loop 1: TH : 333
Loop 2: TH : 333
Loop 3: TH : 333
Loop 4: TH : 333

End: TH : 333

Loop 0: TH2 : 333
Loop 1: TH2 : 333
Loop 2: TH2 : 333
Loop 3: TH2 : 333
Loop 4: TH2 : 333

End: TH2 : 333

Loop 1: TH : 1
Loop 2: TH : 1
Loop 3: TH : 1
Loop 4: TH : 1

End: TH : 1

Experiment No: 12: Applet programming

Aim: Write a program in java to implement action event with applet.

Description:
A Java applet is a small application which is written in Java or another programming

language that compiles to Java bytecode and delivered to users in the form of that bytecode. The user
launches the Java applet from a web page, and the applet is then executed within a Java Virtual
Machine (JVM) in a process separate from the web browser itself. A Java applet can appear in a
frame of the web page, a new application window, Sun's AppletViewer, or a stand-alone tool for
testing applets. Java applets were introduced in the first version of the Java language, which was
released in 1995.

Changing the state of an object is known as an event. For example, click on button, dragging
mouse etc. The java.awt.event package provides many event classes and Listener interfaces for event
handling. In computing, an event is an action or occurrence recognized by software that may be
handled by the software. Computer events can be generated or triggered by the system, by the user
or in other ways. Typically, events are handled synchronously with the program flow, that is, the
software may have one or more dedicated places where events are handled, frequently an event loop.
A source of events includes the user, who may interact with the software by way of, for example,
keystrokes on the keyboard. Another source is a hardware device such as a timer. Software can also
trigger its own set of events into the event loop, e.g. to communicate the completion of a task.
Software that changes its behavior in response to events is said to be event-driven, often with the
goal of being interactive. A source generates an Event and send it to one or more listeners registered

with the source. Once event is received by the listener, they processe the event and then return.
Events are supported by a number of Java packages, like java.util, java.awt and java.awt.event. Any
action that user performs on a GUI component must be listened and necessary action should to be
taken. For example, if a user clicks on a Exit button, then we need to write code to exit the program.
So for this, we need to know that the user has clicked the button. This process of knowing is called
as listening and the action done by the user is called an event. Writing the corresponding code for a
user action is called as Event handling. An event listener in Java is an interface that contains
methods called handlers in which corresponding action code is to be written. An event class contains
the information about an event.
Event source is the GUI component or model on which an event is generated or in other words an
action is done.
An adapter class is an abstract class implementing a listener interface. This is essential when we
don't want to write all the handlers. For example, MouseListener interface contains a lot of methods
such as mousePressed(), mouseReleased().. and we want to write only one of them, we use adapter
class. This class implements all the methods of an interface giving them an empty body while itself
being abstract. For every action user performs, a corresponding event object is generated. This
generated event object should be sent to the corresponding listener so that we can handle that event
and write the code accordingly. The process of sending of event object to its corresponding listener
is called as event dispatching. Events cannot be dispatched if they aren't generated and an event,
except MouseEvent cannot be generated on a disabled component.

/* Applet Program & Action Event */
import javax.swing.*;
import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class MyApplet extends Applet implements ActionListener {
JTextField txtEmail;
JLabel lblMsg;
JButton btnSubmit;

public void init(){
txtEmail=new JTextField(20);
btnSubmit = new JButton("Submit");
lblMsg = new JLabel("****");
setBackground(Color.YELLOW);

add(lblMsg);
add(txtEmail);
add(btnSubmit);

btnSubmit.addActionListener(this);
}
public void actionPerformed(ActionEvent ae){

submit();
}
private void submit() {
if(!txtEmail.getText().contains("@")){

lblMsg.setText("In valid Email Id :: must contains @");
}else if(!txtEmail.getText().contains(".com")){

lblMsg.setText("In valid Email Id :: must contains .com");
}else{

lblMsg.setText("Email Id valid");
}

}
}

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

INPUT: Typing santanu.basak in the textfield, press Submit button.

OUTPUT:

Experiment No: 13: Swing programming and Layout

Aim: Write a program in java to implement layout with swing.

Description:
Layout means the arrangement of components within the container. In other way we can say

that placing the components at a particular position within the container. The task of layouting the
controls is done automatically by the Layout Manager. The LayoutManagers are used to arrange
components in a particular manner. LayoutManager is an interface that is implemented by all the
classes of layout managers. There are following classes that represent the layout managers:

java.awt.BorderLayout
java.awt.FlowLayout
java.awt.GridLayout
java.awt.CardLayout
java.awt.GridBagLayout
javax.swing.BoxLayout
javax.swing.GroupLayout
javax.swing.ScrollPaneLayout
javax.swing.SpringLayout

The BorderLayout is used to arrange the components in five regions: north, south, east, west
and center. Each region (area) may contain one component only. It is the default layout of frame or
window. The BorderLayout provides five constants for each region:

public static final int NORTH
public static final int SOUTH
public static final int EAST
public static final int WEST
public static final int CENTER

/* Java program BorderLayoutExample.java */

import javax.swing.*;

public class BorderLayoutExample {

JFrame frm;
JButton btn1;
JButton btn2;
JButton btn3;
JButton btn4;
JButton btn5;

public BorderLayoutExample() {
init();

}

private void init() {
frm = new JFrame("Border Layout");

btn1 = new JButton("Button 1");
btn2 = new JButton("Button 2");
btn3 = new JButton("Button 3");
btn4 = new JButton("Button 4");
btn5 = new JButton("Button 5");

prepare();
}

private void prepare() {
frm.add(btn1, "South");
frm.add(btn2, "North");
frm.add(btn3, "East");
frm.add(btn4, "West");
frm.add(btn5, "Center");

frm.setSize(400, 400);

frm.setVisible(true);
}

private void show() {
frm.setVisible(true);

}

public static void main(String args[]) {
BorderLayoutExample reg = new BorderLayoutExample();
reg.show();

}
}

INPUT: Input is not required.

OUTPUT:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

	1.HU501_EE_LP.pdf (p.1-2)
	2.CS501_DAA_LP.pdf (p.3-6)
	3.CS502_MPMC_LP.pdf (p.7-11)
	4.CS503_DM_LP.pdf (p.12-13)
	5.CS504A_CTN_LP.pdf (p.14-17)
	5.CS504B_DC_LP.pdf (p.18-19)
	5.CS504C_DSP_LP.pdf (p.20-21)
	5.CS504D_JAVA_LP.pdf (p.22-24)
	6.CS591_DAA_Lab_LM.pdf (p.25-57)
	7.CS592_MPMC_Lab_LM.pdf (p.58-87)
	8.CS593_php_Lab_LM.pdf (p.88-92)
	9.CS504A_CTN_Lab_LM.pdf (p.93-107)
	9.CS594B_DC_Lab_LM.pdf (p.108-125)
	9.CS594C_DSP_Lab_LM.pdf (p.126-142)
	9.CS594D_JAVA_Lab_LM.pdf (p.143-175)

