
UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Cloud Computing Code-CS701
Year: 4thYear Semester: Seventh
Module Number Topics Number of Lectures

1
Cloud Computing Fundamental, Business Agility 6L
Cloud computing definition, private, public and
hybrid cloud. Cloud types, Iaas, Saas. Benefits and
challenges of cloud computing. Role of virtualization
in enabling the cloud.

2 Cloud Applications 5L
Technologies and the processes required when
deploying web services; Deploying a web service
from inside and outside a cloud architecture,
advantages and disadvantages

3 Cloud Services Management, Cloud Economics 9L
Reliability, availability and security of services
deployed from the cloud. Cloud Computing
infrastructures available for implementing cloud
based services. Economics of choosing a Cloud
platform for an organization, based on application
requirements, economic constraints and business
needs.

4 Application Development 8L
Service creation environments to develop cloud
based applications. Development environments for
service development; Amazon, Azure, Google App.

5 Best Practice Cloud IT Model 7L

Analysis of Case Studies when deciding to adopt
cloud computing architecture. How to decide if the
cloud is right for your requirements. Cloud based
service, applications and development platform
deployment so as to improve the total cost of
ownership (TCO)

Total Number Of Hours = 35

Faculty In-Charge HOD, CSE Dept.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Cloud Computing Code-CS701
Year: 4thYear Semester: First

Assignment:

Module-1 (Cloud Computing Fundamental, Business Agility):
1. Explain private,public and hybrid cloud. What are the different types of Cloud are present?
2. Mention the Benefits and challenges of cloud computing.

Module-2 (Cloud Applications):
1. What are the technologies and the processes required when deploying web services in cloud?
2. Explain the deployment of web service from inside and outside a cloud architecture.

Module-3 (Cloud Services Management, Cloud Economics):
1. Explain reliability, availability and security of services deployed from the cloud.
2. What are the economic constraints and business needs to implement cloud environment?

Module-4 (Application Development):
1. How service creation environments are used to develop cloud based applications?
2. Explain how development environments for service development are used.

Module-5 (Best Practice Cloud IT Model):
1. How do you decide if the cloud is right for your requirements?
2. Explain Cloud based service.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Compiler Design Subject Code-CS702
Year: 4th Year Semester: Seventh
Module Number Course Details Number of Lectures
UNIT 1

1

Introduction to Compiler:
4LH Compiler Construction tools

 Analysis of the source program
 The Phases of a Compiler
 Cousins of the Compiler
 Grouping of phases – Front and back

ends, passes
 Introduction, Types of translators

2
Lexical Analysis:

6LH Role of Lexical Analyzer
 Token, Patterns and Lexemes
 Input buffering – buffer pairs and

sentinels
 Reorganization of Token

Translation diagram
UNIT 2

3

Syntax Analysis:

7LH The role of a parser
 Context free grammars, Writing a

grammar
 Top down Parsing
 Non-recursive Predictive parsing (LL),

Bottom up parsing, Handles
 Viable prefixes
 Operator precedence parsing
 LR parsers (SLR, LALR), Parser

generators (YACC)
 Error Recovery strategies for different

parsing techniques.

4
Syntax directed translation:

7LH Syntax directed definitions
 Construction of syntax trees
 Bottom-up evaluation of S attributed

definitions
 L attributed definitions
 Bottom-up evaluation of inherited

attributes.
UNIT 3

5

Type checking:

7LH Type systems
 Specification of a simple type checker
 Equivalence of type expressions
 Type conversions

Run time environments:

6  Source language issues (Activation
trees, Control stack, scope of
declaration, Binding of names)

 Storage organization (Subdivision of
run-time memory, Activation records)

 Storage allocation strategies
 Parameter passing (call by value, call by

reference, copy restore, call by name)
 Symbol tables
 Dynamic storage allocation techniques.

5LH

UNIT 4

7

Intermediate code generation:

8LH

 Intermediate languages
 Graphical representation
 Three-address code
 Implementation of three address

statements (Quadruples, Triples, Indirect
triples).

8 Code optimization and Code generations:
 Introduction
 Basic blocks & flow graphs
 Transformation of basic blocks
 Dag representation of basic blocks,
 The principle sources of optimization
 Loops in flow graph
 Peephole optimization
 Code generations
 Issues in the design of code generator, a

simple code generator
 Register allocation & assignment.

Total Number Of Hours = 44

Faculty In-Charge HOD, CSE Dept.

Assignment:
Module-1(Introduction):

1. Find all strings in the language (a+b)*b(a+ab)* of length less than 4.
2. With the help of a block diagram, show each phase of compiler including symbol table and

error handling of a compiler.
3. Give the NFA for the following Regular Expression. Then find a DFA for the same language.

(a|b)*abb

Module-3 (Syntax Analysis):
1. Construct the Predictive Parsing table for the following grammar:

E -> E+ T|T

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Compiler Design Subject Code-CS702
Year: 4th Year Semester: Seventh

T -> T* F|F

F-> (E) |id

2. Parse the following string by operator precedence parsing:

Id1+id2*id3

3. What are the main contributions of syntax directed translation in compiler? Design a
dependency graph and direct acyclic graph for the string

a+a*(b-c)+(b-c)*d

4. What is operator precedence parsing? Discuss about the advantage and disadvantage of
operator precedence parsing.consider the following grammar:

E-> TA
A-> +TA|€
T-> FB
B-> *FB|€
F-> id

Test whether this grammar is operator precedence grammar or not and show how the
string w=id+id*id+id will be processed by this grammar.

UNIVERSITY OF ENGINEERING & MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: Image Processing Subject Code-CS703A
Year: 4th Year Semester: Seventh

Module
Number

Topics Number of
Lectures

1.

Introduction: 4L

1. Background, Digital Image Representation, 1

2. Fundamental steps in Image Processing 1
3. Elements of Digital Image Processing – Image
Acquisition, Storage, Processing, Communication,

Display.

2

2.

Digital Image Formation 6L
1. A Simple Image Model, Geometric Model- Basic
Transformation (Translation, Scaling, Rotation),

3

2. Perspective Projection, 1
3. Sampling& Quantization - Uniform & Non-uniform 2

3.

Mathematical Preliminaries 8L
1. Neighbour of pixels, Connectivity, Relations,
Equivalence & Transitive Closure;

2

2. Distance Measures, Arithmetic/Logic Operations,
Fourier Transformation,

3

3. Properties of The Two Dimensional Fourier
Transform, Discrete Fourier Transform, Discrete
Cosine & Sine Transform

3

4.
Image Enhancement 10L

1. Spatial Domain Method, Frequency Domain Method,
Contrast Enhancement –Linear& Nonlinear Stretching

3

2. Histogram Processing; Smoothing - Image
Averaging, Mean Filter, Low-pass Filtering; Image
Sharpening. High-pass Filtering, High-boost Filtering

4

3. Derivative Filtering, Homomorphic Filtering;
Enhancement in the frequency domain - Low pass
filtering, High pass filtering.

3

5.
Image Restoration 6L

1. Degradation Model, Discrete Formulation,
Algebraic Approach to Restoration –
Unconstrained & Constrained

2

2. Constrained Least Square Restoration, Restoration
by Homomorphic Filtering,

2

3. Geometric Transformation - Spatial
Transformation, Gray Level Interpolation

2

6. Image Segmentation 8L
1. Point Detection, Line Detection, Edge detection,
Combined detection, Edge Linking & Boundary
Detection - Local Processing

3

2. Global Processing via The Hough Transform;
Thresholding - Foundation, Simple Global
Thresholding, Optimal Thresholding

3

3. Region Oriented Segmentation - Basic
Formulation, Region Growing by Pixel
Aggregation, Region Splitting & Merging

2

Total Number Of Hours = 42

Faculty In-Charge HOD, CSE Dept.

Assignment :

Module -1 (Introduction)

Module -2 (Digital Image Formation)

Module -3 (Mathematical Preliminaries)

Module -4 (Image Enhancement)

Module -5 (Image Restoration)

Module -6 (Image Segmentation)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Pattern Recognition Subject Code-CS703B
Year: 4th Year Semester: Seventh

Module
Number

Topics Number of Lectures

1

Introduction: 7L

Introduction – Definitions, data sets for Pattern
Recognition. Different Paradigms of Pattern
Recognition. Representations of Patterns and
Classes. Metric and non-metric proximity
measures.

7

2

Feature extraction: 7L

Feature extraction
Different approaches to Feature Selection
Nearest Neighbour Classifier and variants
Efficient algorithms for nearest neighbour
classification

7

Prototype Selection: 11L

3
Different Approaches to Prototype Selection
Bayes Classifier Decision Trees
Linear Discriminant Function

11

4
Clustering: 11L

Support Vector Machines
Clustering. Clustering Large datasets.
Combination of Classifiers. Applications –
Document Recognition

11

Total Number Of Hours = 36

Assignment:

Module-1:
1. Describe the basic modules in designing a pattern recognition system.
2. Briefly explain what is generalization in the context of pattern recognition problems?
Module-2:
1. Explain the concept of feature extraction in pattern recognition system with examples.
2. Explain the Nearest Neighbor Rule used in Density Estimation.
Module-3:
1. Write a short note with diagrams on Decision trees which are nonlinear, nonmetric
classifiers.
2. State the Bayes Rule and explain how it is applied to pattern classification problems.
Module-4:
1. To which category of clustering schemes does the k-means algorithm belong? What is its
major advantage?
2. Which are the two schemes of Hierarchical clustering algorithm? Give brief descriptions.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Soft Computing Subject Code-CS703C
Year: 4th Year Semester: Seventh

Module
Number

Topics Number of Lectures

1

Introduction: 2L

1. Introduction to soft computing;
introduction to fuzzy sets and fuzzy logic
systems.

1

2. Introduction to biological and
artificial neural network; introduction to
Genetic Algorithm.

1

2

Fuzzy sets and Fuzzy logic systems: 10L
1. Classical Sets and Fuzzy Sets and Fuzzy

relations: Operations on Classical sets,
properties of classical sets, Fuzzy set
operations, properties of fuzzy sets,
cardinality, operations, and properties of
fuzzy relations.

2

2. Membership functions : Features of
membership functions, standard forms and
boundaries, different fuzzification
methods.

1

3. Fuzzy to Crisp conversions: Lambda Cuts
for fuzzy sets, fuzzy Relations,
Defuzzification methods.

1

4. Classical Logic and Fuzzy Logic:
Classical predicate logic, Fuzzy Logic,
Approximate reasoning and Fuzzy
Implication

1

5. Fuzzy Rule based Systems: Linguistic
Hedges, Fuzzy Rule based system-
Aggregation of fuzzy Rules, Fuzzy
Inference SystemMamdani Fuzzy Models
– Sugeno Fuzzy Models.

3

6. Applications of Fuzzy Logic: How Fuzzy
Logic is applied in Home Appliances,
General Fuzzy Logic controllers, Basic
Medical Diagnostic systems and Weather
forecasting

2

3.

Neural Network 10L
1. Introduction to Neural Networks: Advent

of Modern Neuroscience, Classical AI and
Neural Networks, Biological Neurons and
Artificial neural network, model of
artificial neuron.

2

2. Learning Methods : Hebbian, competitive,
Boltzman etc.,

2

3. Neural Network models: Perceptron,
Adaline and Madaline networks; single

2

layer network; Back-propagation and
multi layer networks.

4. Competitive learning networks: Kohonen
self organizing networks, Hebbian
learning; Hopfield Networks.

2

5. Neuo-Fuzzy modelling:
Applications of Neural Networks: Pattern
Recognition and classification

2

4
Genetic Algorithms 10L

1. Genetic Algorithms: Simple GA,
crossover and mutation, Multi-objective
Genetic Algorithm (MOGA).

4

2. Applications of Genetic Algorithm:
genetic algorithms in search and
optimization, GA based clustering
Algorithm, Image processing and pattern
Recognition

6

5
Soft Computing techniques 4L

1. Other Soft Computing techniques:
Simulated Annealing, Tabu search, Ant
colony optimization (ACO), Particle
Swarm Optimization (PSO).

4

Faculty In-Charge HOD,
CSE Dept.

Assignment:
Module-1(Introduction):

1. Soft Computing vs Hard Computing.

Module-2 (Fuzzy sets and Fuzzy logic systems):
1. Classical Sets vs Fuzzy Sets
2. Explain different membership functions.
3. Fuzzy to Crisp conversions
4. Fuzzy Rule based Systems
5. Applications of Fuzzy Logic

Module-3(Neural Network):
1. Biological Neurons vs artificial neural network

2. Different Learning Methods

3. Different Neural Network models

4. Competitive learning networks

5. Applications of Neural Networks

Module-4(Genetic Algorithms):
1. Genetic Algorithms and application of Genetic Algorithms

Module-5(Soft Computing techniques):

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

1. Soft Computing techniques

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Artificial Intelligence Subject Code-CS703D
Year: 4th Year Semester: Seventh
Module Number Topics Number of Lectures

1

Introduction: 2L
Overview of Artificial intelligence- Problems of
AI, AI technique, Tic - Tac - Toe problem.

2 Intelligent Agents 2L
Agents & environment, nature of environment,
structure of agents, goal based agents, utility
based agents, learning agents.

3

Problem Solving 2L

Problems, Problem Space & search: Defining
the problem as state space search, production
system, problem characteristics, issues in the
design of search programs.

4

Search techniques 5L

Solving problems by searching: problem
solving agents, searching for solutions; uniform
search strategies: breadth first search, depth
first search, depth limited search, bidirectional
search, comparing uniform search strategies.

5
Heuristic search strategies 5L
Greedy best-first search, A* search, memory
bounded heuristic search: local search
algorithms & optimization problems: Hill
climbing search, simulated annealing search,
local beam search, genetic algorithms;
constraint satisfaction problems, local search
for constraint satisfaction problems

6

Adversarial search 3L
Games, optimal decisions & strategies in
games, the mini max search procedure, alpha-
beta pruning, additional refinements, iterative
deepening.

7

Knowledge & reasoning 3L

Knowledge representation issues, representation
& mapping, approaches to knowledge
representation, issues in knowledge
representation.

8
Using predicate logic 2L
Representing simple fact in logic, representing
instant & ISA relationship, computable
functions & predicates, resolution, natural
deduction.

9
Representing knowledge using rules 3L
Procedural verses declarative knowledge, logic
programming, forward verses backward
reasoning, matching, control knowledge.

10
Probabilistic reasoning 4L
Representing knowledge in an uncertain
domain, the semantics of Bayesian networks,
Dempster-Shafer theory, Fuzzy sets & fuzzy
logics.

11 Planning 2L
Overview, components of a planning system,
Goal stack planning, Hierarchical planning,
other planning techniques.

12 Natural Language processing 2L
Introduction, Syntactic processing, semantic
analysis, discourse & pragmatic processing.

13 Learning 2L
Forms of learning, inductive learning, learning
decision trees, explanation based learning,
learning using relevance
information, neural net learning & genetic
learning.

14 Expert Systems 2L
Representing and using domain knowledge,
expert system shells, knowledge acquisition

Total Number Of Hours = 39

Faculty In-Charge HOD, CSE Dept.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Artificial Intelligence Subject Code-CS703D
Year: 4th Year Semester: Seventh
Assignments:

Module-I: Introduction

1. What do you mean by Artificial intelligence?
2. Explain Tic - Tac - Toe problem.

Module-II: Intelligent Agents

1. Explain nature of environment
2. Discuss the followings:

 structure of agents
 goal based agents
 utility based agents
 Learning agents

Module-III: Problem Solving

1. Explain how the problem as state space search has defined?
2. Define problem characteristics and issues in the design of search programs.

Module-IV: Search techniques

1. What do you mean by problem solving agents? searching for solutions
2. Explain depth limited search, bidirectional search.

Module-V: Heuristic search strategies

1. Explain Greedy best-first search
2. How Hill climbing search and simulated annealing search are different from each other?

Module-VI: Adversarial search

1. What do you mean by optimal decisions & strategies in games?
2. Explain the mini max search procedure, alpha-beta pruning.

Module-VII: Knowledge & reasoning

1. Explain different knowledge representation issues, representation & mapping.
2. Mention different approaches to knowledge representation. What are the issues in knowledge

representation?

Module-VIII: Using predicate logic

1. How you represent simple facts in logic?

2. Explain ISA relationship, computable functions & predicates.

Module-IX: Representing knowledge using rules

1. Differentiate Procedural and declarative knowledge
2. Explain logic programming. What are the differences between forward and backward

reasoning?

Module-X: Probabilistic reasoning

1. How you represent knowledge in an uncertain domain?
2. Explain the semantics of Bayesian networks. What do you mean by Dempster-Shafer theory?

Module-XI: Planning

1. Explain the components of a planning system. What is Goal stack planning?
2. What do you mean by Hierarchical planning?

Module-XII: Natural Language processing

1. Explain Syntactic processing in NLP.
2. What do you mean by semantic analysis?

Module-XIII: Learning

1. Explain the different forms of learning. What do you mean by inductive learning, learning
decision trees, explanation based learning?

2. Differentiate neural net learning & genetic learning.

Module-XIV: Expert Systems

1. How do you representing and use domain knowledge?
2. Explain expert system shells, knowledge acquisition.

UNIVERSITY OF ENGINEERING & MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: Distributed Operating System Subject Code-CS704A
Year: 4thYear Semester: Seventh
Module Number Topics Number of Lectures

1

Introduction to Distributed System 2L
1. Introduction, Examples of distributed

system,
2. Resource sharing, Challenges

1
1

2

Operating System Structures 3L
1. Review of structures: monolithic kernel,

layered systems, virtual machines.
2. Process based models and client server

architecture;
3. The micro-kernel based client-server

approach.

1

1

1

3

Communication 4L
1. Inter-process communication,
2. Remote Procedure Call, Remote Object

Invocation,
3. Tasks and Threads. Examples from

LINUX, Solaris 2 and Windows NT.

1
1

2

4

Theoretical Foundations 4L
1. Introduction. Inherent Limitations of

distributed Systems.
2. Lamport's Logical clock. Global State

2

2

5

Distributed Mutual Exclusion 4L
1. Classification of distributed mutual

exclusion algorithm.
2. NonToken based Algorithm: Lamport's

algorithm, Ricart-Agrawala algorithm.
3. Token based Algorithm: Suzuki-

Kasami's broadcast algorithm.

1

1

2

6
Distributed Deadlock Detection 4L

1. Deadlock handling strategies in distributed
systems. Control organizations for
distributed deadlock detection.

2. Centralized and Distributed deadlock
detection algorithms: Completely
Centralized algorithms, path pushing, and
edge chasing, global state detection
algorithm.

1

3

7 Protection and Security 4L
1. Requirements for protection and security

regimes. The access matrix model of
protection.

2. System and user modes, rings of protection,
access lists, capabilities. User
authentication, passwords and signatures.
Use of single key and public key
encryption.

2

2

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Mobile Computing Subject Code-CS704D
Year: 4thYear Semester: 7th

8 Distributed file systems 6L
1. Issues in the design of distributed file

systems: naming, transparency, update
semantics and fault resilience.

2. Use of the Virtual File System layer.
Examples of distributed systems including
Sun NFS, the Andrew filestore, CODA file
system and OSF DCE.

3

3

9 Distributed Shared Memory 4L
1. Architecture and motivations. Algorithms

for implementing DSM.
2. Memory Coherence

2
2

10 CORBA 3L
1. The Common Object Request Broker

Architecture model
2. Software and its relationship to Operating

Systems.

1

2

Total Number Of Lectures = 38

Faculty In-Charge HOD, CSE Dept.

UNIVERSITY OF ENGINEERING & MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: Distributed Operating System Subject Code-CS704A
Year: 4thYear Semester: Seventh
Assignment:

Module-1(Introduction to Distributed System):
1. Write down the examples of distributed system,

2. What do you mean by Resource sharing? What are the Challenges?

Module-2 (Operating System Structures):
1. Explain monolithic kernel, layered systems, virtual machines.
2. What do you mean by Process based models and client server architecture?

Module-3(Communication):
1. What is Inter-process communication?
2. Explain Remote Procedure Call, Remote Object Invocation.

Module-4(Theoretical Foundations):

1. Explain the Inherent Limitations of distributed Systems.
2. What is Lamport's Logical clock?

Module-5(Distributed Mutual Exclusion):
1. Classify the distributed mutual exclusion algorithm.
2. Explain Ricart-Agrawala algorithm and Suzuki-Kasami's broadcast algorithm.

Module-6 (Distributed Deadlock Detection):
1. Explain the Deadlock handling strategies in distributed systems. Also explain the

Control organizations for distributed deadlock detection.
2. Mention the differences between Centralized and Distributed deadlock detection

algorithms.

Module-7 (Protection and Security):
1. What do you mean by rings of protection?
2. How User authentication is done? Is there any differences between passwords and

signatures?

Module-8 (Distributed file systems):
1. Write down the issues to the design the distributed file systems.
2. Explain how you use the Virtual File System layer. Mention the examples of

distributed systems including Sun NFS.

Module-9 (Distributed Shared Memory):
1. Explain the Algorithms for implementing DSM.
2. What do you mean by Memory Coherence?

Module-10 (CORBA):
1. What is CORBA?
2. How Software are related to Operating Systems?

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Data Warehousing & Data Mining Subject Code- CS704B

Year: 4thYear Semester: Seventh

Module
Number

Topics Number of Lectures

1

Overview of Data warehousing 4L

Strategic information and the need for Data warehousing, ,. 1

Defining a Data warehouse, Evolution of Data warehousing 2
Data warehousing and Business Intelligence 1

2

The Building Blocks of Data warehouse 5L

Defining features – Subject-oriented data, Integrated data,

Time-variant data.

2

Nonvolatile data, Data granularity Data warehouses and
Data marts Architectural Types – Centralized, Independent
data marts, Federated, Hub-and-Spoke, Data mart bus
Overview of components - Source Data, Data Staging,

2

Data Storage, Information Delivery, Metadata, and

Management and Control components.

1

3.
Business Requirements and Data warehouse 6L
Dimensional nature of Business data and Dimensional

Analysis, Dimension hierarchies and categories, Key

Business Metrics (Facts),

3

Requirement Gathering methods and Requirements

Definition Document (contents)

Business Requirements and Data Design – Structure for

Business Dimensions and Key Measurements, Levels of

detail Business Requirements and the Architecture plan

Business Requirements and Data Storage Specifications

Business Requirements and Information Delivery Strategy

3

4.
Architectural components 7L

Concepts of Data warehouse architecture – Definition and
architecture in the areas of Data acquisition, Data storage,
and Information delivery Distinguishing characteristics –
Different objectives and scope.

2

Data content, Complex analysis for faster response,
Flexible and Dynamic, Metadata-driven etc.Architectural
Framework – supporting flow of data, and the Management
and Control module Technical architecture – Data
acquisition, Data storage, and Information delivery
Overview of the components of Architectural.

3

Metadata types by functional areas – Data acquisition, Data

storage, and Information delivery

Business Metadata – overview of content and examples

Technical Metadata – overview of content and examples

2

Metadata Requirements, Sources of Metadata, Metadata

management – challenges, Metadata Repository, Metadata

integration and standards

5.
Matching information to classes of users 12L

Information from Data warehouse versus Operational

systems, Users of information – their needs and how to

provide information, Information delivery – queries,

reports, analysis, and applications, Information delivery

tools – Desktop environment, Methodology and criteria for

tool selection, Information delivery framework, Business

Activity Monitoring, Dashboards and Scorecards,.

3

OLAP in Data warehouse

Overall concept of Online Analytical Processing (OLAP),

OLAP definitions and rules, OLAP characteristics

Major features and functions of OLAP – General features,

Dimensional analysis, Hypercubes, Drill Down and Roll

Up, Slice and Dice, Rotation, Uses and Benefits,

3

Data Warehouse and the web

Web-enabled Data Warehouse – adapting data warehouse

for the web, Web-based information delivery – Browser

technology for data warehouse and Security issues, OLAP

and Web – Enterprise OLAP, Web-OLAP approaches,

OLAP Engine design

3

Data Mining

Overview of Data mining – Definition, Knowledge

Discovery Process (Relationships, Patterns, Phases of the

process), OLAP versus Data mining, Some aspects of Data

mining – Association rules, Outlier analysis, Predictive

analytics etc), Concepts of Data mining in a Data

warehouse environment, Major Data Mining techniques –
Cluster Detection, Decision Trees, Memory-based

Reasoning, Link Analysis, Neural Networks, Genetic

Algorithms etc, Data Mining Applications in industry –
Benefits of Data mining, Discussion on applications in

Customer Relationship Management (CRM), Retail,

Telecommunication, Biotechnology, Banking and Finance

etc.

3

Total Number Of Hours = 34

Faculty In-Charge HOD, CSE Dept.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Assignment:

1. What is Data Mining? What is the advantages of data mining over traditional approach?

2. What do you understand by Web mining? Compare web mining with data mining.

3. Write down the differences between star schema and snowflake schema.

4. Discuss different type of Meta data with proper example.

5. What is clustering? Why we need Cluster for a large set of data?

6. In data warehousing technology explain ROLAP, MOLAP and HOLAP techniques of
implementing a multidimensional view.

7. Generate all Frequent Item sets from the following transaction data given minimum
support=0.3.

TID ITEMS

T1 {CSE,EE,CE,IT}
T2 {EE,PE,IT}
T3 {EE,CE}
T4 {CSE,EE,PE}
T5 {CSE,CE}
T6 {EE,CE}
T7 {CSE,CE,IT}
T8 {CSE,EE,CE,IT}
T9 {CSE,EE,CE}
T10 {CE,PE,IT}

Find five Association rules from the above Frequent sets at min. 50% confidence.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Sensor Networks Subject Code-CS704C
Year: 4th Year Semester: Seventh

Module
Number

Topics Number of Lectures

1

Introduction and Overview: 4L

Overview of wireless networks, types,
infrastructure-based and infrastructure-less, 1
introduction to MANETs (Mobile Ad-hoc
Networks), characteristics, reactive and proactive
routing protocols with examples.

1

Introduction to sensor networks, commonalities
and differences with MANETs,

1

constraints and challenges, advantages,
applications, enabling technologies for WSNs.

1

2

Architectures: 9L
Single-node architecture – hardware components 1
design constraints, energy consumption of sensor
nodes

1

operating systems and execution environments,
examples of sensor nodes

1

sensor network scenarios, types of sources and
sinks

1

single hop vs. multi hop networks, multiple
sources and sinks

1

mobility, optimization goals and figures of merit 1
gateway concepts 1
design principles for WSNs 1
service interfaces for WSNs 1
Communication Protocols: 9L

3.

Physical layer and transceiver design
considerations 1
MAC protocols for wireless sensor networks 1
low duty cycle protocols and wakeup concepts -
S-MAC

1

the mediation device protocol, wakeup radio
concepts, address and name management,
assignment of MAC addresses

1

routing protocols- classification, gossiping,
flooding, energy-efficient routing

1

unicast protocols, multi-path routing, data-centric
routing

1

data aggregation, SPIN, 1
LEACH 1
Directed-Diffusion, geographic routing. 1

4
Infrastructure Establishment: 9L

Topology control, flat network topologies 1
hierarchical networks by clustering, time
synchronization, properties

1

protocols based o n sender-receiver and receiver-
receiver synchronization

1

LTS, TPSN 1
RBS, HRTS 1
localization and positioning, properties and
approaches, single-hop localization

1

positioning in multi-hop environment 1
range based localization algorithms – location
services

1

sensor tasking and control 1

5

Sensor Network Platforms and Tools: 9L

Sensor node hardware
1

Berkeley motes
1

programming challenges, node-level software
platforms 1
node-level simulators

1
state-centric programming

1
Tiny OS 1

nesC components
1

NS2 simulator
1

TOSSIM
1

Total Number Of Hours = 40

Faculty In-Charge HOD, CSE Dept.

Assignment:

Module-1:
1. Define MANET? Write down the characteristics of MANET.
2. Define mote? Describe the architecture of a sensor node.

Module-2:
1. Define mobility of sensor device
2. Discuss energy consumption issues of a sensor node

Module-3:
1. Write Short notes on the following topics

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

A. LEACH
B. SPIN

Module-4:
1. Discuss Protocol based communication between two sensor nodes
2. Differentiate between LTS and HRTS

Module-5:
1. What do you mean by state centric programming?
2. Write Short notes on the following topics

A. TinyOS
B. TOSSIM
C. NS2
D. Berkeley Motes

UNIVERSITY OF ENGINEERING & MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: Mobile Computing Subject Code-CS704D
Year: 4thYear Semester: Seventh
Modul

e
Numbe

r

Topics Numbe
r of

Lectur
es

1

PCS Architecture, GSM 6L
1. Introduction to Personal Communications Services (PCS): PCS

Architecture,
2. Mobility management, Networks signalling.
3. Global System for Mobile Communication (GSM) system

overview: GSM Architecture, Mobility management, Network
signalling.

2L

2L

2L

2

GPRS 5L
1. GeneralPacketRadioServices(GPRS):GPRSArchitecture,GPRSNetwork

Nodes.
2. MobileDataCommunication:

WLANs(WirelessLANs)IEEE802.11standard,MobileIP.

2L

3L

3

Wireless Application Protocol 7L
1. Wireless Application Protocol (WAP): The Mobile Internet

standard, WAP Gateway and Protocols,
2. Wireless mark-up Languages (WML).
3. Wireless Local Loop (WLL): Introduction to WLL

Architecture,Wireless Local Loop Technologies.

3L

2L

2L

4

3G Services 7L
1. Third Generation (3G) Mobile Services: Introduction to

International Mobile Telecommunications2000 (IMT 2000)
vision,

2. Wide band Code Division Multiple Access (WCDMA), and
CDMA 2000, Quality of services in 3G.

4L

3L

5

GMSS, Bluetooth 7L
1. GlobalMobileSatelliteSystems;casestudiesofthe IRIDIUMand

GLOBALSTARsystems.
2. WirelessEnterpriseNetworks: IntroductiontoVirtual Networks.
3. Bluetoothtechnology,BluetoothProtocols.

2L

2L

3L

6
Server side concept, Applications 8L

1. Server-sideprogramminginJava,
2. Pervasiveweb applicationarchitecture
3. Deviceindependentexampleapplication

4L
2L
2L

Total Number Of Lectures = 40

Faculty In-Charge HOD, CSE Dept.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Mobile Computing Subject Code-CS704D
Year: 4thYear Semester: 7th

Assignment:

Module-1(PCS Architecture, GSM):
1. List all the services provided by GSM. What are the services provided by supplementary

services?What are main subsystems of GSM architecture?
2. What are frequencies used in forward and reverse link frequency in GSM? Explain PCS

architecture.

Module-2 (GPRS):
1. What is meant by GPRS? What is the function of an AuC?
2. What are the three types of switching methods? What is QoS in GPRS? Explain WLAN.

Module-3(Wireless Application Protocol):
1. Explain WAP. What do you mean by WML?
2. Explain WLL architecture with proper diagram.

Module-4(3G Services):

1. Explain the concepts of CDMA. What are its merits and demerits? Explain the working
principle of RAKE receiver.

2. Explain WCDMA. How quality of service is managed in 3G network?

Module-5(GMSS, Bluetooth):
1. State the modes possible when the slave is in connection state in Bluetooth.What are elements

available under link security of Bluetooth technology?
2. List few functions of Bluetooth.Differentiate piconet and scatternet in Bluetooth

technology.What re the two kinds of profiles in Bluetooth 1.1 version?

Module-6 (Server side concept, Applications):
1. How do you prepare Server-side programming in Java?
2. Explain Pervasive web application architecture. Give an example of Device independent

application.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Internet Technology Subject Code-CS705A
Year: 4th Year Semester: Seventh
Module Number Topics Number of Lectures

1

Introduction: 6L
1. Overview, Network of Networks,

Intranet, Extranet and Internet. 1L
2. World Wide Web: Domain and Sub

domain, Address Resolution, DNS,
Telnet, FTP, HTTP.

1L

3. Review of TCP/IP: Features, Segment,
Three-Way Handshaking, Flow Control,
Error Control, Congestion control, IP
Datagram, IPv4 and IPv6.

1L

4. IP Subnetting and addressing:
Classful and Classless Addressing,
Subnetting. NAT, IP masquerading, IP
tables.

1L

5. Internet Routing Protocol: Routing -
Intra and Inter Domain Routing, Unicast
and Multicast Routing, Broadcast.

1L

6. Electronic Mail: POP3, SMTP. 1L

2 HTML, Image Maps, Extensible Markup
Language, CGI Scripts:

9L

1. Introduction of Editors, Elements,
Attributes, Heading, Paragraph.
Formatting, Link, Head, Table, List,
Block, Layout, CSS. Form, Iframe,
Colors, Colorname, Colorvalue.

3L

2. Map, area, attributes of image area. 1L
3. Introduction of Tree, Syntax, Elements,

Attributes, Validation, Viewing.
XHTML in brief.

4L

4. Introduction, Environment Variable,
GET and POST Methods.

1L

3

PERL, JavaScript, Cookies, Java Applets: 10L
1. Introduction of Variable, Condition,

Loop, Array, Implementing data
structure, Hash, String, Regular
Expression, File handling, I/O handling.

3L

2. Basics, Statements, comments, variable,
comparison, condition, switch, loop,
break. Object – string, array, Boolean,
reg-ex. Function, Errors, Validation.

4L

3. Definition of cookies, Create and Store
a cookie with example.

1L

4. Container Class, Components, Applet
Life Cycle, Update method; Parameter
passing applet, Applications.

2L

4

Client-Server programming In Java,
Threats,Network security techniques,
Firewall:

4L

1. A) Java Socket, Java RMI.
1. B) Malicious code-viruses, Trojan

horses, worms; eavesdropping,
spoofing, modification, denial of
service attacks.

2L

2. A) Password and Authentication;
VPN, IP Security, security in
electronic transaction, Secure Socket
Layer (SSL), Secure Shell (SSH).
B) Introduction of Packet filtering,
Stateful, Application layer, Proxy

2L

5
Internet Telephony, Multimedia
Applications, Search Engine and Web
Crawler:

5L

1. Introduction of VoIP. 1L

2. Multimedia over IP: RSVP, RTP, RTCP
and RTSP. Streaming media, Codec and
Plugins, IPTV.

2L

3. Definition, Meta data, Web Crawler,
Indexing, Page rank, overview of SEO.

2L

Total Number Of Hours = 34

Faculty In-Charge HOD, CSE Dept.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name: Microelectronics & VLSI Design Subject Code-CS705B
Year: 4th Year Semester: Seventh

Module Number Topics Number of Lectures

1

Introduction to VLSI Design 6L

1. VLSI Design Concepts, Moor's Law, Scale
of Integration(SSI, MSI, LSI, VLSI, ULSI –
basic idea only), Types of VLSI Chips
(Analog & Digital VLSI)

1L

2. Design styles- ASIC, PLA, PAL etc. 1L

3. FPGA, Gate Array based design etc. 1L

4. Top down, Bottom up, Semi custom, Full
custom etc.

1L

5. Design principles (Digital VLSI-Concept
of Regularity etc.)

1L

6. Design Domains (Behavioral, Structu1,
physical-Y chart)

1L

2

MOS Structures 12L

1. E-MOS & D-MOS 1L

2. Charge inversion in E-MOS 1L

3. Threshold voltage, Flat-Band voltage,
Potential balance & Charge balance

1L

4. Inversion, MOS capacitances 1L

5. three-terminal MOS structure with
Body-effect

1L

6. four-terminal MOS transistor: Drain
current

1L

7. I-V characteristics, Current-voltage
equations (simple derivation),

1L

8. scaling in MOSFET: General scaling,
Constant voltage scaling & Constant
field scaling

1L

9. Short channel effects 2L

10. CMOS inverter, Simple Combinational
Gates-NAND gate and NOR gate using
CMOS

2L

3 Micro-electronic Processes for VLSI Fabrication 10L

1. Silicon Semiconductor Technology- An
Overview, Wafer processing

1L

2. Oxidation, Epitaxial deposition, Ion-
implantation, Diffusion

1L

3. Cleaning, Etching 1L

4. Photo-lithography– Positive & Negative
photo-resist

1L

5. Basic CMOS Technology – Steps in
fabricating CMOS

1L

6. Basic n-well CMOS process, p-well CMOS
process, Twin tub process

1L

7. Silicon on insulator (SoI) 1L

8. Layout Design Rules 1L

9. Stick diagram with examples 1L

10. Continue: Stick diagram with examples 1L

4

Hardware Description Language 12L
1. Introduction, HDL and software languages,

simulation, synthesis, VHDL, capabilities
1L

2. Basic terminologies, entity, architecture, 1L

3. Dataflow, structural, behavioural, mixed 1L

4. Configuration declaration, package
declaration, package body

1L

5. Basic language elements 2L

6. Details of Behavioural L

7. Details of Dataflow 1L

8. Details of structural L

Total Number Of Hours = 37L

Angshuman Khan Sandip Das
Faculty In-Charge HOD, ECE Dept.

Assignment:
Module-1(Introduction to VLSI Design):

1. State Moore’s law.
2. Describe VLSI design cycle. Why is it called cycle?
3. Write short note: regularity, modularity, locality.
4. What is hierarchical decomposition?
5. Describe ‘Y’ chart.
6. Duscuss: CPLD, ROM, PLA, PAL, top-down & bottom-up approach, semicustom &

full custom design.

Module-2 (MOS structure)
1. Describe accumulation, depletion, inversion, and pinch-off conditions of NMOS.
2. Draw C-V characteristics of MOS capacitor.
3. Discuss threshold voltage.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

4. Derive the drain current equation of nMOS.
5. Design XOR gate using CMOS.
6. Prove that size of PMOS is 2.5 times of NMOS.

Module-3 (Micro-electronic Processes for VLSI Fabrication):
1. State Lambda rule and Micron rule?
2. Draw the lay-out of NAND2 and NOR2.
3. Draw the stick diagram of CMOS.
4. What is SOI and twin tub process?
5. Describe n-well fabrication process.
6. Describe the fabrication process of CMOS.

Module-4(HDL):
1. State the difference between hardware and software language.
2. What is the difference between synthesis and simulation?
3. What is the difference between variable and signal?
4. What is ‘9 value logic’?
5. Design D latch and D flipflop in dataflow style.
6. Write a short note on derived datatypes.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name:-Control System Subject Code:-CS705C
Year:4th Year Semester: -Seventh
Module No. Topics Planned

Lectures(H)

1.

INTRODUCTION TO CONTROL SYSTEM: 5 H

a) . Concept of feedback and Automatic control, Effects of
feedback, Definition of linear and nonlinear systems,
Elementary concepts ofsensitivity and robustness. Types of
control systems

b) Objectives of control system, Servomechanisms and
regulators, examples of feedback control systems

c) Transfer function concept. Pole and Zeroes of a transfer
function. Properties of Transfer function

01

02

02

2.

MATHEMATICAL MODELING OF DYNAMIC SYSTEMS: 5H

a) Translational systems, Rotational systems, Mechanical
coupling, Liquid level systems

b) Electrical analogy of Spring–Mass-Dashpot system

c) Block diagram representation of control systems. Block diagram
algebra. Signal flow graph. Mason’s gain formula

02

01

02

3.

CONTROL SYSTEM COMPONENTS: 4H

a) Potentiometer, Synchros, Resolvers, Position encoders. DC
and AC tacho-generators. Actuators. Block diagram level
description of feedback control systems for position control

b) speed control of DC motors, temperature control, liquid level
control, voltage control of an Alternator.

02

02

4.
TIME DOMAIN ANALYSIS: 6H

a) Time domain analysis of a standard second order closed
loop system. Concept of undamped natural frequency

b) damping, overshoot, rise time and settling time.Dependence
of time domain performance parameters on natural
frequency and damping ratio.

c) Step and Impulse response of first and second order
systems. Effects of Pole and Zeros on transient response.

02

01

02

Stability by pole location.

d) Routh-Hurwitz criteria and applications

01

5.
ERROR ANALYSIS: 3H

a) Steady state errors in control systems due to step, ramp and
parabolic inputs.

Concepts of system types and error constants

03

6.

STABILITY ANALYSIS: 3H

a) Root locus techniques, construction of Root Loci for simple
systems. Effects of gain on the movement of Pole and Zeros

03

Module No. TOPICS Planed Lectures

7.

FREQUENCY DOMAIN ANALYSIS OF LINEAR SYSTEM: 7h

a) Bode plots

b) Polar plots, Nichols chart, Concept of resonance frequency
of peak magnification

c) Nyquist criteria, measure of relative stability, phase and gain
margin

d) Determination of margins in Bode plot. Nichols chart. M-
circle and M-Contours in Nichols chart.

03

02

02

01

8.
CONTROL SYSTEM PERFORMANCE MEASURE: 3H

a) Improvement of system performance through compensation. Lead,
Lag and Lead- lag compensation, PI, PD and PID control

03

TOTAL HOUR REQUIRED=36 h

ASSIGNMENTS:

MODULE1:

1. What is the effect of adding feedback to a control system?
2. Explain sensitivity and robustness.
3. What are the differences between open and closed loop control system?
4. What is stochastic and adaptive control system?

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lecture-wise Plan

Subject Name:-Control System Subject Code:-CS705C
Year:4th Year Semester: -Seventh
MODULE2 & 3:

1. What is an electrical analogous of spring, mass and damper system? Explain.
2. What are the prime differences between block diagram reduction and signal flow

graph?
3. Write a short note on potentiometer.
4. Write a short note on resolver.
5. Write a short note on synchro.
6. What are the major methods for the speed control of DC motor? Explain the methods.

MODULE 4:

1. What is natural frequency of oscillation?
2. Explain damping ratio.
3. Deduce the expression for step response in a second order system.
4. Deduce the expression for peak time, peak overshoot and rise time.
5. Analyse the system from stability point of view with the help of Routh – Hurwitz

criteria:
S6+2s5+5s4+3s3+s2+s+4 = 0

MODULE 5:

1. Explain the terms: Position error constant, velocity error constant, acceleration error
constant.

2. What is the significance of steady state error?
3. What is the effect on adding a pole or a zero in a transfer function?

MODULE 6:

1. What is root locus?
2. What is break away and break in point?
3. How the gain of the system varies with the variation of pole and zero?
4. What is an asymptote? Explain the significance.

MODULE 7:

1. What is gain and phase margin? How they effect stability?
2. What is the significance of gain crossover frequency and phase crossover frequency?
3. What is resonant frequency and bandwidth?
4. Explain Nyquist’s criterion.
5. Compare relative stability with absolute stability.

MODULE 8:

1. Write short notes on lead and lag compensator.
2. Explain the significance of P, PI and PID controllers.

Faculty In-Charge HOD, EE Dept.

UNIVERSITY OF ENGINEERING & MANAGEMENT,JAIPUR
Lecture-wise Plan

Subject Name: Modelling & Simulation Subject Code-CS705D
Year: 4thYear Semester: Seventh

Module
Number

Topics Number of
Lectures

1

Unit 1: Introduction to Modelling and
Simulation: 6L

Nature of Simulation. Systems, Models and
Simulation, Continuous and Discrete Systems,
system modelling, Components of a simulation
study, Introduction to Static and Dynamic
System simulation, Application areas,
Advantages, Disadvantages and pitfalls of
Simulation.

6

2

Unit 2: System Dynamics & Probability
concepts in Simulation: 10L

Exponential growth and decay models,
Generalization of growth models, Discrete and
Continuous probability functions, Continuous
Uniformly Distributed Random Numbers,
Generation of a Random numbers, Generating
Discrete distributions, Non-Uniform
Continuously Distributed Random Numbers,
Rejection Method.

10

3

Unit 3: Simulation of Queuing Systems and
Discrete System Simulation:

14L

Poisson arrival patterns, Exponential
distribution, Service times, Normal Distribution
Queuing Disciplines, Simulation of single and
two server queue. Application of queuing theory
in computer system. Discrete Events,
Generation of arrival patterns, Simulation
programming tasks, gathering statistics,
measuring occupancy and Utilization,
Recording Distributions and Transit times.

14

4

Unit 4: Analysis of Simulation output: 6L

Sensitivity Analysis, Validation of Model
Results 6

Total Number Of Hours = 36

Faculty In-Charge HOD, CSE Dept.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Image Processing Lab
Course Code: CS793A
L-T-P Scheme: 0-0-3 Course Credits: 2

Objectives:
Digital image processing deals with manipulation of digital images through a digital computer. It is a
subfield of signals and systems but focus particularly on images. DIP focuses on developing a
computer system that is able to perform processing on an image. The input of that system is a digital
image and the system process that image using efficient algorithms, and gives an image as an output.

Learning Outcomes:

Students will be able to apply various image processing concepts and models to input images or
input signals for various purposes. For example :image compression, image de-noising, image
enhancement, edge detection and sharpening etc.

Course Contents:

List of Experiments

1. Display of Grayscale Images.

2. Histogram Equalization.

3. Non-linear Filtering.

4. Edge detection using Operators.

5. 2-D DFT and DCT.

6. Filtering in frequency domain.

7. Display of color images.

8. conversion between color spaces.

9. DWT of images.

10. Segmentation using watershed transform.

REFERENCE:

1. Rafael C. Gonzalez, Richard E. Woods, Steven Eddins,' Digital Image Processing
using MATLAB', Pearson Education, Inc., 2004.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

LIST OF EQUIPMENTS:

Computer, Software MATLAB

Text Books

1. Digital Image Processing, Gonzalves,Pearson
2. Digital Image Processing, Jahne, Springer India
3.Digital Image Processing &Analysis,Chanda&Majumder,PHI
4.Fundamentals of Digital Image Processing, Jain, PHI
5.Image Processing, Analysis & Machine Vision, Sonka, VIKAS
6. Getting Started with GIS- Clarke Keith. C; PE.
7. Concepts & Techniques of GIS - Lo C.P, Albert, Yeung K.W- PHI.

List of Experiments

1. Display of Grayscale Images.

2. Histogram Equalization.

3. Non-linear Filtering.

4. Edge detection using Operators.

5. 2-D DFT and DCT.

6. Filtering in frequency domain.

7. Display of color images.

8. conversion between color spaces.

9. DWT of images.

10. Segmentation using watershed transform.

REFERENCE:

1. Rafael C. Gonzalez, Richard E. Woods, Steven Eddins,' Digital Image Processing
using MATLAB', Pearson Education, Inc., 2004.

LIST OF EQUIPMENTS:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Computer, Software MATLAB

Experiment No.1 Display of Gray scale Images.

Aim:

To display the Gray scale images.

Apparatus Required:

Computer,Matlab Software

Syntax

imshow(I)

imshow(I,[low high])

imshow(RGB)

imshow(BW)

imshow(X,map)

imshow(filename)

himage = imshow(...)

imshow(..., param1, val1, param2, val2,...)

Theory:

imshow(I) displays the grayscale image I.

imshow(I,[low high]) displays the grayscale image I, specifying the display
range for I in [low high]. The value low (and any value less than low) displays as
black; the value high (and any value greater than high) displays as white. Values
in between are displayed as intermediate shades of gray, using the default number
of gray levels. If you use an empty matrix ([]) for [low high], imshow uses [min(I(:))
max(I(:))]; that is, the minimum value in I is displayed as black, and the maximum
value is displayed as white.

imshow(RGB) displays the truecolor image RGB.

imshow(BW) displays the binary image BW. imshow displays pixels with the
value 0 (zero) as black and pixels with the value 1 as white.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

imshow(X,map) displays the indexed image X with the colormap map. A
color map matrix may have any number of rows, but it must have exactly 3
columns. Each row is interpreted as a color, with the first element specifying the
intensity of red light, the second green, and the third blue. Color intensity can be
specified on the interval 0.0 to 1.0.

imshow(filename) displays the image stored in the graphics file filename.
The file must contain an image that can be read by imread or dicomread. imshow
calls imread or dicomread to read the image from the file, but does not store the
image data in the MATLAB workspace. If the file contains multiple images, imshow
displays the first image in the file. The file must be in the current directory or on
the MATLAB path.

himage = imshow(...) returns the handle to the image object created by imshow.

imshow(..., param1, val1, param2, val2,...) displays the image, specifying
parameters and corresponding values that control various aspects of the image
display.

Converting RGB Image into gray scale image & extracting the color Spaces

image1=imread('dse_college.jpg');

image2=rgb2gray (image1);

[r c d]=size (image1);

z=zeros(r,c);

tempr=image1;

tempr(:,:,2)=z;

tempr(:,:,3)=z;

imshow(tempr)

tempg=image1;

tempg(:,:,1)=z;

tempg(:,:,3)=z;

imshow(tempg)

tempb=image1;

tempb(:,:,1)=z;

tempb(:,:,2)=z;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

imshow(tempb)

Result:

Thus the gray scale image is displayed.

Experiment No.2 Histogram Equalization.

Aim:

To enhance contrast using Histogram Equalization.

Apparatus Required:

Computer,Matlab Software

Syntax

J = histeq(I, hgram)

J = histeq(I, n)

[J, T] = histeq(I,...)

newmap = histeq(X, map, hgram)

newmap = histeq(X, map)

[newmap, T] = histeq(X,...)

Theory

histeq enhances the contrast of images by transforming the values in an intensity
image, or the values in the colormap of an indexed image, so that the histogram of
the output image approximately matches a specified histogram.

J = histeq(I, hgram) transforms the intensity image I so that the histogram of the
output intensity image J with length(hgram) bins approximately matches hgram.

histeq automatically scales hgram so that sum(hgram) = prod(size(I)). The
histogram of J will better match hgram when length(hgram) is much smaller than
the number of discrete levels in I.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

J = histeq(I, n) transforms the intensity image I, returning in J an intensity image
with n discrete gray levels. A roughly equal number of pixels is mapped to each of
the n levels in J, so that the histogram of J is approximately flat. (The histogram
of J is flatter when n is much smaller than the number of discrete levels in I.) The
default value for n is 64.

[J, T] = histeq(I,...) returns the grayscale transformation that maps gray levels in
the image I to gray levels in J.

newmap = histeq(X, map, hgram) transforms the colormap associated with the
indexed image X so that the histogram of the gray component of the indexed
image (X,newmap) approximately matches hgram. The histeq function returns the
transformed colormap in newmap. length(hgram) must be the same as
size(map,1).

newmap = histeq(X, map) transforms the values in the colormap so that the
histogram of the gray component of the indexed image X is approximately flat. It
returns the transformed colormap in newmap.

[newmap, T] = histeq(X,...) returns the grayscale transformation T that maps the
gray component of map to the gray component of newmap.

Examples

Enhance the contrast of an intensity image using histogram equalization.

I = imread('tire.tif');

J = histeq(I);

imshow(I)

figure, imshow(J)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Display a histogram of the original image.

figure; imhist(I,64)

Compare it to a histogram of the processed image.

figure; imhist(J,64)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Algorithm

When you supply a desired histogram hgram, histeq chooses the grayscale
transformation T to minimizewhere c0 is the cumulative histogram of A, c1 is the
cumulative sum of hgram for all intensities k. This minimization is subject to the
constraints that T must be monotonic and c1(T(a)) cannot overshoot c0(a) by more
than half the distance between the histogram counts at a. histeq uses the
transformation b = T(a) to map the gray levels in X (or the colormap) to their new
values.If you do not specify hgram, histeq creates a flat hgram,

hgram = ones(1,n)*prod(size(A))/n;

Result

The histogram equalization is done.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment No.3 Edge detection using Operators.

Aim:

To detect the edge of the Gray scale images.

Apparatus Required:

Computer, Matlab Software

Syntax

To demonstrate edge detection
% numbers of colors
sncols=128;
ncols=32;
% get image from MATLAB image
load('trees');
% show original image
figure(1);
showgimg(real(X),sncols);
drawnow;
% construct convolution functions
[m,n] = size(X);
gs = [1 -1]; ge = [];
hs = [1 -1]; he = [];
g = [gs,zeros(1,m-length(gs)-length(ge)),ge];
h = [hs,zeros(1,n-length(hs)-length(he)),he];
% construct convolution matrices as sparse matrices
Y = spcnvmat(g);
Z = spcnvmat(h);
Wg = Y*X;
Wh = X*Z';

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

% show transformed images
figure(2);
showgimg(Wg,ncols);
drawnow;
figure(3)
showgimg(Wh,ncols);
drawnow;
figure(4)
showgimg(abs(Wg)+abs(Wh),ncols);
drawnow;

Theory

Edges characterize boundaries and are therefore a problem of fundamental importance in
image processing. Edges in images are areas with strong intensity contrasts – a jump in
intensity from one pixel to the next. Edge detecting an image significantly reduces the
amount of data and filters out useless information, while preserving the important structural
properties in an image. There are many ways to perform edge detection. However, the
majority of different methods may be grouped into two categories, gradient and Laplacian.
The gradient method detects the edges by looking for the maximum and minimum in the
first derivative of the image. The Laplacian method searches for zero crossings in the
second derivative of the image to find edges. An edge has the one-dimensional shape of a
ramp and calculating the derivative of the image can highlight its location. Suppose we have
the following signal, with an edge shown by the jump in intensity below: The intensity
changes thus discovered in each of the channels are then represented by oriented primitives
called zero-crossing segments, and evidence is given that this representation is complete. (2)
Intensity changes in images arise from surface discontinuities or from reflectance or
illumination boundaries, and these all have the property that they are spatially localized.
Because of this, the zero-crossing segments from the different channels are not independent,
and rules are deduced for combining them into a description of the image. This description
is called the raw primal sketch.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Result

The edge detection of the image is done.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Pattern Recognition Lab
Course Code: CS793B
L-T-P scheme: 0-0-3 Course Credit: 2

Objectives:
To introduce the most important concepts, techniques, and algorithms for digital image processing,
and implement them using image processing software tools, particularly MATLAB.
More specifically, it should enable students to:

 Assess and understand the challenges behind the design of machine vision systems.
 Understand the general processes of image acquisition, storage, enhancement,

segmentation, representation, and description.
 Implement filtering and enhancement algorithms for monochrome as well as color

images.
Appreciate the challenges and understand the principles and applications of visual pattern
recognition.

Learning Outcomes:
1. To implement efficient algorithms for nearest neighbour classification.
2. To construct decision trees.
3. To implement of Linear Discriminate Function and Support Vector Machines.
4. Formulate and describe various applications in pattern recognition
5. Understand the Bayesian approach to pattern recognition
6. Be able to mathematically derive, construct, and utilize Bayesian-based classifiers, and non-

Bayesian classifiers both theoretically and practically.
7. Be able to identify the strengths and weaknesses of different types of classifiers
8. Understand basic concepts such as the central limit theorem, the curse of dimensionality, the

bias-variance dilemma, and cross-validation
9. Validate and assess different clustering techniques
10. Apply various dimensionality reduction methods whether through feature selection or

feature extraction
11. Assess classifier complexity and regularization parameters
12. Be able to combine various classifiers using fixed rules or trained combiners and boost their

performance
13. Understand the possibilities and limitations of pattern recognition

Course Contents:
Exercises that must be done in this course are listed below:
Exercise No.1: Data visualization, central limit theorem, multivariate normal distribution, data
whitening, non-parametric density estimation: Parzen, nearest neighbour.

Exercise No. 2: Forward selection, backward selection, take l-add-r selection, branch & bound,
genetic algorithms. PCA, Fisher mapping, nonlinear feature extraction, multidimensional scaling,
dissimilarity representation.

Exercise No. 3: Hierarchical clustering, k-means, fuzzy c-means, Gaussian mixture model,
expectation-maximization, Davies-Bouldin index, self-organizing maps.

Exercise No. 4: Implementation of Bayesian classifier, Parzen classifier, k-NN classifier, logistic
classifier, quadratic/linear/nearest-mean classifiers, and Fisher classifier. Curse of dimensionality.

Exercise No. 5: Linear regression, MMSE, MAP, MLE, quality measures. Nonlinear regression:
kernel smoothing/local weighted regression.

Exercise No. 6: Simulate Banker’s Algorithm for Dead Lock PreventiSVM, ANN, ensemble
classification, complexity: bias-variance trade-off, improving performance (implement either
boosting or cloning).

Text Book:
1. Sergios Theodoridis, Pattern Recognition, 4th edition, Elsevier, 2009.
2. Richard O. Duda, Peter E. Hart and David G. Stork, Pattern Classification, 2nd edition,

Wiley Interscience, 2001.

Recommended Systems/Software Requirements:
1.Basic knowledge in multi-variables Calculus and Engineering Mathematics.
2. Basic knowledge in Linear Algebra.
3. Fundamentals of Probability theory and Statistics.
4. Programming knowledge of MATLAB or C+.

Experiment No: 1

Aim: To browse Genomic databases using Map Viewer & ensembl, viewing genetic, linkage
maps for human and other model organisms.

REQUIREMENT: Computer system with (legal software) equipped with Internet Connection
preferably fast Broadband.

WEB RESOURCES USED: http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/embl.html

THEORY AND PRINCIPLE:

Genomes: A genome is all of a living thing's genetic material. It is the entire set of hereditary
instructions for building, running, and maintaining an organism, and passing life on to the next
generation. In short, it is the complete set of chromosomes with all the genes (for diploid organisms,
often it is given as a haploid genome) for that species.

Genomic Resources: The organism’s genomic resources are stored as Genome databases and these
are a collection of complete and incomplete large-scale sequencing, assembly, annotation and
mapping projects for cellular organisms. The genome database provides views for a variety of
genomes, complete chromosomes, sequence maps and integrated genetic and physical maps,
organelles, plasmids as well as genome assemblies.

Map Viewer: It is a tool to visualize integrated views of chromosome maps for many organisms and
is particularly useful for identification and localization of genes and other biological features.

Ensembl: Ensemble is a genome browser project developed by EMBL-EBI and the Sanger Institute.
It provides free access to all the data produced by the project as well as the tools used to analyze and
present data. It has software system that produces and maintains automatic annotation on selected
eukaryotic genomes.
Model Organisms: Model organisms are the much-studied organisms having one or more
characteristics that makes it suitable for laboratory study viz., having small genome, easy to handle
in culture or otherwise, abundantly available, and harmless to humans and other organisms
(preferably).
Genetic Maps: Genetic maps are the position of the genes relative to each other, and relative to the
ends and centre of the chromosome and other sequence features on a genome. These are based on
genetic techniques like cross-breeding experiments like meiotic recombination frequencies [in case
of humans based on pedigrees (family histories)]. Genes serve as the markers along the length of the
chromosomes. Linkage maps are one example. Other DNA markers include RFLPs (Restriction
Fragment Length Polymorphisms), SSLPs (Simple Sequence Length Polymorphisms) and SNPs
(Single Nucleotide Polymorphisms).
Linkage Maps: It is the location and the sequence of genes along the length of each chromosome and
the distance between the two adjacent genes along the length of a chromosome. Linkage maps are

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

based on the fact that linked genes tend to remain together and less likely to participate in a
recombination event. With help of genetic markers linkage maps are constructed and provide
estimate of distance between two genes.

Genome Maps: A genome map is a graphical representation that provides information about the
location and the sequence of genes along the length of each chromosome and the distance
between two adjacent genes in a genome (linkage maps for all the linkage groups in a genome of
a species

PROCEDURE:
1. Start the computer and establish Internet connection.
2. Use any search engine like Yahoo / Google or otherwise directly open NCBI/EBI web page.,
3. Double click on map viewer to study genetic and linkage maps of human and other model
organisms. The submission Window of Ensembl Genome Browser –

RESULTS: The results are shown in the frames.

REMARKS: The genome data base or genetic / linkage maps for human and other model
organisms were studied by using tools like MapViewer and Ensemble to present and use the
data.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Soft Computing Lab
Course Code: CS793C
L-T-P scheme: 0-0-3 Course Credit: 2

Objectives:
This course introduces soft computing techniques that are different from conventional AI techniques.
This course also provides necessary mathematical background for understanding and implementing
soft computing Techniques, such as neural networks, fuzzy systems, and genetic algorithms. This
course
Learning Outcomes:

1. Understand importance of soft computing.
2. Understand different soft computing techniques like Genetic Algorithms, Fuzzy Logic,

Neural Networks and their combination.
3. Implement algorithms based on soft computing.
4. Apply soft computing techniques to solve engineering or real life problems.

Course Contents:
Exercises that must be done in this course are listed below:
Experiment 1: Write a program in MATLAB to plot various membership functions.
Experiment 2: Use Fuzzy toolbox to model tip value that is given after a dinner which can be-not
good, satisfying, good and delightful and service which is poor, average or good and the tip value
will range from Rs. 10 to 100.
Experiment 3: Implement FIS Editor.
Experiment 4: Generate AND, NOT function using McCulloch-Pitts neural net by MATLAB
program.
Experiment 5: Generate XOR function using McCulloch-Pitts neural net by MATLAB program.
Experiment 6: Write a MATLAB program for Perceptron net for an AND function with bipolar
inputs and targets.
Experiment 7: Write a MATLAB program for Hebb Net to classify two dimensional input patterns
in bipolar with their given targets
Experiment 8: Write a program of Perceptron Training Algorithm
Experiment 9: Write a program to implement Hebb’s rule
Experiment 10: Write a program of Back Propagation Algorithm.

Text Books
1. Fuzzy logic with engineering applications, Timothy J. Ross, John Wiley and Sons.
2. S. Rajasekaran and G.A.V.Pai, “Neural Networks, Fuzzy Logic and Genetic

Algorithms”, PHI.
3. Principles of Soft Computing , S N Sivanandam, S. Sumathi, John Wiley & Sons
4. Genetic Algorithms in search, Optimization & Machine Learning by David E. Goldberg
5. Neuro-Fuzzy and Soft computing, Jang, Sun, Mizutani, PHI
6. Neural Networks: A Classroom Approach,1/e by Kumar Satish, TMH
7. Genetic Algorithms in search, Optimization & Machine Learning by David E. Goldberg,

Pearson/PHI
8. A beginners approach to Soft Computing, Samir Roy & Udit Chakraborty, Pearson

Recommended Systems/Software Requirements:
1. In this laboratory the students need to implement the soft computing tools in Matlab. Some

exposure in C also can be used for neural network and Genetic Algorithm.

Experiment No: 1: Membership Functions
Aim: Write a program in MATLAB to plot various membership functions.

Description:

The membership function of a fuzzy set is a generalization of the indicator function in
classical sets. In fuzzy logic, it represents the degree of truth as an extension of valuation. Degrees of
truth are often confused with probabilities, although they are conceptually distinct, because fuzzy
truth represents membership in vaguely defined sets, not likelihood of some event or condition.
Membership functions were introduced by Zadeh in the first paper on fuzzy sets (1965). Zadeh, in
his theory of fuzzy sets, proposed using a membership function (with a range covering the interval
(0,1)) operating on the domain of all possible values.

/* Program in MATLAB to plot various membership functions */
%Triangular Membership Function
x=(0.0:1.0:10.0)';
y1=trimf(x, [1 3 5]);
subplot(311)
plot(x,[y1]);
%Trapezoidal Membership Function
x=(0.0:1.0:10.0)';
y1=trapmf(x, [1 3 5 7]);
subplot(312)
plot(x,[y1]);
%Bell-Shaped Membership Function
x=(0.0:0.2:10.0)';
y1=gbellmf(x, [1 2 5]);
subplot(313)
plot(x,[y1]);

OUTPUT:

Experiment No: 2: Use Fuzzy toolbox

Aim: Use Fuzzy toolbox to model tip value that is given after a dinner which can be-not good,
satisfying, good and delightful and service which is poor, average or good and the tip value will
range from Rs. 10 to 100.

Description:
The toolbox lets you model complex system behaviors using simple logic rules, and then

implement these rules in a fuzzy inference system. You can use it as a stand-alone fuzzy inference
engine. Alternatively, you can use fuzzy inference blocks in Simulink and simulate the fuzzy
systems within a comprehensive model of the entire dynamic system.

/* Process */
We are given the linguistic variables quality of food and sevice as input variables which can be
written as:
Quality(not good,satisfying,good,delightful)
Service(poor,average,good)
Similarly Output variable is Tip_value which may range from Rs. 10 to 100.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

A Fuzzy system comprises the following modules:-
1. Fuzzification Interface
2. Fuzzy Inference Engine
3. Deffuzification Interface
Fuzzy sets are defined on each of the universe of discourse:-
Quality,service and tip value.

The values for Quality variable are selected for their respective ranges:

Similarly values for Service variable are selected for their respective ranges :-

In general a compositional rule for inference involves the following procedure:

1. Compute memberships of current inputs in the relevant antecedent fuzzy set of rule.
2. If the antecedents are in conjunctive form,the AND operation is replaced by a minimum,if

OR then by Maximum and similarly other operations are performed.
3. Scale or clip the consequent fuzzy set of the rule by a minimum value found in step 2 since

this gives the smallest degree to which the rule must fire.
4. Repeat steps 1-3 for each rule in the rule base. Superpose the scaled or clipped consequent

fuzzy sets formed by such a superposition.There are numerous variants of the
defuzzifications.

OUTPUT:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment No: 3: FIS Editor

Aim: Implement FIS Editor.

Description:
FIS stands for Fuzzy Inference System.In FIS fuzzy rules are used for approximate

reasoning. It is the logical framework that allows us to design reasoning systems based on fuzzy set
theory.

/* Process */
To illustrate these concepts we use example of Water Tank:
FIS editor consists of following units:

i) Input
ii) Inference System
iii) Output

The Water Level is considered as the Input variable and Valve status is taken as Output Variable.

The Input-Output Variable’s Membership functions should be plotted along with their ranges:-

The following screen appearance is obtained by clicking on the FIS Rule system indicator:
Rules are added by selecting variable’s values and clicking on add rule menu each time a new
rule is added.
The fuzzy Rules defined for water tank are:
IF level is ok, THEN there is no change in valve.
IF level is low, THEN valve is open in fast mode.
IF level is high, THEN valve is closed in fast mode.

The result is displayed as plots of input-output membership functions :-

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Water Level(ok,low,high)
Valve Status(no change,open fast,closed fast)
The output in accordance with the input and rules provided by user is shown as(view-rule
viewer):

OUTPUT:

Experiment No: 4: Generate AND, NOT function using McCulloch-Pitts neural net.

Aim: Generate AND, NOT function using McCulloch-Pitts neural net by MATLAB program.

Description:
We can use McCulloch-Pitts neurons to implement the basic logic gates. All we need to do

is find the appropriate connection weights and neuron thresholds to produce the right outputs for
each set of inputs. We shall see explicitly how one can construct simple networks that perform NOT,
AND, and OR. It is then a well known result from logic that we can construct any logical function
from these three operations. The resulting networks, however, will usually have a much more
complex architecture than a simple Perceptron. We generally want to avoid decomposing complex
problems into simple logic gates, by finding the weights and thresholds that work directly in a
Perceptron architecture.

/* Program to Generate ANDNOT function using McCulloch-Pitts neural net */
%ANDNOT function using McCulloch-Pitts neuron
clear;
clc;
% Getting weights and threshold value
disp('Enter the weights');
w1=input('Weight w1=');
w2=input('Weight w2=');
disp('Enter threshold value');
theta=input('theta=');
y=[0 0 0 0];
x1=[0 0 1 1];
x2=[0 1 0 1];
z=[0 0 1 0];
con=1;
while con

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

zin = x1*w1+x2*w2;
for i=1:4
if zin(i)>=theta
y(i)=1;
else y(i)=0;
end
end
disp('Output of net=');
disp(y);
if y==z
con=0;
else
disp('Net is not learning Enter another set of weights and threshold value');
w1=input('Weight w1=');
w2=input('Weight w2=');
thete=input('theta=');
end
end
disp('McCulloch Pitts Net for ANDNOT function');
disp('Weights of neuron');
disp(w1);
disp(w2);
disp('Threshold value=');
disp(theta);

INPUT:
Enter the weights
Weight w1=1
Weight w2=1
Enter threshold value
theta=1

OUTPUT:
Output of net= 0 1 1 1
Net is not learning Enter another set of weights and threshold value
Weight w1=1
Weight w2=-1
theta=1
Output of net=0 0 1 0
McCulloch Pitts Net for ANDNOT function
Weights of neuron
1
-1
Threshold value=
1

Experiment No: 5: Generate XOR function using McCulloch-Pitts neural net

Aim: Generate XOR function using McCulloch-Pitts neural net by MATLAB program.

Description:
We can use McCulloch-Pitts neurons to implement the basic logic gates. All we need to do

is find the appropriate connection weights and neuron thresholds to produce the right outputs for
each set of inputs. We shall see explicitly how one can construct simple networks that perform NOT,
AND, and OR. It is then a well known result from logic that we can construct any logical function
from these three operations. The resulting networks, however, will usually have a much more
complex architecture than a simple Perceptron. We generally want to avoid decomposing complex

problems into simple logic gates, by finding the weights and thresholds that work directly in a
Perceptron architecture.

/* Program to Generate XOR function using McCulloch-Pitts neural net by MATLAB
program.*/
% XOR function using McCulloch-Pitts neuron
clear;
clc;
% Getting weights and threshold value
disp('Enter the weights');
w11=input('Weight w11=');
w12=input('Weight w12=');
w21=input('Weight w21=');
w22=input('Weight w22=');
v1=input('Weight v1=');
v2=input('Weight v2=');
disp('Enter threshold value');
theta=input('theta=');
x1=[0 0 1 1];
x2=[0 1 0 1];
z=[0 1 1 0];
con=1;
while con
zin1 = x1*w11+x2*w21;
zin2 = x1*w21+x2*w22;
for i=1:4
if zin1(i)>=theta
y1(i)=1;
else y1(i)=0;
end
if zin2(i)>=theta
y2(i)=1;
else y2(i)=0;
end
end
yin=y1*v1+y2*v2;
for i=1:4
if yin(i)>=theta;
y(i)=1;
else
y(i)=0;
end
end

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

disp('Output of net=');
disp(y);
if y==z
con=0;
else
disp('Net is not learning Enter another set of weights and threshold value');
w11=input('Weight w11=');
w12=input('Weight w12=');
w21=input('Weight w21=');
w22=input('Weight w22=');
v1=input('Weight v1=');
v2=input('Weight v2=');
theta=input('theta=');
end
end
disp('McCulloch Pitts Net for XOR function');
disp('Weights of neuron Z1');
disp(w11);
disp(w21);
disp('Weights of neuron Z2');
disp(w12);
disp(w22);
disp('Weights of neuron Y');
disp(v1);
disp(v2);
disp('Threshold value=');
disp(theta);

INPUT:
Enter the weights
Weight w11=1
Weight w12=-1
Weight w21=-1
Weight w22=1
Weight v1=1
Weight v2=1
Enter threshold value
theta=1

OUTPUT:
Output of net= 0 1 1 0
McCulloch Pitts Net for XOR function
Weights of neuron z1
1
-1
Weights of neuron z2
-1
1
Weights of neuron y
1 1
Threshold value= 1

Experiment No: 6: Perceptron net of an AND function with bipolar inputs and targets

Aim: Write a MATLAB program for Perceptron net for an AND function with bipolar inputs and
targets.

Description:
In machine learning, the perceptron is an algorithm for supervised learning of binary

classifiers (functions that can decide whether an input, represented by a vector of numbers, belongs
to some specific class or not). It is a type of linear classifier, i.e. a classification algorithm that makes
its predictions based on a linear predictor function combining a set of weights with the feature
vector. The algorithm allows for online learning, in that it processes elements in the training set one
at a time.

/* Program of Perceptron net for an AND function with bipolar inputs and targets */
% Perceptron for AND Function
clear;
clc;
x=[1 1 -1 -1;1 -1 1 -1];
t=[1 -1 -1 -1];
w=[0 0];
b=0;
alpha=input('Enter Learning rate=');
theta=input('Enter Threshold Value=');
con=1;
epoch=0;
while con
con=0;
for i=1:4
yin=b+x(1,i)*w(1)+x(2,i)*w(2);
if yin>theta
y=1;
end
if yin<=theta & yin>=-theta
y=0;
end
if yin<-theta
y=-1;
end
if y-t(i)
con=1;
for j=1:2
w(j)=w(j)+alpha*t(i)*x(j,i);
end
b=b+alpha*t(i);
end
end
epoch=epoch+1;
end
disp('Perceptron for AND Function');
disp('Final Weight Matrix');
disp(w);
disp('Final Bias');
disp(b);

INPUT:
Enter Learning rate=1
Enter Threshold Value=0.5

OUTPUT:
Perceptron for AND Function
Final Weight Matrix
1 1
Final Bias
-1

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment No: 7: Hebb Net to classify two dimensional input patterns in bipolar with their
targets.

Aim: Write a MATLAB program for Hebb Net to classify two dimensional input patterns in bipolar
with their targets given below:

‘*’ indicates a ‘+’ and ‘.’ Indicates ‘-’

***** *****
*…. *….
***** *****
*…. *….
***** *

Description:
Hebb, in his influential book The organization of Behavior (1949), claimed

– Behavior changes are primarily due to the changes of synaptic strengths ()
between neurons I and j

– increases only when both I and j are “on”: the Hebbian learning law
– In ANN, Hebbian law can be stated: increases only if the outputs of both units

and have the same sign.

Step 0: Initialization: b = 0, wi = 0, i = 1 to n
Step 1: For each of the training sample s:t do steps 2 -4
/* s is the input pattern, t the target output of the sample */
Step 2: xi := si, I = 1 to n /* set s to input units */
Step 3: y := t /* set y to the target */
Step 4: wi := wi + xi * y, i = 1 to n /* update weight */

b := b + xi * y /* update bias */

/* Program for Hebb Net to classify two dimensional input patterns in
bipolar with their targets */
% Hebb Net to classify Two -Dimensional input patterns.
clear;
clc;
%Input Pattern
E=[1 1 1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 1 1 1 1];
F=[1 1 1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 1 -1 -1 -1];
X(1,1:20)=E;
X(2,1:20)=F;
w(1:20)=0;
t=[1 -1];
b=0;
for i=1:2
w=w+X(i,1:20)*t(i);
b=b+t(i);
end
disp('Weight Matrix');
disp(w);
disp('Bias');
disp(b);

yxoldwnewww iijijij )()(

yxoldwnewww iijijij)()(or, 

OUTPUT:
? Weight Matrix
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2
Bias
0

Experiment No: 8: Genetic Algorithm

Aim: Write the algorithm of Genetic Algorithm.

Description:
Genetic Algorithm is a search heuristic (experience) that follows the process of natural

evolution. This heuristic is used to generate useful solutions to optimization and search problems.
Genetic Algorithm belong to the larger class of evolutionary algorithm (EA) which generate
solutions to optimization problems and using techniques inspired by natural evolution like –
inheritance, mutation, selection, crossover. Genetic Algorithm need design space to be converted
into genetic space. Genetic Algorithm works with coding variables. Genetic Algorithm uses
population of point at one time in contrast to the single point approach. It means that genetic
algorithm processes a number of designs at the same time. The advantage of coding of variable is
that coding discretizes the search space even though the function may be continuous. Traditional
optimization methods use transition rules that are deterministic in nature. While genetic algorithm
uses randomize operators. Randomize operator improve the search space in an adaptive manner.

There are three important aspects of Genetic Algorithm are:
2. Definition of objective function.
3. Definition and implementation of genetic representation.
4. Definition and implementation of Genetic operators.

Advantages of Genetic Algorithm (GA):
1. It shows simplicity.
2. Ease of operation.
3. Minimal requirement.
4. Global perspective.
5. It does not guarantee to find global minimum solutions but acceptably good solutions to

"acceptably quickly".

/* Genetic Algorithm */
Genetic Algorithm Steps :
1. BEGIN
2. Create initial population.
3. Compute fitness of each individuals.
4. WHILE NOT finished DO Loop
5. BEGIN
6. Select individuals from old generation for mating.
7. Create offspring by applying crossover or mutation to the selected individuals.
8. Compute fitness of new individuals.
9. Kill old individuals to make a room for new chromosomes and insert offspring in
the new generation.
10. If population has converged
11. Then fitness=TRUE.
12. END
13. END

Experiment No: 9: Perceptron Training Algorithm

Aim: Write a program of Perceptron Training Algorithm

Description:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Start with a randomly chosen weight vector w0;
Let k=1;
While these exists input vector that are misclassified by: Wk-1 do
Let i be a misclassified input vector
Let Xk=class(ij)ij, impling that Wk-1.Xk<0
Update the weight vector to Wk= Wk-1 + nXk;
increment k;
End while;

/* Program of Perceptron Training Algorithm */

#include<iostream.h>
#include<conio.h>
Void main()
{
clrscr();
int in[3],d,w[3],a=0;
for(int i=0;i<3,i++)
{
cout<<”\n initialize the weight vector w”<<i;
cin>>w[i]
}
for(i=0;i<3:i++}
{
cout<<”\n enter the input vector i”<<i;
cin>>in[i];
}
cout<<”\n enter the desined output”;
cin>>d;
int ans=1;
while(ans= = 1)
{
for (a= 0, i==0;i<3;i++)
{
a = a + w[i] * in[i];
}
clrscr();
cout<<”\n desired output is”<<d;
cout<<”\n actual output is “<<a;
int e;
e=d-a;
cout<<”\n error is “<<e;
cout<<”\n press 1 to adjust weight else 0”;
cin>>ans;
if (e<0)
{
for(i=0;i<3;i++)
{
w[i]=w[i]-1;
}
}
else if (e>0)
{
for(i=0;i<3:i++)
{
w[i]=w[i]+1;
}

}
getch();
}

OUTPUT:

Experiment No: 9: Hebb’s rule

Aim: Write a program to implement Hebb’s rule

Description:
The Hebb rule determines the change in the weight connection from ui to uj by Dwij = r * ai

* aj, where r is the learning rate and ai, aj represent the activations of ui and uj respectively. Thus, if
both ui and uj are activated the weight of the connection from ui to uj should be increased. Examples
can be given of input/output associations which can be learned by a two-layer Hebb rule pattern
associator. In fact, it can be proved that if the set of input patterns used in training are mutually
orthogonal, the association can be learned by a two-layer pattern associator using Hebbian learning.
However, if the set of input patterns are not mutually orthogonal, interference may occur and the
network may not be able to learn associations. This limitation of Hebbian learning can be overcome
by using the delta rule.

/* Program to implement Hebb’s rule */
#include<<iostream.h>>
#include<<conio.h>>
void main()
{
float n,w,t,net,div,a,al;
cout<<”consider o single neuron percetron with a single i/p”;
cin>>w;
cout<<”enter the learning cofficient”;
cin>>d;
for (i=0;i<10;i++)
{
net = x+w;
if(wt<0)
a=0;
else
a=1;
div=at+a+w;
w=w+div;
cout<<”i+1 in fraction are i”<<a<<”change in weight”<<dw<<”adjustment at=”<<w;
}
}

OUTPUT:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Experiment No: 10: Back Propagation Algorithm

Aim: Write a program of Back Propagation Algorithm.

Description:
Backpropagation is a kind of neural network. A Neural Network (or artificial neural

network) is a collection of interconnected processing elements or nodes. The nodes are termed
simulated neurons as they attempt to imitate the functions of biological neurons. The nodes are
connected together via links. We can compare this with axon-synapse-dendrite connections in the
human brain. Initially, a weight is assigned at random to each link in order to determine the strength
of one node’s influence on the other. When the sum of input values reaches a threshold value, the
node will produce the output 1 or 0 otherwise. By adjusting the weights the desired output can be
obtained. This training process makes the network learn. The network, in other words, acquires
knowledge in much the same way human brains acquire namely learning from experience.
Backpropagation is one of the powerful artificial neural network technique which is used acquire
knowledge automatically.

/* Program of Back Propagation Algorithm */
include <iostream.h>
#include <conio.h>
void main ()
{
int i ;
float delta, com, coeff = 0.1;
struct input
{
float val,out,wo, wi;
int top;
} s[3] ;
cout<< “\n Enter the i/p value to target o/p” << “\t”;
for (i=0; i<3 ; i++)
cin>> s [i], val>> s[i], top);
i = 0;
do
{
if (i = = 0)
{
W0 = -1.0;
W1 = -0.3;
}
else
{
W0 = del [i - 1], W0 ;

W1 = del [i - 1] , Wi ;
}
del [i]. aop = w0 + (wi * del [i]. val);
del [i].out = del [i]. aop);
delta = (top – del [i]. out) * del [i].out * (1 – del [i].out);
corr = coeff * delta * del [i].[out];
del [i].w0 = w1 + corr;
del [i]. w1 = w1 + corr;
i++;
}While (i ! = 3)
cout<< “VALUE”<<”Target”<<”Actual”<<”w0” <<”w1”<<’\n;
for (i=0; i=3; i++)
{
cout<< s [i].val<< s[i].top<<s[i].out << s[i]. w0<< s[i]. w1;
cout<< “\n”;
}
getch ();
}

OUTPUT:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Artificial Intelligence Lab
Course Code: CS793D
L-T-P Scheme: 0-0-2 Course Credit: 2

Objectives: In this course we will implement the basic components of an intelligent system, their
functions, mechanisms, policies and techniques used in their implementation and examples.

Learning Outcomes: The students will have a detailed knowledge of the concepts of artificial
intelligence. Various applications of AI in different fields, aware of a variety of approaches to AI
techniques.

Course Contents:
Unit-1: Introduction to AI and intelligent agents

Unit-2: Problem solving, Problem spaces and blind search techniques, informed search techniques,
Constraint satisfaction problems

Unit-3: Knowledge representation and reasoning techniques, Logic programming, Logical agents, Game
playing, planning,

Unit-4: Learning, Reasoning under uncertain situations,

Unit-5: Expert systems, Decision support systems, Domain specific AI applications.

List of AI Problems for Lab-
Problem 1: Solve “Tower of Hanoi” with only 2 disks.
Problem 2: Solve “Tower of Hanoi” with only 3 disks.
Problem 3: Solve “4-Queens” puzzle.
Problem 4: Solve “8-Queens” puzzle.
Problem 5: Solve “4-color map” problem.
Problem 6: Solve “8 – puzzle” take any initial and goal state.
Problem 7: Calculate the sum of n elements in an integer array. Also calculate its Polynomial function the
determine its complexity using “Big-O”.
Problem 8: Find out the largest element in an square 2-D array. Also determine the “Big- O” of the
algorithm. [Take size greater the 2x2]
Problem 9: Solve “Latin Square” problem.
Problem 10: Solve “Sudoku Problem” use any initial positions.
Problem 11: Solve “15-puzzle” problem using any initial and goal state.
Problem 12: Solve “Sudoku Problem” use any initial positions.
Problem 13: Code the following games software: Checkers, Chess.
Problem 14: Code the following games using software: Othello, Backgammon.
Problem 15: Code the following games using software: Bridge, Go.
Problem 16: Code the following games using software: Hex, 6x7.
Problem 17: Code the following games using software: Tetris, Tick-Tack-Toe.
Problem 18: Code the following games using software: rubik-cube, same game, mines.
Problem 19: Code the following games using software: Matches, Mines.

Text Books
1. Rich, Elaine Knight, Kevin, Artificial Intelligence, Tata McGraw Hill.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

2. Luger, George F, Artificial Intelligence: Structures and Strategies for Complex Problem Solving,
Pearson Education.

References
1. Nilsson, Nils J, Artificial Intelligence, Morgan Kaufmann
2. Russell, Stuart J. Norvig, Peter, Artificial Intelligence: A Modern Approach,
3. Pearson Education
4. Negnevitsky, Michael, Artificial Intelligence: A Guide to Intelligent Systems, Addison-Wesley.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Internet Technology Lab
Course Code: CS795
L-T-P scheme: 0-0-3 Course Credit: 2

Objectives:
To develop the ability to design and implement web enabled applications.

Learning Outcomes:
The student shall acquire the skill to design and develop web based applications with high

usability, scalability and efficiency. They shall be exposed to various technologies required to design
web sites. They shall acquire the skill to choose the technology to use based on the requirements and
functionality of the web site.

Course Contents:
Exercises that must be done in this course are listed below:
Exercise No.1: Design a web page using HTML, CSS and use JavaScript for validation.
Exercise No.2: Use Image tag.
Exercise No.3: Use PHP to connect with MySql database for some operation.
Exercise No.4: Use different database operation.

Text Book:
1. “Web Enabled commercial Application development using HTML,DHTML, Java Script”,

Perl CGI” by Ivan Bayross, BPB Publication
2. “Internet and World Wide Web – How to Program” by Deitel, Deitel and Nieto ,Pearson

Education Asia Publication
3. “PHP and MYSQL Manual” by Simon Stobart and Mike Vassileiou
4. “PHP and MYSQL Web Development” by Luke Welling and Laura Thomson(Pearson

Education
5. “The XML Bible”, by Elliotte Rusty Harold
6. “Step by Step XML” by Michael J. Young Prentice Hall Of India
7. “XML How to Programme” Deitel Pearson Edition
8. “XML Hand Book” 3rd Edition Pearson Edition

Recommended Systems/Software Requirements:
1. Editor and browser.
2. Apache server, MySQl server.

Exercise No.1: Design a web page using HTML, CSS and use JavaScript for validation.

Aim: Design a login page using HTML, CSS and use JavaScript for validation.

Description: HTML marks the content up into different structural types, like paragraphs, blocks,
lists, images, tables, forms, comments etc.

CSS tells the browser how each type of element should be displayed, which may vary for
different media (like screen, print or handheld device).

JavaScript tells the browser how to change the web page in response to events that happen
(like clicking on something, or changing the value in a form input).

HTML, CSS and JavaScript code is given below:
/*HTML, CSS, JavaScript Code*/
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-gb" lang="en-gb" dir="ltr" >

<head>
<title>Student</title>

<!-- css main start-->
<link rel="stylesheet" type="text/css" href="css/sadmin.css" />

<!-- css main end -->
<script type="text/javascript">

function validate(){
if(document.frm.txtStudentId.value==""){

alert("Please Enter Student ID!");
return false;

}else if(document.frm.txtPasswd.value==""){
alert("Please Enter Password!");
return false;

}else{
return false;

}
}

</script>
</head>

<body class="body">
<!-- main div start -->
<div class="main_div">
<!-- top div start -->

<div class="main_sub_top_div">
<!-- top-top-top div start -->
<div class="main_sub_top_top_div">

<!-- Header Right-->
</div>

<!-- top-top-top div start -->
<!-- top-top-mid div start -->

<div class="main_sub_top_mid_div">
<!-- top-top-mid-left div start -->

<div class="main_sub_top_mid_left_div">

</div>
<div class="main_sub_top_mid_right_div">

Student Login Area</div>
<!-- top-top-mid-left div start -->

</div>
<!-- top-top-mid div start -->

<!-- top-top-buttom div start -->
<!--div class="main_sub_top_buttom_div">

<!-- menu bar start -->

<!-- menu bar end -->
<!--/div-->
<!-- top-top-buttom div start -->
</div>

<!-- top div end -->
<!-- mid div start -->

<div class="main_sub_mid_div">
<div class="main_sub_mid_left_div">

<div class="main_content_div">
This is for Student Login

</div>
</div>

<div class="main_sub_mid_mid_div">
<form name="frm" method="post" action="<? $_SERVER['PHP_SELF']?>"

onSubmit="return validate()">
<input type="hidden" name="action" value="login" />
<table width="100%">

<tr>
<td width="20%">

</td>

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

<td width="80%">
<table width="100%">

<tr>
<td width="20%">

Enrollment No.
</td>
<td width="80%">

<input type="text" name="txtStudentId" />
</td>

<tr>
<tr>

<td width="20%">
Password

</td>
<td width="80%">

<input type="password" name="txtPasswd" />
</td>

<tr>
<tr>

<td>
</td>
<td colspan="2">

<input type="submit" name="txtSubmit" class="button" value="Login" />
<?=$msg?>

</td>
<tr>

</table>
</td>

</tr>
</table>

</form>
</div>

</div>
</div>

<!-- mid div end -->
<!-- buttom div start -->
<div class="main_sub_buttom_div">
<!-- top-top div start -->
<div class="main_sub_buttom_buttom_div">

<!-- links start for footer-->

©by UEM, Jaipur(Department Of CSE)

<!-- links end --></div>
<!-- top-top div start -->

</div>
<!-- buttom div end -->

</div>
<!-- main div end -->

</body>
</html>

/*CSS Code*/
.body{

text-align:center;
/*background:#1A1411;*/
background:#FFF;

border:2px thick #000;
}
.main_div{

width:100%;
height:auto;
margin:0 auto;
clear:both;
border:2px solid #000;

}

.main_sub_mid_div{
width:100%;
height:auto;
margin:0 auto;
clear:both;
text-align:left;

}
.main_sub_mid_left_div{

width:20%;
height:auto;
float:left;
padding:0px;
/*margin:0 0 0 2px; user for margin*/

}
.main_sub_mid_mid_div{

width:79%;
height:auto;
float:left;
background-color:#FFF;
padding:5px;
text-align:justify;

}
.main_sub_buttom_div{

width:100%;
height:auto;
margin:0 auto;
clear:both;
border:2px solid #000;
background-color:FCF;

}
.main_sub_top_top_div{

width:100%;
height:20px;
margin:0 auto;
clear:both;
background-color:#FCF;
text-align:right;
vertical-align:middle;
border-bottom:1px solid;
border-color:#000;
color:#EEE;
border:none;

}
.main_sub_top_mid_div{

width:100%;
height:50px;
margin:0 auto;
clear:both;
background-color:#FCF;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

}
.main_sub_top_mid_left_div{

width:20%;
height:50px;
background-color:#FCF;
float:left;
text-align:left;

}
.main_sub_top_mid_right_div{

width:80%;
height:40px;
background-color:#FCF;
float:left;
padding-top:10px;
text-align:center;
vertical-align:middle;
font-size:32px;
font: bold Arial, Helvetica, sans-serif;
color:#000;
border:none;

}
.main_sub_buttom_buttom_div{

width:100%;
height:auto;
margin:0;
padding:0;
clear:both;
background-color:#FCF;
text-align:center;
color:#DDD;
text-decoration:none;
text-transform:

}
.button{

width:125px;
height:25px;
border:none;
background-color:#FCF;
color:#000;

}

OUTPUT:

Exercise No.2: Use Image tag.

Aim: Use Image in the previous login page.

Description: The tag defines an image in an HTML page.The tag has two required
attributes: src and alt. Images are not technically inserted into an HTML page, images are linked to
HTML pages. The tag creates a holding space for the referenced image.

Code to add an image is given below:

/*Image Code*/
<td width="20%">

</td>

OUTPUT:

Exercise No.3: Use PHP to connect with MySql database for some operation.

Aim: Use PHP and MySql to validate Student Id and Password with Existing Student data.

Description: PHP is a script language and interpreter that is freely available and used primarily on
Linux Web servers. PHP, originally derived from Personal Home Page Tools, now stands for PHP:
Hypertext Preprocessor, which the PHP FAQ describes as a "recursive acronym.

SQL stands for Structured Query Language. It lets you access and manipulate databases and
it is an ANSI (American National Standards Institute) standard.

What Can SQL do?
1. SQL can execute queries against a database
2. SQL can retrieve data from a database
3. SQL can insert records in a database
4. SQL can update records in a database
5. SQL can delete records from a database
6. SQL can create new databases
7. SQL can create new tables in a database
8. SQL can create stored procedures in a database
9. SQL can create views in a database
10. SQL can set permissions on tables, procedures, and views

In computer science, a database connection is the means by which a database server and its
client software communicate with each other. The term is used whether or not the client and the
server are on different machines.

The client uses a database connection to send commands to and receive replies from the
server. A database is stored as a file or a set of files on magnetic disk or tape, optical disk, or some
other secondary storage device. The information in these files may be broken down into records,
each of which consists of one or more fields.

Fields are the basic units of data storage, and each field typically contains information
pertaining to one aspect or attribute of the entity described by the database. Records are also
organized into tables that include information about relationships between its various fields.
Although database is applied loosely to any collection of information in computer files, a database in
the strict sense provides cross-referencing capabilities.

Connections are a key concept in data-centric programming. Since some DBMSs require
considerable time to connect, connection pooling is used to improve performance. No command can
be performed against a database without an "open and available" connection to it.

Connections are built by supplying an underlying driver or provider with a connection
string, which is used to address a specific database or server and to provide instance and user
authentication credentials (for example, Server=sql_box;Database=Common;User
ID=uid;Pwd=password;).

Once a connection has been built, it can be opened and closed at will, and properties (such
as the command time-out length, or transaction, if one exists) can be set. The connection string
consists of a set of key-value pairs, dictated by the data access interface of the data provider.

Some databases, such as PostgreSQL, only allow one operation to be performed at a time on
each connection.[citation needed] If a request for data (a SQL Select statement) is sent to the

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

database and a result set is returned, the connection is open but not available for other operations
until the client finishes consuming the result set.

Other databases, such as SQL Server 2005 (and later), do not impose this limitation.
However, databases that allow multiple concurrent operations on each connection usually incur far
more overhead than those that only allow one operation at a time.

PHP, SQL and database connection code is given below:
/*php code to validate student*/
<?php

$action=$_REQUEST['action'];
$msg="";
if($action=='login'){

$studentId=$_REQUEST['txtStudentId'];
$passwd=$_REQUEST['txtPasswd'];

$sql="SELECT student_id, name, is_active, CONCAT(degree_id,'-',dept_id,'-',
batch_id) AS exam_group_id FROM dt_student WHERE student_id='".$studentId."' AND
passwd='".$passwd."'";

$f_sql=f(q($sql));

if($f_sql['student_id']){
if($f_sql['is_active']==1){

$_SESSION['student_id']=$f_sql['student_id'];
$_SESSION['name']=$f_sql['name'];
$_SESSION['exam_group_id']=$f_sql['exam_group_id'];

session_write_close();
header("Location:index.php");
exit();

}else if($f_sql['is_active']==0){
$msg="<font face=verdana size=1

color=red>User is not activated";
}

}else{
$msg="Invalid

username/password given";
}

}
?>

/*Dabase connection Code*/
<?php

define("DB_NAME", $db_name); // db name
define("DB_USER", $db_login); // db username
define("DB_PASS", $db_pswd); // db password
define("DB_HOST", $db_host);

mysql_connect(DB_HOST, DB_USER, DB_PASS) or die(mysql_error('could not connect to the
database'));

mysql_select_db(DB_NAME) or die(mysql_error('could not select the database'));
?>

OUTPUT:

Exercise No.4: Use different database operation.

Aim: Use different database operation of a student details.

Description: A transaction symbolizes a unit of work performed within a database management
system (or similar system) against a database, and treated in a coherent and reliable way independent
of other transactions. A transaction generally represents any change in database. Transactions in a
database environment have two main purposes:

To provide reliable units of work that allow correct recovery from failures and keep a
database consistent even in cases of system failure, when execution stops (completely or partially)
and many operations upon a database remain uncompleted, with unclear status. To provide isolation
between programs accessing a database concurrently. If this isolation is not provided, the programs'
outcomes are possibly erroneous. A database transaction, by definition, must be atomic, consistent,
isolated and durable.[1] Database practitioners often refer to these properties of database transactions
using the acronym ACID.

Transactions provide an "all-or-nothing" proposition, stating that each work-unit performed
in a database must either complete in its entirety or have no effect whatsoever. Further, the system
must isolate each transaction from other transactions, results must conform to existing constraints in
the database, and transactions that complete successfully must get written to durable storage.

Database operation code for insertion of student details is given below:

/*Database opertion Code*/
<?php

$action=$_REQUEST['action'];
$valid=$_REQUEST['valid'];

if($action=="add" && $valid==1){
$student_id=trim($_REQUEST['txtStudentId']);
$name=trim($_REQUEST['txtName']);
$degree_id=trim($_REQUEST['selDegree']);
$dept_id=$_REQUEST['selDept'];
$batch_id=$_REQUEST['selBatch'];
$passwd=trim($_REQUEST['txtPasswd']);
$email_id=trim($_REQUEST['txtEmailId']);

$sql="INSERT INTO dt_student SET student_id='".addslashes($student_id)."',
name='".addslashes($name)."', degree_id='".addslashes($degree_id)."',
dept_id='".addslashes($dept_id)."',batch_id='".addslashes($batch_id)."',is_active=1,
passwd='".$passwd."', email_id='".$email_id."', dt = SYSDATE()";
?>

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

OUTPUT:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Microelectronics & VLSI Design Lab
Course Code: CS795B
L-T-P scheme: 0-0-3 Course Credit: 2

Objectives: The overall course objective is to teach electrical engineering students fundamental concepts of
hardware description languages and advanced techniques in digital system design. Specific objectives include
the following:
1. Learn VHDL (Very high speed integrated circuit Hardware Description Language).
2. Utilize VHDL to design and analyze digital systems including arithmetic units and state machines.
3. Learn field programmable gate array (FPGA) technologies and utilize associated computer aided design

(CAD) tools to synthesize and analyze digital systems.
4. Learn testing strategies and construct test-benches.
5. Conduct laboratory experiments using an FPGA based development board to prototype digital systems and

to confirm the analysis done in class.
6. Prepare informative and organized lab reports that describe the methodologies employed, the results

obtained, and the conclusions made in a laboratory experiment.

Learning Outcomes: The students will have a detailed knowledge of the concepts of IEEE and ANSI standard
HDL. Upon the completion of Operating Systems practical course, the student will be able to:

 Understand and implement basic digital logic circuits of VLSI.
 Model complex digital systems at several levels of abstractions; behavioral and structural, synthesis and

rapid system prototyping.
 Develop and Simulate register-level models of hierarchical digital systems.
 Design and model complex digital system independently or in a team
 Carry out implementations of registers and counters.
 Simulate and synthesize all type of digital logic circuits used in VLSI.
 Finally design a CPU.

Course Contents:
Exercises that must be done in this course are listed below:
Exercise No.1: Design of basic Gates: AND, OR, NOT.
Exercise No. 2: Design of universal gates
Exercise No. 3: Design of XOR and XNOR gate.
Exercise No. 4: Design of 2:1 MUX .
Exercise No. 5: Design of 2 to 4 Decoder.
Exercise No. 6: Design of Half-Adder and Full Adder.
Exercise No. 7: Design of 8:3 Priority Encoder.
Exercise No. 8: Design of 4 Bit Binary to Grey code Converter.
Exercise No. 9: Design of all Flip-Flops.
Exercise No. 10: Design of Shift register.
Exercise No. 11: Design of ALU.

Text Book:
1. J. Bhaskar, A VHDL Primer, 3rd edition, Prentice Hall.

Recommended Systems/Software Requirements:
1. Intel based desktop PC with minimum of 1GHZ or faster processor with at least 1GB RAM and 8 GB free

disk space.
2. Xilinx ISE14.2 software in Windows XP or Linux Operating System.

Experiment No: 1 Design of basic Gates: AND, OR, NOT.
Aim: Write VHDL code for basic gates: AND, OR, NOT.
Apparatus: Xilinx ISE 14.2 software

AND Gate

VHDL codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity AND1 is

port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end AND1;
architecture behavioral of AND1 is
begin

process (a, b)
begin
if (a= “1” and b=“1”)
then c<=“1”; else c<=“0”;
end if;
end process;
end behavioral;

OR Gate:

VHDL codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity OR1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end OR1;
architecture behavioral of OR1 is

begin
process (a, b)
begin
if (a=“0” and b=“0”) then c<= “0”; else c<=“1”;
end if;
end process;
end behavioral;
NOT Gate:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

VHDL Codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity NOT1 is
port (a : in STD_LOGIC; c : out STD_LOGIC) ;
end NOT1;

architecture behavioral of NOT1 is
begin
process (a)

begin
if (a=“0”) then c<=“1”;

else c<=“0”;
end if;
end process;

end behavioral;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-2 : Design Universal gates
Aim: Write VHDL code for universal gates: NAND and NOR gate.
Apparatus: Xilinx ISE14.2 software

NAND gate:

VHDL codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity NAND1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end NAND1;

architecture
behavioral of NAND1 is

begin

process (a, b)
begin
if (a= “1”and b=“1”)then c<= “0”;

else c<=“1”;
end if;

end process;
end behavioral;

NOR gate:

VHDL codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity NOR1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end NOR1;

architecture behavioral of NOR1 is
begin
process (a, b)
begin

if (a=“0”and b= “0”) then c<=“0”;
else c<=“0”;
end if;
end process;
end behavioral;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-3 : Design XOR and XNOR gate

Aim: Write VHDL code for XOR and XNOR gate.

Apparatus: Xilinx ISE 14.2 software

XOR gate:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

VHDL codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity XOR1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end XOR1;
architecture behavioral of XOR1 is
begin

process (a, b)
variable (s1, s2, s3, s4:STD_LOGIC)
begin

s1:=NOT a;
s2:=NOT b;

s3:=s1 AND b;
s4:=s2 AND a;
c<=s3 OR s4;

end process;
end behavioral;

XNOR gate:

VHDL codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity XNOR1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; c : out STD_LOGIC) ;
end XNOR1;
architecture behavioral of XNOR1 is
begin

process (a, b)

variable (s1, s2, s3, s4:STD_LOGIC)
begin

s1:=NOT a;
s2:=NOT b;
s3:=a AND b;
s4:=s1 AND s2;
c<=s3 OR s4;

end process;
end behavioral;

Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-4: Design 2:1 MUX
Aim: Write VHDL code for 2:1 mux using other basic gates.
Apparatus: Xilinx ISE 14.2 software
2:1 MUX:
A digital multiplexer is a combinational circuit that selects binary information from one of many input lines and
directs it to a single output line.

= +
VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity mux_2 to 1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; s : in STD_LOGIC z : out STD_LOGIC) ;
end mux_2 to 1;
architecture behavioral of mux_2 to 1 is

begin
process (a, b, s)
begin
if (s=“0”)then
z<=a;

else z<=b;
end if;

end process;
end behavioral;

S Z
0 A
1 B

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

2:1 mux using BASIC gates:
VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity mux_2 to 1 is
port (a : in STD_LOGIC; b : in STD_LOGIC; s : in STD_LOGIC z : out STD_LOGIC) ;

end mux_2 to 1 ;
architecture behavioral of mux_2 to 1 is
begin

process (a, b, s)
variable (s1, s2, s3:STD_LOGIC)
begin s1:=NOT s; s2:=s1 AND a; s3:=s AND b; z<=s2 OR s3;

end process;
end behavioral;

Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-5 :Design 2:4 Decoder
Aim: Write VHDL code for 2:4 decoder.
Apparatus: Xilinx ISE 14.2 software
2:4 decoder: A decoder is a combinational circuit that converts binary information from n inputs line to a
maximum of 2n unique output lines.

VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity decoder_2_to_4 is
port (a : in STD_LOGIC_VECTOR; E : in STD_LOGIC; d : out STD_LOGIC_VECTOR (3 downto 0) ;
end decoder_2_to_4 ;
architecture behavioral of decoder_2_to_4 is
begin process (a)

begin
case a is when “00”=> d<=“0001”;

when “01”=> d<=“0010”;
when “10”=> d<=“0100”;

E A B D0 D1 D2 D3
0 X X 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

when others=> d<=“1000”;
end case;
end process;
end behavioral;

Using DATA_FLOW approach

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity decoder_2_to_4 is
port (a : in STD_LOGIC; b : in STD_LOGIC; E : in STD_LOGIC d : out STD_LOGIC_VECTOR (3 downto

0)) ;
end decoder_2_to_4;
architecture dataflow of decoder_2_to_4 is
signal(abar, bbar: STD_LOGIC)

begin
abar<=NOT a;
bbar<=NOT b;
d(0)<=abar AND bbar AND E;
d(1)<=abar AND b AND E;
d(2)<=a AND bbar AND E;

d(3)<=a AND b AND E;
end dataflow;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-6: Design Half adder and Full adder
Aim: Write VHDL code for Half-adder, full-adder.
Apparatus: Xilinx ISE 14.2 software
Half-adder:

VHDL codes:
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
Entity half_adder is
port (a : in STD_LOGIC; b : in STD_LOGIC; s : out STD_LOGIC; c : out STD_LOGIC);

end half_adder;
architecture behavioral of half_adder is

A B Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

begin
process (a,b)

begin
if (a=“0”and b=“0”) then s<=“0”; c<=“0”;

elsif (a=“1” and b=“1”) s<=“0”; c<=“1”;
else s<=“1”; c<=“0”;
end if;
end process;
end behavioral;

Full-Adder:

A B C Sum Carry
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

VHDL codes:
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

Entity full_adder is
port (a : in STD_LOGIC_VECTOR (0 to 2); s : out STD_LOGIC_VECTOR (0 to 1));
end full_adder;
architecture behavioral of full_adder is
begin
process (a)

begin
case a is
when “000”=> s<=“00”;
when “001”=> s<=“10”;
when “010”=> s<=“10”;
when“011”=> s<=“01”;
when “100”=> s<=“10”;
when “101”=> s<=“01”;
when “110”=> s<=“01”;
when others =>s<=“11”;

end case;
end process;
end behavioral;

Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No-7 : Design 3:8 Decoder
Aim: Write VHDL code for 3:8decoder.
Apparatus: Xilinx ISE 14.2 software
3:8 decoder

Inputs outputs

A B C D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity decoder_3_to_8 is
port (a : in STD_LOGIC_VECTOR (2 downto 0);
d : out STD_LOGIC_VECTOR (7 downto 0);
end decoder_3_to_8;
architecture Behavioural of decoder_3_to_8 is

begin

proess(a)

begin

case a is

when “000”=> d<=“00000001”;

when “001”=> d<=“00000010”;

when “010”=> d<=“00000100”;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

when “011”=> d<=“00001000”;

when “100”=> d<=“00010000”;

when “101”=> d<=“00100000”;

when “110”=> d<=“01000000”;

when others=> d<=“10000000”;

end case;

end process;

end Behavioural;

Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-8 : Design 8:3 priority encoder
Aim: Write VHDL code for 8:3priority encoder.
Apparatus: Xilinx ISE 8.1 software
8:3 priority encoder:
An encoder is a digital circuit that performs inverse operation of decoder. An encoder has 2^n input lines and n
output lines. The output lines generate the binary code corresponding to the input value.
Truth-table for 8:3priority encoder

VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

Inputs outputs

A7 A6 A5 A4 A3 A2 A1 A0 D2 D1 D0

0 0 0 0 0 0 0 0 X X X

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 X 0 0 1

0 0 0 0 0 1 X X 0 1 0

0 0 0 0 1 X X X 0 1 1

0 0 0 1 X X X X 1 0 0

0 0 1 X X X X X 1 0 1

0 1 X X X X X X 1 1 0

1 X X X X X X X 1 1 1

entity p_encoder_8_to_3 is

port (a : in STD_LOGIC_VECTOR (7downto 0);

d : out STD_LOGIC_VECTOR (2downto 0));
endp_encoder_8_to_3;

architecture behavioral of p_encoder_8_to_3 is

begin

process (a)

begin

case a is

when “00000001”=> d<=“000”;

when “0000001X”=> d<=“001”;

when “000001XX”=> d<=“010”;

when “00001XXX”=> d<=“011”;

when “0001XXXX”=> d<=“100”;

when “001XXXXX”=>d<=“101”;

when “01XXXXXX”=> d<=“110”;

when “1XXXXXXX”=> d<= “111”;

when others=> d<=“XXX”;

end case;

end process;

end behavioral;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.

Discussion: Student will conclude here.

Experiment No.-8: Design Binary to Gray converter
Aim: Design of 4 Bit Binary to Grey code Converter.
Apparatus: Xilinx ISE 14.2 software
Binary top gray converter:
The binary to grey converter is a combinational circuit that takes binary number as input and converts it into
grey code. Grey code differs from the preceding and succeeding number by a single bit.

VHDL Codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity b2g is

port (b : in std_logic_vector (3 downto0);

g : out std_logic_vector (3 downto 0));

end b2g;

architecture behavioral of b2g is

begin

process (b)

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

begin

case b is

when “0000” => g<= “0000”;
when “0001” => g<= “0001”;

when “0010” => g<= “0011”;
when “0011” => g<= “0010”;
when “0100” => g<= “0110”;

when “0101” => g<= “0111”;
when “0110” => g<= “0101”;
when “0111” => g<= “0100”;
when “1000” => g<= “1100”;

when “1001” => g<= “1101”;
when “1010” => g<= “1111”;
when “1011” => g<= “1110”;
when “1100” => g<= “1010”;
when “1101” => g<= “1011”;
when “1110” => g<= “1001”;

when others => g<= “1000”;
end case;

end process;

end behavioral;

Data flow model for binary to grey code converter:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity bin2grey_conv is

port (b : in std_logic_vector (3 downto0);
g : out std_logic_vector (3 downto));

end bin2grey_conv;
architecture dataflow of bin2grey_conv is
begin
g(3)<=b(3);
g(2)<=(b(3)) xor (b(2));
g(1)<=b(2) xor b(1);
g(0)<=b(1) xor b(0);

end dataflow;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-9: Design flip-flops
Aim: Study all Flip-flops using VHDL
Apparatus: Xilinx ISE 14.2 software

(1) S-R flip-flop:

S R Qn+1

0 0 Qn

0 1 0

1 0 1

1 1

VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL; entity flipflop_SR is
port (s, r, clk, rst : in std_logic; q : out std_logic);
end flipflop_SR;
architecture behavioral of flipflop_SR is
begin
process (s, r, clk, rst)
begin

if (clk= “1” and clk‟event) then if (rst= “1”) then
q<= “0”;
elsif (rst= “0”) then
q<= “1”;
elsif (s= “0” and r= “0” and rst= “0”) then
q<=q;
elsif (s= “0” and r= “1” and rst= “0”) then
q<= “0”;
elsif (s= “1” and r= “0” and rst= “0”) then
q<= “1”;
elsif (s= “1” and r= “1” and rst= “0”) then
q<= “U”;
end if;
end if;
end process;
end behavioral;

(2) J-K flip-flop:

J K Qn+1

0 0 Qn

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

0 1 0

1 0 1

1 1 Not Qn

VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL; entity flipflop_JK is
port (j, k, clk, rst : in std_logic; q : inoutstd_logic);
end flipflop_JK;
architecture behavioral of flipflop_JK is
begin
process (j, k, clk, rst)
begin
if (clk= “1” and clk‟event) then if (rst= “1”) then

q<= “0”;
elsif (rst= “0”) then
q<= “1”;
elsif (j= “0” and k= “0” and rst= “0”) then
q<=q;
elsif (j= “0” and k= “1” and rst= “0”) then
q<= “0”;
elsif (j= “1” and k= “0” and rst= “0”) then

q<= “1”;

elsif (j= “1” and k= “1” and rst= “0”) then

q<= NOT q;

end if;

end if;

end process;

end behavioral;

(3) D flip-flop:

D Qn+1

0 0

1 1

VHDL Codes:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL; entity flipflop_Dis
port (d,clk, rst : in std_logic; q : inoutstd_logic);
end flipflop_D;
architecture behavioral offlipflop_D is
begin
process (d,clk, rst)
begin
if (clk= “1” and clk‟event) then if (rst= “1”) then

q<= “0”;
else
q<=q;
end if;
end if;
end process;
end behavioral;

Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No.-10 : Design Shift register
Aim: Design of 8-bit shift register using VHDL.
Apparatus: Xilinx ISE 14.2 software

Shift register

VHDL Codes:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity eftshift is

port (a : inoutbit_vector (0 to 7);
r, l, rst, load, clk : in bit;
q : out bit_vector (0 to 7));

end leftshift;
architecture behavioral of leftshift is
begin
process (load, rst, a, clk)
begin
if (clk= “1” and clk‟event) then if (load= “1”) then

q<=a;

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

elsif(load= “0”) then if (rst= “1”) then q<= “00000000”;
else
if (l= “1”) then
q<=a slll;
end if;
if (r= “1”) then
q<= a srll;
end if;
end if;
end if;
end if;
end process;
end behavioral;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.
Output: Student will check the output.
Discussion: Student will conclude here.

Experiment No. 11: Design ALU
Aim: Write VHDL program to perform Arithmetic Logic Unit (ALU) operation.
Apparatus: Xilinx ISE 14.2 software
ALU:
An ALU performs arithmetic and logical operation. It receives data from register file and perform operations on
it given by control signals generated through control unit.

VHDL codes:
Entity ALU is
Port(x,y : in std_logic_vector(0 to 7);
sel : in std_logic_vector (0 to 2);
z : out std_logic_vector (0 to 7));
end ALU;
architecture dataflow of ALU is
signal arith, logic : std_logic_vector (0 to 7);
begin

with sel (0 to 1) select
arith <= x when “00”; x+1 when “01”; y when “10”; x+y when others;
with sel (0 to 1) select
logic <= not x when “00”; x and y when “01”; x or y when “10”;
x xor y when others;
with sel (2) select
z <= arith when “0”; logic when others;
end dataflow;
Test Bench codes: Student will write/modify test bench codes in Xilinx ISE.

Sel Unit Operation
000 z <= x
001

Arithmetic Unit
z <= x+1

010 z <= y
011 z <= x+y
100 z <= not x
101

Logic Unit
z <= x and y

110 z <= x or y
111 z <= x xor y

Output: Student will check the output.
Discussion: Student will conclude here.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Control System Lab
Course Code: CS795C
L-T-P scheme: 0-0-3 Course Credit: 2

Objectives:
1. To provide the students with a hands-on experience on the theoreticalconcepts through simple

experiments.
2. To develop the ability to design and validate their knowledge through open ended experiments.

Learning Outcomes:
On successful completion of this lab course, the students would beable to
1. Demonstrate and analyze the response of Transfer function for various input.
2. Analyze the response of various signal like Impulse Ramp etc.
3. Carry out the root locus of given signal.
4. Analyse different plot and state model.
5. Conduct an open ended experiment in a group of2 to 3.

Course Contents:
List of Experiments:

1. To obtain a transfer function from given poles and zeroes using MATLAB
2. To obtain zeros and poles from a given transfer function using MATLAB
3. To obtain the step response of a transfer function of the given system using MATLAB
4. To obtain the impulse response of a transfer function of the given system using MATLAB
5. To obtain the ramp response of a transfer function of the given system using MATLAB.
6. To plot the root locus for a given transfer function of the system using MATLAB.
7. To obtain bode plot for a given transfer function of the system using MATLAB.
8. To obtain the transfer function from the state model.
9. To obtain the state model from the given transfer function.
10. To design a lag compensator for a closed loop system.

Text Book:

1) Katsuhiko Ogata, (2002), Modern Control Engineering, Prentice Hall of India Private Ltd.,
New Delhi.
2) Nagrath I.J. and Gopal M., (2006), Control Systems Engineering, New Age International
Publisher, New Delhi.

Recommended Systems/Software Requirements:
SCILAB, MATLAB

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

1 .TRANSFER FUNCTION FROM ZEROS AND POLES

AIM: To obtain a transfer function from given poles and zeroes using MATLAB

APPARATUS:
Software: MATLAB

THEORY: A transfer function is also known as the network function is a mathematical
representation, in terms of spatial or temporal frequency, of the relation between the input
and output of a (linear time invariant) system. The transfer function is the ratio of the
output Laplace Transform to the input Laplace Transform assuming zero initial conditions.
Many important characteristics of dynamic or control systems can be determined from the
transfer function. The transfer function is commonly used in the analysis of single-input
single-output electronic system, for instance. It is mainly used in signal processing,
communication theory, and control theory. The term is often used exclusively to refer to
linear time-invariant systems (LTI). In its simplest form for continuous time input signal
x(t) and output y(t), the transfer function is the linear mapping of the Laplace transform of
the input, X(s), to the output Y(s). Zeros are the value(s) for z where the numerator of the
transfer function equals zero. The complex frequencies that make the overall gain of the
filter transfer function zero. Poles are the value(s) for z where the denominator of the
transfer function equals zero. The complex frequencies that make the overall gain of the
filter transfer function infinite. The general procedure to find the transfer function of a
linear differential equation from input to output is to take the Laplace Transforms of both
sides assuming zero conditions, and to solve for the ratio of the output Laplace over the
input Laplace.

MATLAB PROGRAM:
z=input(‘enter zeroes’)
p=input(‘enter poles’)
k=input(‘enter gain’)
[num,den]=zp2tf(z,p,k)
tf(num,den)

PROCEDURE:

1. Write MATLAB program in the MATLAB editor document.
2. Then save and run the program
3. Give the required input.
4. The syntax “zp2tf(z,p,k)” and “tf(num,den)” solves the given input poles and zeros and

gives the transfer function.
5. zp2tf forms transfer function polynomials from the zeros, poles, and gains of a system

in factored form

EXAMPLE:

Given poles are -3.2+j7.8,-3.2-j7.8,-4.1+j5.9,-4.1-j5.9,-8 and the zeroes are -0.8+j0.43,-
0.8- j0.43,-0.6 with a gain of 0.5

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

THEORITICAL CALCULATIONS:

Enter zeros
Z=

Enter poles
P =

Enter gain
K=

num =

den =

Transfer function=

RESULT:

2. ZEROS AND POLES FROM TRANSFER FUNCTION

AIM:
To obtain zeros and poles from a given transfer function using MATLAB.

APPARATUS:
Software: MATLAB

THEORY:
The transfer function provides a basis for determining important system response
characteristics without solving the complete differential equation. As defined, the transfer
function is a rational function in the complex variable that is It is often convenient to
factor the polynomials in the numerator and the denominator, and to write the transfer
function in terms of those factors: where, the numerator and denominator polynomials,
N(s) and D(s), have real coefficients defined by the system’s differential equation.

MATLAB PROGRAM:
num = input(‘enter the numerator of the transfer function’)
den = input(‘enter the denominator of the transfer function’)
[z,p,k] = tf2zp(num,den)

PROCEDURE:
1.Type the program in the MATLAB editor that is in M-file.
2.Save and run the program.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

3.Give the required inputs in the command window of MATLAB in matrix format.
3.tf2zp converts the transfer function filter parameters to pole-zero-gain form.
4.[z,p,k] = tf2zp(b,a) finds the matrix of zeros z, the vector of poles p, and the associated
vector of gains k from the transfer function parameters b and a:
5. The numerator polynomials are represented as columns of the matrix b.
6.The denominator polynomial is represented in the vector a.
7.Note down the output of the program that is zeros, poles and gain obtained in
MATLAB.
8.The zeros, poles and gain are also obtained theoretically.

THEORITICAL CALCULATIONS:
Enter the numerator of the transfer function
num =
Enter the denominator of the transfer function
den =

z =
p =

RESULT:

3. STEP RESPONSE OF A TRANSFER FUNCTION

AIM: To obtain the step response of a transfer function of the given system using
MATLAB

APPARATUS: Software: MATLAB

THEORY: A step signal is a signal whose value changes from one level to another level
in zero time.

MATLAB PROGRAM:
num = input(‘enter the numerator of the transfer function’)
den = input(‘enter the denominator of the transfer function’)
step (num,den)

PROCEDURE:
Type the program in MATLAB editor that is in M-file.
Save and run the program.
Give the required inputs in the command window of MATLAB in matrix format.
‘step’ function calculates the unit step response of a linear system.
Zero initial state is assumed in state-space case.
When invoked with no output arguments, this function plots the step response on the

screen.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

step (sys) plots the response of an arbitrary LTI system.
This model can be continuous or discrete, and SISO or MIMO.
The step response of multi-input systems is the collection of step responses for each

input channel.
The duration of simulation is determined automatically based on the system poles

and zeroes.
Note down the response of the transfer function obtained in MATLAB.
The response of the transfer function is also obtained theoretically.
Both the responses are compared.

THEORETICAL CALCULATIONS: Calculation will be in the form of graph.

RESULT:

4. IMPULSE RESPONSE OF A TRANSFER FUNCTION

AIM:To obtain the impulse response of a transfer function of the given system using
MATLAB.

APPARATUS:
Software: MATLAB

THEORY:
An impulse signal is a signal whose value changes from zero to infinity in zero time.

MATLAB PROGRAM:
num = input(‘enter the numerator of the transfer function’)

den = input(‘enter the denominator of the transfer function’)
impulse(num,den)

PROCEDURE:
Type the program in the MATLAB editor that is in M-file.
Save and run the program.
Give the required inputs in the command window of MATLAB in matrix format.
‘impulse’ calculates the impulse response of a linear system.
The impulse response is the response to the Dirac input, δ (t) for continuous time systems

and to a unit pulse at for discrete time systems.
Zero initial state is assumed in the state space case.
When invoked without left hand arguments, this function plots the impulse response on

the screen.
‘impulse(sys)’ plots the impulse response of an arbitrary LTI model sys.
This model can be continuous or discrete, SISO or MIMO.
The impulse response of multi-input systems is the collection of impulse responses for

each input channel.
The duration of simulation is determined automatically to display the transient behavior

of the response.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

Note down the response of the given transfer function obtained in MATLAB.
The response of the transfer function is also obtained theoretically.
Both the responses are compared.

GRAPH-

RESULT:

5. RAMP RESPONSE OF A TRANSFER FUNCTION

AIM:
To obtain the ramp response of a transfer function of the given system using MATLAB.

APPARATUS:
Software: MATLAB

THEORY:
A ramp signal is a signal which changes with time gradually in a linear fashion

MATLAB PROGRAM:
num = input(‘enter the numerator of the transfer function’)
den = input(‘enter the denominator of the transfer function’)
lsim(num,den,u,t)

PROCEDURE:
Type the program in the MATLAB editor that is in M-file.
Save and run the program.
Give the required inputs in the command window of MATLAB in matrix format.
lsim simulates the (time) response of continuous or discrete linear systems to arbitrary

inputs.
When invoked without left-hand arguments, lsim plots the response on the screen.
lsim(sys,u,t) produces a plot of the time response of the LTI model sys to the input time

historyt,u.
The vector t specifies the time samples for the simulation and consists of regularly spaced

time samples.
t = 0:dt:Tfinal
The matrix u must have as many rows as time samples (length(t)) and as many columns

as system inputs.
Each row u(i,:) specifies the input value(s) at the time sample t(i).
Note down the response of the transfer function obtained in MATLAB.
The response of the transfer function is also obtained theoretically.
Both the responses are compared.

GRAPH:

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

RESULT:

6.ROOT LOCUS FROM A TRANSFER FUNCTION

AIM:To plot the root locus for a given transfer function of the system using MATLAB.
APPARATUS:

Software: MATLAB

THEORY:
rlocus computes the Evans root locus of a SISO open-loop model. The root locus gives the
closed-loop pole trajectories as a function of the feedback gain k (assuming negative
feedback).
Root loci are used to study the effects of varying feedback gains on closed-loop pole
locations.
In turn, these locations provide indirect information on the time and frequency responses.
rlocus(sys) calculates and plots the rootlocus of the open-loop SISO model sys. This function
can be applied to any of the following feedback loops by setting sys appropriately.

MATLAB PROGRAM:
num=input(‘enter the numerator of the transfer function’)
den=input(‘enter the denominator of the transfer function’)
h=tf(num,den)
rlocus(h)

PROCEDURE:
Write MATLAB program in the MATLAB specified documents.
Then save the program to run it.

27
The input is to be mentioned.
The syntax “h=tf(num,den)” gives the transfer function and is represented as h.
The syntax “rlocus(h)” plots the rootlocus of the transfer function h.
Generally the syntax is of the form

rlocus(sys)
rlocus(sys,k)
rlocus(sys1, sys2, ….)
[r,k] = rlocus(sys)
r = rlocus(sys,k)

rlocus(sys) calculates and plots the root locus of the open loop SISO model sys.
Now we have to solve it theoretically.
Now we have to compare the practical and theoretical ouputs to verify each other

correctly.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

THEORETICAL CALCULATIONS:
enter the numerator of the transfer function
num=
enter the denominator of the transfer function
den=
Transfer function :

RESULT:

7.BODE PLOT FROM A TRANSFER FUNCTION

AIM: To obtain bode plot for a givan transfer function of the system using MATLAB.

APPARATUS:
Software: MATLAB

THEORY:
Bode computes the magnitude and phase of the frequency response of LTI models. When
invoked without left-side arguments, bode produces a Bode plot on the screen. The
magnitude is plotted in decibels (dB), and the phase in degrees. The decibel calculation for
mag is computed as 20log10(|H(jw)|), where H(jw) is the system's frequency response. Bode
plots are used to analyze system properties such as the gain margin, phase margin, DC gain,
bandwidth, disturbance rejection, and stability

bode(sys) plots the Bode response of an arbitrary LTI model sys. This model can be
continuous or discrete, and SISO or MIMO. In the MIMO case, bode produces an array of
Bode plots, each plot showing the Bode response of one particular I/O channel. The
frequency range is determined automatically based on the system poles and zeros.
bode(sys,w) explicitly specifies the frequency range or frequency points to be used for the
plot.
To focus on a particular frequency interval [wmin,wmax], set w = {wmin,wmax}. To use
particular frequency points, set w to the vector of desired frequencies. Use logspace to
generatelogarithmically spaced frequency vectors. All frequencies should be specified in
radians/sec.
bode(sys1,sys2,...,sysN) or bode(sys1,sys2,...,sysN,w) plots the Bode responses of several
LTI models on a single figure. All systems must have the same number of inputs and outputs,
but may otherwise be a mix of continuous and discrete systems. This syntax is useful to
compare the Bode responses of multiple systems.
bode(sys1,'PlotStyle1',...,sysN,'PlotStyleN') specifies which color, linestyle, and/or marker
should be used to plot each system. For example,
bode(sys1,'r--',sys2,'gx') uses red dashed lines for the first system sys1 and green 'x' markers
for the second system sys2.
When invoked with left-side arguments
[mag,phase,w] = bode(sys)
[mag,phase] = bode(sys,w)
return the magnitude and phase (in degrees) of the frequency response at the frequencies w
(in rad/sec). The outputs mag and phase are 3-D arrays with the frequency as the last
dimension (see "Arguments" below for details). You can convert the magnitude to decibels
bymagdb = 20*log10(mag)

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

MATLAB PROGRAM:
num=input('enter the numerator of the transfer function')
den=input('enter the denominator of the transfer function')
h=tf(num,den)
[gm pm wcpwcg]=margin(h)
bode(h)

PROCEDURE:
Write the MATLAB program in the MATLAB editor.
Then save and run the program.
Give the required inputs.
The syntax "bode(h)" solves the given input transfer function and gives the bode plot,
wherenum,den are the numerator and denominator of the transfer function.
Now plot the bode plot theoretically for the given transfer function and compare it with

theplot obtained practically.

THEORETICAL CALCULATIONS:
enter the numerator of the transfer function
num =
enter the denominator of the transfer function
den =
Transfer function:
gm =
pm =
wcp =
wcg =

RESULT:

8.TRANSFER FUNCTION FROM STATE MODEL

AIM: To obtain the transfer function from the state model.

APPARATUS:
Software: MATLAB

THEORY:
The transfer function is defined as the ratio of Laplace transform of output to Laplace
transform of input. A state space representation is a mathematical model of a physical system
as a set of input, output and state variables related by first-order differential equations. The
state space representation (also known as the "time-domain approach") provides a convenient
and compact way to model and analyze systems with multiple inputs and outputs.
Unlike the frequency domain approach, the use of the state space representation is not limited
to systems with linear components and zero initial conditions.
"State space" refers to the space whose axes are the state variables. The state of the system
can be represented as a vector within that space.

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

MATLAB PROGRAM:
A =input(‘enter the matrix A’)
B= input(‘enter the matrix B’)
C = input(‘enter the matrix C’)
D= input(‘enter the matrix D’)
Sys =ss2tf(A,B,C,D)

EXAMPLE:
Obtain the transfer function from the State Model given below:
A=
B=
C=
D=

PROCEDURE:
Type the program in the MATLAB editor that is in M-file.
Save and run the program.
Give the required inputs in the command window of MATLAB in matrix format.
The command ss2tf(A,B,C,D)) converts the given transfer function into a state model.
Note down the output obtained in MATLAB.
The Transfer Function is also obtained theoretically.
Both the state models are compared.

RESULT:

9.STATE MODEL FROM TRANSFER FUNCTION
AIM:
To obtain the state model from the given transfer function.

APPARATUS:
Software: MATLAB

THEORY:
There are three methods for obtaining state model from transfer function:
1. Phase variable method
2. Physical variable method
3. Canonical variable method
Out of three methods given above canonical form is probably the most straightforward
method
for converting from the transfer function of a system to a state space model is to generate a
model in "controllable canonical form." This term comes from Control Theory but its exact
meaning is not important to us. To see how this method of generating a state space model
works, consider the third order differential transfer function

MATLAB PROGRAM:
num=input(‘enter the numerator of the transfer function’)
den=input(‘enter the denominator of the transfer function’)

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

ss(tf(num,den))

PROCEDURE:
Type the program in the MATLAB editor that is in M-file.
Save and run the program.
Give the required inputs in the command window of MATLAB in matrix format.
The command ss(tf(num,den)) converts the given transfer function into a state model.
Note down the output obtained in MATLAB.
The state model is also obtained theoretically.
Both the state models are compared.

RESULT:

10.STATE MODEL FROM ZEROS AND POLES

AIM: To obtain a state model from given poles and zeros using MATLAB.

APPARATUS:
Software: MATLAB

THEORY:
Let’s say we have a transfer function defined as a ratio of two polynomials:
H(s)=
Where N(s) and D(s) are simple polynomials.
Zeroes are the roots of N(s) (the numerator of the transfer function)obtained by setting
N(s)=0
and solving for s. Poles are the roots of D(s) (the denominator of the transfer
function),obtained
by setting D(s)=0 and solving for s.
The state space model represents a physical system as n first order coupled differential
equations.
This form is better suited for computer simulation than an n
th
order input-output differential
equation.
The general vector-matrix form of state space model is:
Where,
X = state vector
U = input vector
A = n x n matrix
B = n x 1 matrix
The output equation for the above system is,
42

MATLAB PROGRAM:
z=input('enter zeros')
p=input('enter poles')
k=input('enter gain')

UNIVERSITY OF ENGINEERING AND MANAGEMENT, JAIPUR
Lab Manual

[A,B,C,D]=zp2ss(z,p,k)

PROCEDURE:
Open the MATLAB window and open a new MATLAB editor.
Write the MATLAB program in the MATLAB editor.
Save and run the MATLAB program.
Enter the given poles, zeros and gain as input in matrix format.
The syntax “[A,B,C,D]=zp2ss(z,p,k)” solves zeroes, poles and gain given in the

matrix format as input and gives the output in the form of a state model.
This syntax transforms the given zeros, poles and gain into a state model.
Note down the output state model obtained practically by using the syntax

“[A,B,C,D]=zp2ss(z,p,k)” .
Now find the state model theoretically for the given poles, zeros and gain.
Compare the theoretically obtained state model from the given poles, zeros and

gain with the one obtained practically. Write the result based on the comparison
betweenthoretical and practical result.

EXAMPLE:
zeros are:
poles are:
gain=

RESULT:

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Modeling & Simulation Lab
Course Code: CS795D
L-T-P scheme: 0-0-3 Course Credit: 2

Introduction:

Modelling and simulation are a vital part of many areas of engineering, allowing engineers to reason
about the expected behaviour of a system without having to physically implement it. Simulation
pervades much of electrical engineering, for example models of individual electronic devices, circuit
simulation, network modeling, compression of speech/audio/image/video signals, design of
biomedical devices, and modeling of physical systems for control purposes. Modelling allows an
abstract representation of a signal or system in a (mathematically) compact and/or simplified form
that is extremely useful in many fields, including analysis, design, compression, classification, and
control. The main high-level aim of the course is to provide a thorough grounding in aspects of
constructing and applying models and their simulation using well-known simulation tools (MATLAB
and C). In particular, the course looks at how continuous-time systems can be represented and
simulated using (discrete-time) computers. This also provides an interesting insight into the
relationship between physical systems and computing algorithms. The course is intentionally designed
to have a strong practical focus, with extensive laboratory work serving to develop key skills in
computing and applications of mathematics.

Objectives:

This course aims to:

a. Familiarise you with programming in MATLAB.

b. Convey the analytical and practical details of a range of modelling techniques.

c. Provide an understanding of finite difference approximation and numerical methods for differential
equations, in the context of state-space representations of linear systems.

d. Familiarise you with the modeling of dynamical systems and stochastic signals, including the
choice of model, choice of model order, parameter estimation and goodness of fit.

e. Provide a thorough grounding in parameter estimation techniques such as least squares
(particularly) and maximum likelihood.

f. Give you practical experience with simulating physical systems and modeling typical experimental
data, for example second-order circuits, non-linear circuits, electrical machines and power systems,
control systems, biomedical systems, and introductory network simulation2 .

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Learning Outcomes:

On successful completion you should be able to:

1. Express a linear system in terms of its differential equation, transfer function, magnitude response,
impulse response and step response, be able to convert between the different forms and explain the
advantages of each;

2. Derive expressions that can be used to estimate parameters from different types of data, for
different types of model structures;

3. Explain analytically how to simulate a continuous-time system by means of numerical integration;
4. Synthesise MATLAB code to simulate a given system or model;

5. Implement a suitable model for a given problem, making informed choices about the model type
and model order, and calculate the model error.

6. Deduce the behaviour of previously unseen models or parameterisations and hypothesise about
their merits

Course Contents:
Exercises that must be done in this course are listed below:
Experiment No.1: Introductory MATLAB

Experiment No.2: Circuit simulation

Experiment No.3 : Linear system

Experiment No.4: Numerical Des

Experiment No.5: Runge -Kutta

Experiment No.6: Least squares

Experiment No.7: System identification

Experiment No.8: Stochastic models

Experiment No.9: Parameter Estimation

Text Books:

1. Klee, H. (2007). Simulation of Dynamic Systems with MATLAB and Simulink, CRC Press, Boca
Raton, FL. – This is a very detailed and comprehensive text, aimed slightly above the level of this
course. For anyone with longer-term interests in dynamic systems, this text is highly recommended.

2. Woods, R. L., and Lawrence, K. L. (1997), Modeling and simulation of dynamic systems, Prentice-
Hall, Upper Saddle River, NJ. – This is a more introductory level text that also deals with dynamic
systems, across all areas of engineering. The coverage of the course is not very complete, but the style
is fairly straightforward and there are many problems (with answers) given.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Course Description

Title of Course: Seminar on Industrial Training
Course Code: CS781
L-T –P Scheme: 0-0-3 Course Credits: 2

Course Description & Objectives:

1. Understand the history of medical research and bioethics related to the HeLa cells. Understand
the diverse social and economic, racial and gender contexts within which Henrietta Lacks lived
and died. Understand the themes of this seminar. Appreciate the legacy and implications of these
medical, ethical and social understandings on today’s society.

2. Identify, understand and discuss current, real-world issues.

3. Distinguish and integrate differing forms of knowledge and academic disciplinary approaches
(e.g., humanities and sciences) with that of the student’s own academic discipline (e.g., in
agriculture, architecture, art, business, economics, education, engineering, natural resources, etc.).
And apply a multidisciplinary strategy to address current, real-world issues.

4. Improve oral and written communication skills.

5. Explore an appreciation of the self in relation to its larger diverse social and academic contexts.

6. Apply principles of ethics and respect in interaction with others.

Course Outcomes:

After the completion of this course, the student should be able to:

1. Learn and integrate. Through independent learning and collaborative study, attain, use,
and develop knowledge in the arts, humanities, sciences, and social sciences, with disciplinary
specialization and the ability to integrate information across disciplines.

2. Use multiple thinking strategies to examine real-world issues, explore creative
avenues of expression, solve problems, and make consequential decisions

3. Learn and integrate. Communicate. Acquire, articulate, create and convey intended
meaning using verbal and non-verbal method of communication that demonstrates
respect and understanding in a complex society.

4. Use multiple thinking strategies to examine real-world issues, explore creative
avenues of expression, solve problems, and make consequential decisions.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Course Description

5. Clarify purpose and perspective. Explore one’s life purpose and meaning through
transformational experiences that foster an understanding ofself, relationships, and diverse
global perspectives.

6. ractice citizenship. Apply principles of ethical leadership, collaborative engagement, socially
responsible behavior, respect for diversity in an interdependent world, and a service-oriented
commitment to advance and sustain local and global communities.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Course Description

Title of Course: Group Discussion
Course Code: HU781
L-T –P Scheme: 0-0-3 Course Credits: 2

A group discussion aims at a structured but informal exchange of knowledge, ideas, and
perceptions among the participants on any issue, topic or sub-topic. Contributions are pooled
together and examined in terms of their relevance and validity to the discussion objectives. If
planned and organized in a structured way and certain essential conditions are met, it can provide
a highly enriching and stimulating experience to the participants. Lets us see, the objectives,
different steps involved in it and its limitations.

Objectives of a Group Discussion

 Produce a range of options or solutions, addressing a particular problem or an issue.

 Generate a pile of ideas by examining issues in greater depth, looking at different
dimensions of these issues.

 Broaden the outlook of the participants through cross-fertilization and exposure to new and
different experiences and ideas and enrich their understanding of the issues under
discussion.

 Develop their skills in interpersonal communication and in expressing their views in a clear
and succinct manner.

 Effective means of changing attitudes through the influence of peers in the group

 Valuable means of obtaining feedback for the training team on verbal skills, motivation
level and personal traits of the participants and characteristics of the group

Steps in organizing a Group Discussion

 Setting up the Groups

 Planning a Group Discussion

 Preparation of Group Reports

 Presentation and Consolidation of Group Reports

Limitations

 If the group is large, not all the members may get the opportunity to participate and
contribute to the discussion.

 If the task is not clearly defined, the discussion may lack focus and, as a result, it may be
unproductive.

 Difficulties can arise if the leader is unskilled in guiding the discussion and/or not familiar
with the topic or the issues.

 Some members may dominate and, in a way, hijack the discussion.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Course Description

 As this is a group task, some members may take it easy and not feel constrained to
participate.

Learning outcomes

After studying this course, you should be able to:

 understand the key skills and behaviours required to facilitate a group discussion

 prepare effectively before facilitating a meeting

 consider some of the difficult behaviours that can occur in meetings

 think of some possible strategies for dealing with these.

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

Title of Course: Project Part- I
Course Code: CS782
L-T –P Scheme: 6P Course Credits: 4

Project: an activity where the participants have some degree of choice in the outcome. The result
is complete and functional, that is, it has a beginning, middle and end. Usually, it spans multiple
lab periods and requires work outside scheduled lab periods. Since there are choices in
implementation, design is inherently a component of a project. A project is inherently different
from an analysis or exercise, in which the solution has a predictable form. Projects span a wide
variety of possibilities: design and build, identify a system, do a forensic analysis, evaluate a
product or assess some environmental situation.

Program Objective 1
Graduates shall make their way to the society with proper scientific and technical knowledge in
mechanical engineering.

Program Objective 2
Graduates shall work in design and analysis of mechanical systems with strong fundamentals and
methods of synthesis.

Program Objective 3
Graduates shall adapt to the rapidly changing environment in the areas of mechanical
engineering and scale new heights in their profession through lifelong learning.

Program Objective 4
Graduates shall excel in career by their ability to work and communicate effectively as a team
member and/or leader to complete the task with minimal resources, meeting deadlines.

Program Outcomes:

1. Ability to apply knowledge of mathematics, science and mechanical engineering
fundamentals for solving problems.

2. Ability to Identify, formulate and analyze mechanical engineering problems arriving at
meaningful conclusions involving mathematical inferences.

3. Ability to design and develop mechanical components and processes to meet desired
needs considering public health, safety, cultural, social, and environmental aspects.

4. Ability to understand and investigate complex mechanical engineering problems
experimentally.

5. Ability to apply modern engineering tools, techniques and resources to solve complex
mechanical engineering activities with an understanding of the limitations.

6. Ability to understand the effect of mechanical engineering solutions on legal, cultural,
social, public health and safety aspects./li>

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR
Lab Manual

7. Ability to develop sustainable solutions and understand their impact on society and
environment.

8. Ability to apply ethical principles to engineering practices and professional
responsibilities.

9. Ability to function effectively as an individual and as a member or leader in diverse
teams and in multidisciplinary settings.

10. Ability to comprehend, design documentation, write effective reports, make effective
presentations to the engineering community and society at large.

11. Ability to apply knowledge of engineering and management principles to lead teams and
manage projects in multidisciplinary environments.

12. Ability to engage in independent and life-long learning in the broad context of
technological changes and advancements.

	1.CS701_CC_LP.pdf (p.1-2)
	2.CS702_CD_LP.pdf (p.3-5)
	3.CS703A_Img Processing_LP.pdf (p.6-7)
	3.CS703B_PR_LP.pdf (p.8)
	3.CS703C_SC_LP.pdf (p.9-11)
	3.CS703D_AI_LP.pdf (p.12-15)
	4.CS704A_DISTRIBUTED OS_LP.pdf (p.16-18)
	4.CS704B_DWDM_LP.pdf (p.19-21)
	4.CS704C_SN_LP.pdf (p.22-24)
	4.CS704D_MOBILE COMPUTING_LP.pdf (p.25-26)
	5.CS705A_IT_LP.pdf (p.27-28)
	5.CS705B_MVLSID_LP.pdf (p.29-31)
	5.CS705C_CS-I_LP.pdf (p.32-35)
	5.CS705D_MS_LP.pdf (p.36)
	6.CS793A _Img Processing_Lab_LM.pdf (p.37-47)
	6.CS793B_PR_Lab_LM.pdf (p.48-50)
	6.CS793C_SC_Lab_LM.pdf (p.51-68)
	6.CS793D_AI__Lab_LM.pdf (p.69-70)
	7.CS795A_IT_Lab_LM.pdf (p.71-79)
	7.CS795B_VLSID_Lab_LM.pdf (p.80-97)
	7.CS795C_CS_LAB_LM.pdf (p.98-109)
	7.CS795D_S&M_Lab_LM.pdf (p.110-111)
	9.CS781_SEMINAR_LAB_LM.pdf (p.112-113)
	10.HU781_GD_LAB_LM.pdf (p.114-115)
	11CS782_PRO-I_LAB_LM.pdf (p.116-117)

